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Abstract This article attempts to investigate the effects of small scale parameter on steady state

response of functionally graded nano-beams resting on a viscous foundation to super-harmonic

excitation. A simple power-law distribution is used to model the variation of material property

graded in the thickness direction. The dimensionless partial differential equation of motion is

derived by using Euler-Bernoulli beam theory, von-Karman geometric nonlinearity and Eringen’s

nonlocal elasticity theory. Using multiple scale method, one can find the governing equations of

steady state response of functionally graded nano-beams excited by distributed harmonic force.

The small scale parameter ðe0aÞ is changed between 0 and 2 to investigate the effects of small scale

on steady state response of excited functionally graded nano-beams due to lack of information. The

study of the effects of small scale parameter on backbone curves shows that an increase in the small

scale parameter often decreases the dimensionless peak response although the type of loading can

change the relationship between small scale parameter and the dimensionless peak response.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Functionally graded materials (FGM) have unique character-
istics resulting from the smooth and continuous variation of
properties along certain dimensions. These remarkable advan-

tages have made them the notable materials which can be used
in many engineering application fields [1]. The growing devel-
opment of technology has permitted the use of FGM thin

beams in micro/nano-electro-mechanical systems, such as
electrically actuated devices and atomic force microscopes

[2], so the study of mechanical behavior of FG micro-/nano-
beams has recently become a topic of interest to researchers.

Using a modified couple stress theory, Reddy [3] derived

the nonlinear non-classical Timoshenko and Euler-Bernoulli
beam theories to study static bending, free vibration, and
buckling of FG simply supported micro-beams. These theories
were used by Arbind and Reddy [4] to investigate nonlinear

bending response of clamped FG micro-beams under mechan-
ical loadings while Eltaher et al. [5,6] and S�ims�ek and Yurtcu

[7] independently employed nonlocal Timoshenko beam theory
[5,7] and nonlocal Euler-Bernoulli beam theory [6,7] to study

the static bending and buckling of FG nano-beams with
different boundary conditions. Some researchers used the
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combination of surface elasticity theory [8,9] or the strain gra-
dient theories [10–12] with nonlinear beam theories to study
nonlinear free vibration of functionally graded nano-beams

as well.
All analytical and numerical results reported by researchers

mentioned above clearly show the difference between classical

and non-classical continuum theories in predicting mechanical
behavior of size-dependent FG beams. Due to the necessity of
incorporating the size effect into classical continuum mechan-

ics to study mechanical behavior of FG micro-/nano-beams
accurately, the nonlocal elasticity theory has been employed
to simulate dynamical behavior of micro/nano-beams by some
researchers.

Eltaher et al. [13] studied free vibration of FG nano-beams
based upon nonlocal Euler-Bernoulli beam theory and finite
element method. The effects of neutral axis location on linear

natural frequencies of FG macro-/nano-beams were investi-
gated by Eltaher et al. [14] as well. Uymaz [15] used generalized
beam theory and the nonlocal elasticity to present forced

vibration of FG nano-beams. Nonlinear free vibration of FG
nano-beams was studied by Nazemnezhad and Hosseini-
Hashemi [16] based on nonlocal Euler-Bernoulli beam theory

and multiple scale method. Using nonlocal Timoshenko beam
theory, Rahmani and Pedram [17] investigated the effects of
gradient index and geometrical dimensions on linear free
vibration of FG nano-beams. He’s variational method and

nonlocal Euler-Bernoulli beam theory were used to study the
large amplitude free vibration of FG nano-beams resting on
nonlinear elastic foundation by Niknam and Aghdam [18].

Kiani [19] proposed a mathematical model to investigate the
vibration and instability of moving FG nano-beams based
on nonlocal Rayleigh beam theory. Obtained results clearly

show that the value of small scale parameter is an important
factor to estimate dynamic responses of FG nano-beams accu-
rately although boundary conditions, order of the mode of

vibration and geometrical dimensions can affect the role of
the small scale parameter in simulating dynamic responses of
FG nano-beams.

