worse, and 2 - cosmesis two categories worse after radiotherapy. For the subjective score the median difference for the 3 observers was considered. At submission of this abstract 2-year cosmetic outcome was available for 82/100 patients (39 prone and 43 supine treated). All patients will have reached 2-year follow up in January 2014 and final results will be available for presentation at the 3rd ESTRO Forum.

Results: Patient and treatment characteristics were not significantly different between both cohorts. Figure 1 shows the interim data. Neither objective, nor subjective cosmetic outcome was significantly different between prone and supine treated patients. On the photographs with the hands up, more patients in the supine group had a worsening of cosmesis of 2 categories using the BCCT.org software (6/43 versus 0/39 in the prone cohort, p = 0.053).

Conclusions: Interim analysis shows no significant differences in cosmetic outcome between prone and supine WBI after a limited follow-up of 2-year. Final data will be presented at the 3rd ESTRO Forum.

Acknowledgements: Financed through CancerPlan Action 29 by the Federal Public Service Health, Food Chain Safety and Environment, Belgium

PD-0044

Interfraction heart position changes during voluntary deep inspiration breath-hold radiotherapy
F. Claassen-Janssen1, P. Van Haaren1, I. Van de Sande1, L. Boersma2, M. Van der Sangen1, C. Hurkmans1
1Catharina Hospital, Dept. Radiation Oncology, Eindhoven, The Netherlands
2MAASTRO, Dept. Radiation Oncology, Maastricht, The Netherlands

Purpose/Objective: To investigate heart position reproducibility on cone-beam CT (CBCT) during voluntary moderate deep inspiration breath-hold (mDIBH) for radiotherapy of left-sided breast cancer patients. Materials and Methods: For 20 consecutive left-sided breast cancer patients, FB and mDIBH CT datasets were acquired. Both scans were registered on the breast and chest wall. Heart position with respect to chest wall (HP-CW) was measured on both scans in the transversal slice where the heart was nearest to the chest wall at the level of the tangential fields, i.e. nearest to the field edge of the treatment beams, perpendicular to the tangential field edge. The change in HP-CW on the FB scan relative to the mDIBH scan was quantified as ΔHP-CW, Treatment planning was based on the mDIBH CT scan. For 50 additional consecutive patients, who are treated with tangential IMRT beams, CBCT scans were made during mDIBH for position verification and setup correction. During treatment breath-hold was monitored using an in-house developed tool, resulting in an accurate and reproducible position of the breast and chest wall during mDIBH. On the CBCT scans the difference in heart position with respect to the reference mDIBH CT was measured after registration, in order to quantify the change in heart position relative to the chest wall (ΔHP-CW).

Results: On the FB scan heart position was on average 10.8 ± 5.1 mm (range 3.5 - 21.7 mm) closer to the chest wall compared to the mDIBH scan (indicated as a negative ΔHP-CW in Figure 1). Despite the breath-hold, the heart was on average 4.7 ± 8.3 mm (range -21 - +12 mm) inside the radiation field on the initial planning mDIBH CT scan. At fraction 1, the average ΔHP-CW was -0.8 ± 5.2 mm, i.e. the breath-hold was less deep than during planning CT. During the total treatment, the average ΔHP-CW was 0.9 ± 4.4 mm (range -8.3 – +10.4 mm, Figure 1), suggesting a trend towards progressively deeper inspiration during the rest of the treatment course. However, there was a large interfraction variation per patient in ΔHP-CW over the treatment course with an average standard deviation of 3.1 mm.

Conclusions: In this study, applying voluntary mDIBH always decreased the amount of heart inside the treatment volume. Despite the large interfraction variation, on average the distance between heart and chest wall increased during treatment. Therefore, voluntary mDIBH is sufficient for the majority of the patients, although some patients might benefit from an online feature that monitors both chest wall and heart position during breath-hold.

PD-0045

Ph I/II study evaluating the impact of nanoparticles combined to pre-operative radiotherapy in soft tissue sarcoma
1Gustave Roussy Cancer Center, Surgery, Villejuif, France
2Institut Bergonié, Surgery, Bordeaux, France
3Gustave Roussy Cancer Center, Interventional Radiology, Villejuif, France
4Institut Bergonié, Interventional Radiology, Bordeaux, France
5Gustave Roussy Cancer Center, Physics Unit, Villejuif, France
10Gustave Roussy Cancer Center, Surgery, Villejuif, France
Purpose/Objective: Patients (pts) with locally advanced soft tissue sarcoma of the extremities or trunk wall are frequently treated with neo-adjuvant treatment followed by wide resection. Pre-operative radiotherapy (RT) is one of these validated options. To optimize outcome, NBTXR3, functionalized hafnium oxide nanoparticles, have been developed as selective radioenhancer, which may represent a breakthrough approach for the local treatment of solid tumors. The high electron density of NBTXR3 nanoparticles when exposed to radiotherapy, may allow absorption/deposition of a high energy dose within the cancer cell, and possibly improve outcome.

Materials and Methods: Pts received a single intratumor (IT) injection of NBTXR3 at fixed concentration (53.3 g/L), volume escalated from level 1 (2.5% of tumor volume) to level 4 (20% of tumor volume), followed by RT (50 Gy in 25 fractions of 2 Gy over 5 weeks). Primary endpoints include feasibility of the IT implantation and safety. Secondary endpoints focus on efficacy such as pathological and RECIST response, IT residency of NBTXR3 over the whole RT time, and operability.

