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Abstract

The goal of this paper is to give a comparatively short and simple analysis of the Adyan origional group constraction (S.I. Adyan,
Unsolvability of some algorithmic problems in the theory of groups, Trudy MMO 6 (1957) 231–298).
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1. Introduction

In the fundamental paper [20], P. S. Novikov solved the Dehn word problem for groups. He constructed the first
example of a finitely presented (f. p.) group with algorithmically undecidable word problem. This group is called the
(centrally-symmetric) Novikov group. Later Boone [15] published another example of a f. p. group with the same
property.

Based on the Novikov group, Adyan [1] solved the Dehn isomorphism problem for an arbitrary f. p. group. More
generally, he proved that many Markov’s properties of f. p. groups are algorithmically undecidable (see the definition
in the beginning of Section 4). Later Rabin [21] proved that each Markov’s property of a f. p. group is algorithmically
undecidable. These results are now known as the Adyan–Rabin theorem.

In the paper [10], the first author essentially simplified the original analysis of the Novikov group. Namely, based
on the notion of a group with standard basis [3] (see also [9,11]), the first author gave a comparatively simple proof of
the main technical group-theoretic result of [20]. It is Novikov’s equality criterion Theorem 3.2, see ([20, Chapter 4]).

The goal of this paper is to give a comparatively short and simple analysis of the Adyan original construction [1].
For this reason we suggest the following definition of the Adyan extension of a group G. Let G be a group with four
fixed elements g1, g2 , g3, g4. Then

A(G, g1, g2, g3, g4) = gr〈G, q|g1q = qg2, g3qg4q = qg3〉
is called the (two-relation) Adyan extension of G.
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Let us call some elements of a group independent if they freely generate a free subgroup of the group. One of the
main results of the paper is the following:

Theorem 1.1. Let G be a group with four independent elements gi, i = 1, 4. Then A(G, gi, i = 1, 4) contains G as a
subgroup.

The main technical result of Adyan [1]—that his group contains the Novikov group—readily follows from the
above theorem because Adyan’s original construction has the form A(G, gi, i = 1, 4) for some independent elements
gi, i = 1, 4. To prove the last statement, we generalize slightly Novikov’s equality criterion, see Proposition 3.4. Based
on this Proposition, we prove that some three elements of the Novikov group are independent (Proposition 3.5), and
finally that some four elements of the original Adyan’s group are independent (Proposition 4.1). It gives the desired
proof that the original Adyan’s group is of the form A(G, gi, i = 1, 4).

Let us say some words about the method of the proof of Theorem 1.1. It is a Gröbner–Shirshov bases method. The
concept of the Gröbner–Shirshov bases was introduced by Shirshov [23], for the (most difficult, see below) case of
Lie polynomials Lie(X) over a field k under the Lie bracket [x, y] = xy − yx. Note that Shirshov was dealing with
Lie polynomials via non-commutative (associative) polynomials k〈X〉, Lie(X) ⊂ k〈X〉. To be more precise, to make
a composition (S-polynomial by the later Buchberger’s [17] terminology) of two monic Lie polynomials f, g relative
to some word w, where w = f v = ug (f , g are leading associative terms of polynomials f, g as non-commutative
polynomials), he makes first an associative composition

(f, g)w = f v − ug.

Then he puts the special Lie bracketing

[f, g]w = [f v] − [ug]
and the result is the Lie composition of f, g. Shirshov had invented the special Lie bracketing earlier [22].

The same was with the notion of elimination of a leading word of g in f. Let f, g be monic Lie polynomials, f =agb.
Then

f �→ f − ugv

is the associative elimination of g in f . To make the Lie elimination, Shirshov used the special Lie bracketing

f �→ f − [ugv].
The Composition Lemma for associative polynomials is just a simple version of the Shirshov Composition Lemma

for Lie polynomials:

Lemma 1.2 (Composition Lemma, Shirshov [23, Lemma 3]). Let S be a set of Lie polynomials, S∗ be the completion
of S under all possible (nontrivial) compositions, i.e., S∗ is obtained by adding to S all compositions of elements of S,
then compositions of the result and so on. If f ∈ LieId(S), then f contains s for some s ∈ S∗.

Remark 1.3. Shirshov had further assumed that S is “stable”. But this assumption was not used in his proof. Stability of
S means that the degree (after eliminations of leading words) of any (nontrivial) composition (f, g)w, where f, g ∈ S∗
is greater than degrees of f, g, and leading associative monomials of different elements of S∗ do not contain each other.
It follows that S∗ is a recursive set.

Later the first author stated this lemma in the modern form.

Lemma 1.4 (Composition Lemma, Bokut [7, the Shirshov Lemma]). Let S be a set of Lie polynomials that is closed
under compositions (i.e., any composition is trivial, or S = S∗). If f ∈ LieId(S), then f contains s for some s ∈ S.

All in all, the Shirshov’s paper [23] can be viewed as the beginning of Gröbner–Shirshov bases theory not only for
Lie polynomials but also for non-commutative (associative) polynomials (see also for example [12]).
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The case of associative polynomials was observed by the first author [8] and by Bergman [2].
In the case of commutative polynomials (and power series) essentially the same ideas were introduced by Hironaka

[19] (standard bases) and Buchberger (Gröbner bases) [16–18]. It is well known and well recognized.
Gröbner–Shirshov basis of a group presentation G = gr〈X|R〉 is the Gröbner–Shirshov basis of the group algebra

kG over a field k. Thus a Gröbner–Shirshov basis S of a group G = gr〈X|R〉 leads to the set of S-reduced group words
in X such that any word is equal to one and only one S-reduced word (S-reduced normal form).