Although it is well known that proper values of the nonlo-

cal parameter must be used if the accurate study of mechanical
behavior of micro-/nano-structures is desired, a thorough
research has not been done to estimate the value of small scale

corresponding to mechanical response of functionally graded
micro-/nano-beams so far [16]. Hence, all researchers who used
nonlocal continuum theories to simulate size-dependent

mechanical behavior of FG nano-beams investigated the
effects of small scale parameter on mechanical behavior of
FG nano-beams by changing the value of the small scale
parameter [13–16].

Based upon the author’s knowledge, there is no notable
study showing the influence of nonlocal parameter on mechan-
ical response of FG nano-beams to sub- or super-harmonic

excitation. So, the investigation of the effects of small scale
parameter on steady-state response of FG nano-beams resting
on a viscous foundation to super-harmonic excitation is the

main purpose of this article. A simple power-law distribution
is used to model the variation of material property graded in
the thickness direction. The partial differential equation of

motion is derived based on Euler-Bernoulli beam theory,
von-Karman geometric nonlinearity and Eringen’s nonlocal
elasticity theory. The multiple scale method is employed to find
governing equations of steady state response of FG nano-
beams excited by distributed harmonic force. In the parametric
studies of this work, due to lack of information, small scale

ðe0aÞ is varied between 0 and 2 to investigate the effects of
small scale on steady state response of excited FG nano-
beams.

2. Equation of motion

The following equation is the partial differential equation of

motion of a simply supported FG nano-beam resting on vis-
cous foundation (Fig. 1) with length L, width b and thickness
h and immovable ends. This equation is derived based on

Euler-Bernoulli beam theory hypothesis, von-Karman geomet-
ric nonlinearity and Eringen’s nonlocal elasticity theory
(details can be found in Appendix A):

ðe0aÞ2Hþ bN @2W

@x2
� k̂W� ĉ

@W

@t
þ Fðx; tÞ

¼
Z
A0

ðz� z0Þ2EðzÞdA0

� �
@4W

@x4
þ

Z
A0

qðzÞdA0

� �
@2W

@t2
ð1Þ

where H is defined by Eq. (2):
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and bN is as follows:

bN ¼ þ 1

2L
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� �2

dx ð3Þ

where W = W(x, t) denotes the transverse displacement of any
point on the geometric mid-plane (z = 0, based on Fig. 1) of

beam element, q(z) is mass density which is functionally graded

in the thickness direction, k̂ and ĉ are the stiffness of the foun-
dation and the damping coefficient of the foundation respec-
tively, F ¼ FðxÞ cosðXtÞ is a transverse loading, and e0a is a
material length scale parameter which contains material con-

stant and internal characteristic length. The distance of the
neutral surface of the FG nano-beam from the geometric
mid-plane of the FG nano-beam (z = 0, based on Fig. 1) is

shown by z0 [14].
One can employ the following dimensionless variables to

simplify the parametric studies [20]:
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r
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Then, the governing partial deferential equation of motion
changes to the following:
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where

H ¼ � 1
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If the small scale parameter (e0a) and the index of power-
law (�n) in Eq. (5) are taken equal to zero, Eq. (5) will be con-

verted to the well-known local equation of nonlinear lateral
vibration of homogeneous beams obtained and used in some
papers [21].

To estimate transverse displacement of simply supported
FG nano-beams, one can use the mode shapes of linear vibra-
tion of nano-beams:

W ¼
XN
s¼1

�qsð�tÞ sinðsp�xÞ ð6Þ

The partial differential equation changes to the system of ordi-

nary differential equations by substituting Eq. (6) for W in Eq.
(5) and using Galerkin method:
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and s is half-wavelength number. �xs is also sth dimensionless
linear natural frequency of FG nano-beams obtained by omit-

ting the nonlinear terms and external load from Eq. (7).

3. Super-harmonic excitation

According to the multiple scale method, the solution of the
system of ordinary differential equations (7) is approximated
as follows:

�qs ¼ e�qs1ðT0;T2Þ þ e3�qs3ðT0;T2Þ ð10Þ
where T2 ¼ e2�t, T0 ¼ �t and e is a small dimensionless parame-

ter. The slow scale T1 ¼ e�t and the term e2qs2 are omitted from
Eq. (10) because the nonlinearity is cubic [22]. To show the
damping terms and the nonlinear terms in the same perturba-

tion equations, one must set the damping coefficients (Cs) to

2e2 bCs. It is not necessary to scale the forcing terms because
the excitation terms must be appeared in equations resulting

from equating the coefficient of e1. The following equations
are obtained by substituting Eq. (10) for �qs into Eq. (7) and

equating coefficients of like powers of e:

D2
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D2
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where Dn ¼ @
@Tn

. One can write the solution of Eq. (11) as

follows:
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s � X2Þ expðiXT0Þ þ CC
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where CC stands for complex conjugate of the preceding
terms.