Results: Out of 21 pts included, 20 are evaluable: they underwent a wide surgical resection and received the planned radiotherapy. Feasibility of the IT injection was confirmed. The treatment was safe. Main grade 1-2 toxicities related to NBTXR3 were injection pain/reaction (4 pts), fever (2 pts), abdominal pain (1 pt), pruritus (1 pt) and paresthesia (1 pt). At volume 20%, 2 pts had grade 3 pain at the injection site. Results demonstrate that one injection of NBTXR3 provides adequate bioavailability of NBTXR3 over five weeks of radiotherapy. No leakage of NBTXR3 to the adjoining healthy tissues was observed. Further, NBTXR3 persistence was established by CT scan before surgery. At Volumes 2.5%, 5%, 10%, and 20%, the median change in sarcoma volume was respectively 13%; 40%, 44% and 51%. The percentage of residual and viable cells was 34% at the chosen maximum tolerated 10% level of tumour volume.

Conclusions: Injection of NBTXR3 was very well tolerated until 10% of tumor volume. NBTXR3 with preoperative RT seems to be an effective neo-adjuvant treatment for pts with locally advanced STS. An international phase II/III will start in Q4 2014. The recommended volume is 10% of tumor volume. NBTXR3 with preoperative RT seems to be an effective neo-adjuvant treatment for pts with locally advanced cancers. Pre-operative RT was more than 20% of tumor volume.

PD-0046
Outcome according to pelvic radiotherapy in the GETUG 12 phase III trial for high-risk localized prostate cancer

P. Blanchard¹, L. Faivre², F. Lesaunier³, N. Salem³, N. Mesguex-Nebout³, E. Deniaud-Alexandre⁴, J.M. Ferrero², N. Houëdélé⁵, M. Habibian⁶, K. Fizazi⁷
¹Gustave Roussy, Radiation Oncology, Villejuif, France
²Gustave Roussy, Biostatistics, Villejuif, France
³Centre François Baclesse, Radiation Oncology, Caen, France
⁴Institut Paoli Calmette, Radiation Oncology, Marseille, France
⁵Institut de Cancérologie de l’Ouest, Radiation Oncology, Angers, France
⁶Centre Hospitalier de Vendée, Radiation Oncology, La Roche sur Yon, France
⁷Institut Bergonié, Medical Oncology, Bordeaux, France

Purpose/Objective: The role of pelvic elective nodal irradiation (ENI) in the management of prostate cancer is still controversial. Despite negative clinical trials, clinical practices vary greatly, even in patients at high risk of pelvic lymph node dissemination. The aim of this study was to analyze the role of pelvic radiotherapy on the outcome in high-risk localized prostate cancer patients included in the recently reported GETUG 12 trial (Fizazi et al, ASCO 2014).

Materials and Methods: Eligibility criteria included non-pretreated high-risk localized CaP, defined as one or more of the following criteria: T3-T4, Gleason score (GS)>7, PSA>20 ng/mL, pT4 (stratification factors). All pts had a staging pelvic lymph node dissection. Pts were randomly assigned to either goserelin 10.8 mg every 3 months for 3 years and 4 cycles of docetaxel 70 mg/m² q3w + estramustine 10 mg/kg/d d1-5 (ADT+DE arm) or goserelin alone (ADT arm).

Results: 413 patients were included from 2002 to 2006, out of which 358 were treated using primary radiotherapy and are analyzed in the present report. 208 patients received a pelvic radiotherapy and 150 prostate-only. PSA level, Gleason score or T stage did not differ according to the performance of pelvic radiotherapy. However pN+ pts patients more frequently received pelvic radiotherapy than pN0 patients (pelvic ENI 89% in pN+ pts and 47% in pN0 pts; p Conclusion: This unplanned analysis of a recently completed trial failed to demonstrate a benefit of pelvic radiotherapy in high-risk localized prostate cancer patients. pBFS was negatively impacted by pN+ and positively impacted by chemotherapy in GETUG 12 patients treated by radiotherapy.

PD-0047
GU and GI toxicity in ASCENDE-RT*: a multicentre randomized trial of dose-escalated radiation for prostate cancer

S. Rodda¹, S. Tyldesley², W. Morris³
¹BC cancer Agency, Radiation Oncology, Vancouver, Canada
²University of British Columbia, Vancouver, Canada

Purpose/Objective: To report the grade 3 and higher (G3+) GU and GI toxicity for patients in a randomized trial evaluating the efficacy and safety of two different techniques for achieving dose escalation.

Materials and Methods: 398 men with National Comprehensive Cancer Network (NCCN) intermediate-risk (N=122) or high-risk (N=276) localized prostate cancer were accrued at 6 centers, stratified by risk group and randomized to one of two treatment arms. Both arms received 12 months of androgen deprivation therapy (ADT via LHRH depot injections), 8 months of which was given prior to starting whole pelvic irradiation (46Gy/23/#s). Patients randomized to the dose-escalated external beam arm (DE-EBRT, N=200) continued with a 3-d conformal boost to the prostate of 32Gy/16#s. Patients randomized to the low-dose-rate Brachytherapy arm (LDR-PB, N=198) had an 125Iodine implant (MPD = 115Gy). Physician-scored toxicity was prospectively assessed and recorded using a modified LENT-SOMA scoring system. Follow up (FU) times for the toxicity data was calculated from the date of the start of Radiation treatment. The primary endpoint of the trial was disease free survival (DFS). There were 12 major protocol violations in each arm; all results are reported on an intent-to-treat basis.

Results: Patients randomized to LDR-PB were more than twice as likely to be disease-free at median FU of 6.5 yrs (hazard ratio = 2.11; 95% CI 1.01.31 – 3.42; P = 0.0022). Acute