Substituting Eq. (13) for �qs1 into Eq. (12) yields the

following:
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Figure 1 Schematic Geometry, coordinate system and boundary

conditions of FG nano-beam resting on viscous foundation. GMP

and N.S. stand for geometric mid-plane and neutral surface

respectively.

2658 S. Ziaee
As seen, if 3X � �xn, the secondary resonance will occur.
To investigate the nonlinear forced vibration of nano-

beams with secondary resonance, one should introduce a
detuning parameter r according to

3X ¼ �xn þ e2r ð16Þ
After substituting Eq. (16) into Eq. (14), the secular terms

will be eliminated from qn3 if:
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and the secular terms will be eliminated from qj3 (where

j= 1, . . . ,M and j – n) if:
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Substituting polar transformation (As ¼ 1
2
bs expðihsÞ, s = j,

m,n) for Am, An and Aj in Eqs. (17) and (18), and separating

real and imaginary parts, one can obtain the following equa-
tions after some simplifications:

�xjh
0
jbj ¼ aj

XN
m¼1

1

4
m2 b2mbj þ

bjð bFm � ðe0aÞ2 bGmÞ
2

ð�x2
m � X2Þ2

 !

þ ajbj
2

j2ð bFj � ðe0aÞ2 bGjÞ
2

ð�x2
j � X2Þ2

þ j2b2j
4

" #
ð19aÞ

�xjb
0
j ¼ � bCjbj �xj ð19bÞ

c0 ¼ an
bn �xn

XN
m¼1

1

4
m2 b2mbn þ

bnð bFm � ðe0aÞ2 bGmÞ
2

ð�x2
m � X2Þ2

 !

þ an
2�xn

n2ð bFn � ðe0aÞ2 bGnÞ
2

ð�x2
n � X2Þ2

þ n2b2n
4

" #
þ an
bn �xn

�
XN
m¼1

m2 ð bFn � ðe0aÞ2 bGnÞð bFm � ðe0aÞ2 bGmÞ
2

8ð�x2
m � X2Þ2ð�x2

n � X2Þ
cosðcÞ � r

ð19cÞ
�xnb

0
n ¼ � bCnbn �xn

þ an
XN
m¼1

m2 ð bFn � ðe0aÞ2 bGnÞð bFm � ðe0aÞ2 bGmÞ
2

8ð�x2
m � X2Þ2ð�x2

n � X2Þ
sinðcÞ ð19dÞ

where ðÞ0 ¼ dðÞ
dT2

, c ¼ ðhn � rT2Þ, j ¼ 1; . . . ;N, and j – n.

Numerical integrating of Eqs. (19a)–(19d) and using Eqs.
(6) and (10), one can obtain the lateral displacement of FG
nano-beams under super-harmonic excitation as follows:
W ¼
XN
s¼1

ebs cosð�xs�tþ hsÞ þ e
ð bFs � ðe0aÞ2 bGsÞ

ð�x2
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þOðe3Þ
ð20Þ
3.1. Steady state response

The solution of Eq. (19b) is as follows:

bj ¼ aj expð� bCje
2tÞ ð21Þ

As seen, bj (j = 1, . . . ,N and j– n) exponentially tends to
zero. Consequently, the value of bj (j = 1, . . . ,N and j– n) will
be zero in Eqs. (19c) and (19d) when time tends to infinity. The

values of b0n and c0 must be equal to zero to study the steady-

state response of excited FG nano-beams as well. Thus, the fol-

lowing relationship is obtained:

0 ¼ an
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The frequency-response equation can be found by eliminat-

ing c from Eqs. (22) and (23) as follows:

r¼� a2nS
2
1

b2n �x
2
n

� bC2
n

" #1=2
þ3b2nn
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þ 1
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where

S2 ¼
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m¼1
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S1 ¼
XN
m¼1

m2 ð bFn � ðe0aÞ2 bGnÞð bFm � ðe0aÞ2 bGmÞ
2

8ð�x2
m � X2Þ2ð�x2

n � X2Þ

¼ ð bFn � ðe0aÞ2 bGnÞ
2ð�x2

n � X2Þ S2 ð26Þ

Based upon Eq. (24), the dimensionless peak response
(bnmax

) and the corresponding detuning (rmax) can be derived

as follows:

bnmax
¼ anS1bCn �xn

ð27Þ

rmax ¼ 3b2nn
2an

8�xn

þ 1

�xn

anS2 þ n2anð bFn � ðe0aÞ2 bGnÞ
2

2ð�x2
n � X2Þ2

" #
ð28Þ

According to Eq. (20), the steady-state deflection of excited

FG nano-beam (Ws) can be approximated as follows:

Ws ¼ ebn cosðð�xn þ re2Þ�tþ cÞ sinðnp�xÞ

þ e
XM
s¼1

ð bFs � ðe0aÞ2 bGsÞ
ð�x2

s � X2Þ cosðX�tÞ sinðsp�xÞ
 !

þOðe3Þ ð29Þ

where c can be found by solving Eq. (23). As seen, the steady-

state response of FG nano-beam to super-harmonic excitations
is formed from the particular and free-oscillation solutions.

If the value of small scale parameter (e0a), the index of
power-law (�n) and the coefficient of the stiffness of the founda-

tion (k̂) in all equations were set to zero and also if it was

assumed that 3X ¼ �x1 þ e2r, Eq. (24) would be converted into
the following equation which was in concordance with the

equation proposed by Nayfeh and Mook [22]:

r ¼ þ 3b21p
2

32
þ p2

4

XN
m¼2

m2ð bFmÞ
2

4ððmpÞ2 � X2Þ2
þ 3ð bF1Þ

2

4ðp2 � X2Þ2
" #

�
p4

PN
m¼1m

2
bF1

� � bFm

� �2
8ððmpÞ2�X2Þ2ðp2�X2Þ

 !2

16b21
� bC2

n
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3777775
1=2

ð30Þ

It is worth mentioning that the linear mode shapes and the

external force used by Nayfeh and Mook [22] are
ffiffiffi
2

p
sinðsp�xÞ

and 2 bFs respectively which are different from those employed

in the present study (sinðsp�xÞ and bFs). These differences
between coefficients of the linear mode shapes and external

force justify the difference between Eq. (30) and that obtained
by Nayfeh and Mook [22].

4. Numerical results and discussion

Mechanical properties of silicon nitride (Si3N4) and stainless
steel-grade 304 (SUS304) are used in the numerical analysis.

It is assumed that the nano-beam is made of pure metal (stain-
less steel-grade 304) when the power-law index (�n) is zero and
with a rise in the power-law index (�n), the volume fraction of

silicon nitride gradually increases in nano-beam. Conse-
quently, an increase in power-law index increases extensional
and flexural stiffness of FG nano-beam. It is also assumed that
operating frequency is nearly one-third of the lowest natural

frequency.
According to Eq. (8), it is expected that a rise in nonlocal
parameter and/or power-law index decreases the dimensionless
natural frequencies. Eqs. (9a) and (9b) clearly reveal that the

nonlocal parameter does not affect the dimensionless nonlin-

ear term (as) and the dimensionless damping coefficient ( bC1).
The effects of an increase in index of power-law on dimen-

sionless damping coefficient ( bC1) and the coefficient of nonlin-
ear term are listed in Table 1. On the basis of Table 1, as long
as the value of power-law index is lower than 0.06, the dimen-
sionless coefficient of damping will decrease if the index of

power-law increases. A rise in the power-law index which is
more than 0.06 increases the dimensionless coefficient of
damping. The coefficient of nonlinear term in Eq. (7) will con-

tinually increase if the index of power-law rises due to increas-
ing the extensional-to-flexural stiffness ratio. The numerical
results listed in Table 1 clearly show that the rate of the growth

of the coefficient of nonlinear term is much more than that of
the dimensionless coefficient of damping. Therefore, it is
expected that with an increase in the index of power-law, the

dimensionless value of peak response (Eq. (27)) and the corre-
sponding detuning parameter (Eq. (28)) rise.

It is worth mentioning that the upper limit value of Eq. (25)
affects the accurate prediction of the dimensionless peak

response and the corresponding detuning parameter (it must
be noted that one can rewrite S1 on the basis of S2 (see Eq.
(26))). Tables 2, 3 and 4 clearly show the influence of small

scale value, power law index, the kind of distributed lateral
load and the upper limit value of Eq. (25) on the value of
S2. According to these tables, the value of S2 converges to a

fixed value as increasing the upper limit value of Eq. (25).
Then, the first ten sentences (N = 10) of Eq. (25) are used to
estimate the dimensionless peak response and corresponding
detuning parameter because more sentences rise the values of

S2 (Eq. (25)) less than 1 � 10�4 (see Tables 2–4) which can
be negligible.

Backbone curves resulting from distributed lateral load

with constant intensity are shown in Fig. 2 to investigate the
effects of the small scale parameter and the index of power-
law on the dimensionless peak response. As explained above,

at a fixed value of nonlocal parameter, dimensionless peak
response and corresponding detuning parameter increase with
an increase in power-law index. It is also seen that, at a fixed

value of power-law index, a rise in the nonlocal parameter
decreases the dimensionless peak response and the correspond-
ing detuning parameter due to the decrease in the dimension-
less natural frequencies and the dimensionless lateral force as

increasing small scale.
Based upon Eq. (9c), the type of distributed lateral load can

affect the peak response and frequency-response curves. Three

different kinds of distributed lateral load whose resultant
forces are equal are used to study the effects of distributed lat-
eral load with different intensities on frequency-response

curves (Table 5). Fig. 3 demonstrates that the kind of dis-
tributed lateral load affects not only the value of the dimen-
sionless peak response and the corresponding detuning but
also the occurrence of the jumping phenomenon.

Figs. 2, 4 and 5 show how the type of distributed lateral
load affects the influence of small scale parameter on dimen-
sionless peak response.

As seen, with an increase in the index of power-law, the
dimensionless peak response and the corresponding detuning



Table 1 The effect of an increase in index of power-law on dimensionless damping coefficient ( bC1) and the coefficient of nonlinear

term (L/h= 25 nm).

n 0 0.02 0.04 0.06 0.08 0.1 0.5 1 1.5

h= 0.5 bC1
10.79 10.76 10.73 10.68 10.67 10.77 11.11 11.42 11.67

a1 24.35 24.73 25.12 25.96 26.39 36.16 49.29 62.66 76.06

h= 1 bC1
2.699 2.690 2.682 2.672 2.668 2.693 2.778 2.855 2.917

a1 24.352 24.730 25.126 25.960 26.395 36.163 49.295 62.669 76.066

h= 1.5 bC1
1.199 1.195 1.192 1.187 1.186 1.196 1.234 1.269 1.296

a1 24.352 24.730 25.126 25.960 26.395 36.163 49.295 62.669 76.066

h= 2 bC1
0.6748 0.6725 0.6707 0.6680 0.6671 0.6732 0.6946 0.7139 0.7294

a1 24.352 24.730 25.126 25.960 26.395 36.163 49.295 62.669 76.066

Table 2 The effects of upper limit (N) of Eq. (25) on the values of S2 for lateral distributed load with constant intensity. S2 (N) means

the value of S2 on the basis of the first N sentences of Eq. (25).

S2(10)–S2(5) S2(15)–S2(10)

e0a 0 0.5 1 1.5 0 0.5 1 1.5

�n ¼ 0 0.5 � 10�3 0.5 � 10�3 0.5 � 10�3 0.5 � 10�3 0.17 � 10�4 0.17 � 10�4 0.17 � 10�4 0.17 � 10�4

�n ¼ 0:03 0.5 � 10�3 0.5 � 10�3 0.5 � 10�3 0.4 � 10�3 0.16 � 10�4 0.16 � 10�4 0.16 � 10�4 0.16 � 10�4

�n ¼ 0:06 0.4 � 10�3 0.4 � 10�3 0.4 � 10�3 0.4 � 10�3 0.15 � 10�4 0.15 � 10�4 0.15 � 10�4 0.15 � 10�4

�n ¼ 0:09 0.4 � 10�3 0.4 � 10�3 0.4 � 10�3 0.4 � 10�3 0.15 � 10�4 0.15 � 10�4 0.15 � 10�4 0.14 � 10�4

�n ¼ 0:12 0.4 � 10�3 0.4 � 10�3 0.4 � 10�3 0.4 � 10�3 0.14 � 10�4 0.14 � 10�4 0.14 � 10�4 0.14 � 10�4

Table 3 The effects of upper limit (N) of Eq. (25) on the values of S2 for lateral distributed load shown by L2 in Table 5. S2 (N) means

the value of S2 on the basis of the first N sentences of Eq. (25).

S2(10)–S2(5) S2(15)–S2(10)

e0a 0 0.5 1 1.5 0 0.5 1 1.5

�n ¼ 0 4.7 � 10�3 4.6 � 10�3 4.5 � 10�3 4.3 � 10�3 0.15 � 10�3 0.15 � 10�3 0.15 � 10�3 0.14 � 10�3

�n ¼ 0:03 4.4 � 10�3 4.4 � 10�3 4.2 � 10�3 4.0 � 10�3 0.14 � 10�3 0.14 � 10�3 0.14 � 10�3 0.13 � 10�3

�n ¼ 0:06 4.2 � 10�3 4.2 � 10�3 4 � 10�3 3.8 � 10�3 0.14 � 10�3 0.13 � 10�3 0.13 � 10�3 0.13 � 10�3

�n ¼ 0:09 4.0 � 10�3 4.0 � 10�3 3.9 � 10�3 3.7 � 10�3 0.13 � 10�3 0.13 � 10�3 0.13 � 10�3 0.12 � 10�3

�n ¼ 0:12 3.9 � 10�3 3.8 � 10�3 3.7 � 10�3 3.5 � 10�3 0.12 � 10�3 0.12 � 10�3 0.12 � 10�3 0.12 � 10�3

Table 4 The effects of upper limit (N) of Eq. (25) on the values of S2 for lateral distributed load shown by L3 in Table 5. S2 (N) means

the value of S2 on the basis of the first N sentences of Eq. (25).

S2(10)–S2(5) S2(15)–S2(10)

e0a 0 0.5 1 1.5 0 0.5 1 1.5

�n ¼ 0 0.3 � 10�6 0.4 � 10�6 0.9 � 10�6 2 � 10�6 0.1 � 10�8 0.3 � 10�8 1 � 10�8 4 � 10�8

�n ¼ 0:03 0.2 � 10�6 0.4 � 10�6 0.9 � 10�6 2 � 10�6 0.1 � 10�8 0.3 � 10�8 1 � 10�8 4 � 10�8

�n ¼ 0:06 0.2 � 10�6 0.3 � 10�6 0.8 � 10�6 2 � 10�6 0.1 � 10�8 0.3 � 10�8 1 � 10�8 4 � 10�8

�n ¼ 0:09 0.2 � 10�6 0.3 � 10�6 0.8 � 10�6 2 � 10�6 0.1 � 10�8 0.29 � 10�8 1 � 10�8 4 � 10�8

�n ¼ 0:12 0.2 � 10�6 0.3 � 10�6 0.8 � 10�6 1.9 � 10�6 0.1 � 10�8 0.28 � 10�8 1 � 10�8 3.9 � 10�8
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parameter rise regardless of changing the distributed lateral
load while the effects of the small scale parameter on the peak

response completely depend on the kind of the distributed
load.
The influence of stiffness and damping coefficient of foun-
dation on frequency-response curves is studied as well.

According to Eq. (8), it is expected that an increase in stiffness
of foundation increases the dimensionless natural frequencies



Table 5 Distributed harmonic lateral load.

Symbol Formula Sketch

C F ¼ nF 1
3

� �
cosðX�tÞ

L2 F ¼ nFð4x2 � 4xþ 1Þ cosðX�tÞ

L3 F ¼ nFð�2x2 þ 2xÞ cosðX�tÞ

nF is a scale factor.

Figure 2 The effects of small scale parameter and index of power-law on peak response and corresponding detuning resulting from

distributed lateral load with constant intensity (DimC = 2.67, DimK = 2.33e3 when �n ¼ 0).

Figure 3 The effects of the type of distributed lateral load on

frequency-response curves of excited FG nano-beams

(DimC = 2.67, DimK = 2.33e3, �n ¼ 0, e0a= 0).
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appearing in denominator of Eq. (27). Thus, with an increase
in the stiffness of foundation, the dimensionless peak response

decreases. Fig. 6 clearly shows the effects of stiffness of foun-
dation on frequency-response curves of FG nano-beams under
distributed lateral load with constant intensity. As seen, with a

decrease in stiffness of foundation not only the dimensionless
peak response and the corresponding detuning increase but
also the amplitude curve bends more. In Fig. 6, ‘DimK’ which

equals k̂L4=D stands for the dimensionless stiffness of
foundation.

Fig. 7 that shows the effects of damping on the frequency-
response curves clearly reveals that with an increase in damp-
ing coefficient, the dimensionless peak response increases and

frequency-response curves bend more to the right-hand side.
This behavior is expectable because of the appearance of
damping coefficient in denominator of Eq. (27). In Fig. 7,

‘DimC’ that equals ĉL2=
ffiffiffiffiffiffiffiffi
Dqe

p
stands for the dimensionless

damping coefficient of foundation. The distributed lateral load

with constant intensity is used to plot Fig. 7.



Figure 4 The effects of small scale parameter and index of power-law on peak response and corresponding detuning resulting from

distributed lateral load presented with L3 in Table 5 (DimC = 2.67, DimK = 2.33e3 when �n ¼ 0).

Figure 5 The effects of small scale parameter and index of power-law on peak response and corresponding detuning resulting from

distributed lateral load presented with L2 in Table 5 (DimC = 2.67, DimK = 2.33e3 when �n ¼ 0).

Figure 6 The influence of stiffness of foundation on frequency-

response curves of excited FG nano-beams under distributed

lateral load with constant intensity (DimC = 2.67, �n ¼ 0,

e0a= 0).

Figure 7 The influence of damping coefficient of foundation on

frequency-response curves of FG nano-beams under distributed

lateral load with constant intensity (DimK = 2.33e3, �n ¼ 0,

e0a= 0).
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5. Conclusion

This article is an attempt to study the effects of different
parameters such as the stiffness and the damping coefficients

of foundation, the index of power-law, the small scale param-
eter and the kind of distributed harmonic load on steady-state
response of FG nano-beam under super-harmonic excitation.

Multiple scale method is employed in order to derive the gov-
erning equations of steady state response of FG nano-beams
excited by distributed harmonic force.

The results show that the effects of small scale parameter on

backbone curves completely depend on the kind of loading. It
is seen that with a decrease in the stiffness coefficient or with
an increase in the damping coefficient, the dimensionless peak

response increases and frequency-response curve bends more
to the right-hand side as well.
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Appendix A

The following equations are the equations of motion of a sim-
ply supported FG nano-beam with immovable ends derived by
using Hamilton’s principle. Based upon the previous research

[16,18,20], it is also assumed that the in-plane inertia and the
rotary inertia are negligible:

@ bN
@x

¼ 0 ðA1Þ

F� k̂W� ĉ
@W

@t
� @2cM

@x2
þ bN @2W

@x2
¼

Z
A0

qðzÞdA0

� �
@2W

@t2
ðA2Þ

in which W = W(x, t) is the transverse displacement of any

point on the geometric mid-plane (z = 0, based on Fig. 1) of
FG nano-beam element, q(z) is the mass density which is func-
tionally graded in the thickness direction, the axial normal

force and the bending moment are shown by bN and cM respec-

tively, k̂ and ĉ denote the stiffness of the foundation and the
damping coefficient of the foundation respectively and
F ¼ FðxÞ cosðXtÞ is a transverse loading.

According to Euler-Bernoulli hypothesis and von-Karman
type geometrical nonlinearity, one can write the strain dis-
placement relationship as follows [16,18,20]:

ex ¼ @u1
@x

þ 1

2

@W

@x

� �2

ðA3Þ

in which u1 denotes the total displacement along the x direc-
tion given by Eq. (A4).

u1ðx; z; tÞ ¼ u0ðx; tÞ � ðz� z0Þ @W
@x

ðA4Þ

where u0ðx; tÞ is an axial displacement of any point on the geo-
metric mid-plane (z = 0, based on Fig. 1) of the FG nano-
beam element. z0 is the distance between the neutral surface

and the geometric mid-plane of the FG nano-beam (z = 0,
based on Fig. 1) [14]. According to the physical concept of
the neutral surface, z0 can be written as follows [14]:
z0 ¼
Z
A0

zEðzÞdA0

Z
A0

EðzÞdA0

�
ðA5Þ

Based on Eringen’s nonlocal elasticity, stress-strain rela-
tionship is as follows:

rx � ðe0aÞ2r2rx ¼ Eex ðA6Þ
where e0a is a material length scale parameter which contains
material constant and internal characteristic length. On the

other hand, resultant axial force and resultant moment ( bN
and cM) are as follows:

bN ¼
Z
A0

rxdA0; cM ¼ �
Z
A0

rxðz� z0ÞdA0 ðA7Þ

Substituting Eqs. (A3) and (A6) into (A7), one can obtain

the stress resultants on a beam element:

bN � ðe0aÞ2r2 bN ¼
Z
A0

EðzÞdA0

� �
@u

@x
þ 1

2

@W

@x

� �2
" #

ðA8aÞ

cM � ðe0aÞ2r2cM ¼
Z
A0

ðz� z0Þ2EðzÞdA0

� �
@2W

@x2
ðA8bÞ

where E(z) and q(z) defined by Eq. (A9) are Young’s
modulus and specific mass density of FG beam material

respectively.

EðzÞ ¼ E1 þ ðE2 � E1Þ 2zþ h

2h

� ��n

ðA9aÞ

qðzÞ ¼ q1 þ ðq2 � q1Þ
2zþ h

2h

� ��n

ðA9bÞ

in which Ei and qi (i= 1, 2) are Young’s modulus and specific
mass density of the two materials used in construction of FG

beam respectively.
The partial differential equation of transverse motion of

FG nano-beams will be derived by combining Eqs. (A8b)

and (A2) and making some simplifications:

ðe0aÞ2Hþ bN @2W

@x2
� k̂W� ĉ

@W

@t
þ Fðx; tÞ

¼
Z
A0

ðz� z0Þ2EðzÞdA0

� �
@4W

@x4
þ

Z
A0

qðzÞdA0

� �
@2W

@t2

ðA10Þ
where H is defined by Eq. (A11):

H ¼ ĉ
@3W

@x2@t
þ k̂

@2W

@x2
� @2F

@x2
� bN @4W

@x4
þ

Z
A0

qðzÞdA0

� �
@4W

@x2@t2

ðA11Þ
On the basis of Eq. (A1), one can conclude that r2 bN is

zero. Therefore, Eq. (A8a) is simplified as follows [16,18]:

bN ¼
Z
A0

EðzÞdA0

� �
@u0
@x

þ 1

2

@W

@x

� �2
" #

ðA12aÞ

Integrating Eq. (A12a) yields [10,12,14]:Z L

0

bNdx ¼
Z L

0

Z
A0

EðzÞdA0

� �
@u0
@x

þ 1

2

@W

@x

� �2
" # !

dx

ðA13aÞ
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or

bNL ¼
Z
A0

EðzÞdA0

� �
u0ðLÞ � u0ð0Þ þ

Z L

0

1

2

@W

@x

� �2

dx

" #
ðA13bÞ

in which L denotes the length of beam. The boundary values of
axial displacement of nano-beams are [16]:

u0ð0Þ ¼ 0; u0ðLÞ ¼ 0 ðA14Þ
Substituting for boundary conditions from Eq. (A14) into

Eq. (A13b), one can obtain the relationship between axial

force bN and transverse displacement of mid-plane of nano-
beams:

bN ¼ þ 1

2L

Z
A0

EðzÞdA0

� �Z L

0

@W

@x

� �2

dx ðA15Þ

Substituting for bN from Eq. (A15) into Eqs. (A10) and
(A11), one can acquire the governing equation of nonlinear

forced lateral vibration of FG nano-beams.
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