In the papers [3,4,10], the first author discovered the standard normal forms in some groups, namely in two Novikov’s
and Boon’s groups. Recently it has become clear that the standard normal forms for Novikov’s and Boon’s groups are
nothing but reduced normal forms in this groups relative to some Gröbner–Shirshov bases [13]. In the papers [5,6], the
first author constructed the relative standard normal forms in some groups arising from the rings. These are reduced
normal forms for the “relative” Gröbner–Shirshov bases [14].

We denote the graphical equality of words by
.=. Letters �, � stand for ±1. An order on the set of all words in a given

alphabet is called a monomial order if it agrees with the concatenation of words.
After this paper had been submitted, A. Klyachko pointed out to us that Theorem 1.1 follows also from Stalling’s

theorem [24], that was proved with the completely different methods. Of course, our main result, Theorem 7.1, on
Gröbner–Shirshov bases for Adyan extensions does not follow from the Stalling’s paper.

2. Gröbner–Shirshov bases

For a set X and a field k, let k〈X〉 be the free associative algebra in X over k. On the set X∗ of words we impose a
monomial well order >. By f̄ we denote the leading term of a polynomial f ∈ k〈X〉. We say that f is monic if f̄ occurs
in f with coefficient 1. A composition (inclusion and intersection, respectively) (f, g)w of two monic polynomials
relative to some word w is the polynomial

(f, g)w =
{

f − agb if w = f = agb,

f b − ag if w = f b = ag, |f | > |a|,
where a, b ∈ X∗, |a| is the length of a.

In the first case, the transformation

f �→ (f, g)w = f − agb

is called the elimination of the leading word (ELW) of g in f.
In both cases, the word w is called an ambiguity of polynomials (relations) f, g.
A composition (f, g)w is called trivial relative to some S ⊂ k〈X〉 ((f, g)w ≡ 0 mod (S, w)) if

(f, g)w =
∑

�iai tibi ,

where ti ∈ S, ai, bi ∈ X∗, and ¯aitibi < w.
In particular, if (f, g)w goes to zero by the ELW’s of S then (f, g)w is trivial relative to S.
We write for some polynomials f1 and f2 that

f1 ≡ f2 mod (S, w)

if

f1 − f2 ≡ 0 mod (S, w).

A subset S of k〈X〉 is called a Gröbner–Shirshov basis if any composition of polynomials from S is trivial relative
to S.

We will denote by 〈X|S〉 the k-algebra with generators X and defining relations S, that is the quotient algebra of k〈X〉
by the ideal generated by S.

Lemma 2.1 (Composition-Diamond Lemma). S is a Gröbner–Shirshov basis if and only if the set

Red(S) = {u ∈ X∗ | u 
= as̄b for any s ∈ S}
of S-reduced words is a linear basis of the algebra 〈X|S〉.
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If a subset S of k〈X〉 is not a Gröbner–Shirshov basis, then one can add to S all nontrivial compositions of polynomials
of S, and continuing this process (infinitely) many times in order to build a Gröbner–Shirshov basis Scomp. This
procedure is called the Buchberger–Shirshov algorithm [23,16,17].

If S is a set of “semigroup relations” (that is, polynomials of the form u − v, where u, v ∈ X∗), then any nontrivial
composition will have the same form. As a result the set Scomp also consists of semigroup relations.

Let A=smg〈X|S〉 be a semigroup presentation. Then S is a subset of k〈S〉 and one can find a Gröbner–Shirshov basis
Scomp. The last set does not depend on k and, as it mentioned, consists of semigroup relations. We will call Scomp a
Gröbner–Shirshov basis of the semigroup A. It is the same as a Gröbner–Shirshov basis of the semigroup algebra
kA = 〈X|S〉.

The same terminology is valid for any group presentation if we include in this presentation generators X−1 and
trivial group relations

xx−1 = 1, x−1x = 1, x ∈ X.

We will use the tower order of words. This order is naturally suited for towers of HNN-extensions (see [3,4]).
Let X = Y ∪̇Z. We assume that Y ∗ and Z are well-ordered and the order on Y ∗ is monomial. Every word in X is of

the form

u = u1z1 . . . ukzkuk+1, (2.1)

where ui ∈ Y ∗, zi ∈ Z. By the weight of the word u we mean the vector

wt(u) = (k, u1, z1, . . . , uk, zk, uk+1).

We arrange the lexicographic order on weights using the orders on Y ∗ and Z. Finally, define

u > v ⇐⇒ wt(u) > wt(v).

Observe that the tower order is a well monomial order. Also note that the ordinary deg–lex order is a special case of
tower order when Y is empty.

We will also need the following version of the tower order. Let X, Y, Z be as above. For any X-word (2.1) let us
define

wt ′(u) = (k, |u|, u1, z1, . . . , uk, zk, uk+1),

where |u| is the total length of u. Let us order wt ′(u) lexicographically and order X-words by the rule

u > v ⇐⇒ wt ′(u) > wt ′(v).

We call this order by the deg–tower order. This is also a well-monomial order.

3. The (centrally symmetric) Novikov group

In 1955, Novikov [20] proved the existence of a finitely presented group with undecidable word problem. He showed
that every finitely presented semigroup � with cancellation can be effectively mapped into a finitely presented group
N(�) with respect to the equality predicate. Thus, every word u ∈ � effectively maps to f (u) ∈ N(�) so that

u = v (�) ⇐⇒ f (u) = f (v) (N(�)).

If � is a f. p. Turing’s cancellation semigroup with undecidable word problem [25], then N(�) is a f. p. group with
the same property.

The group N(�) is called the (centrally symmetric) Novikov group. We will need some of its properties.
Let

� = 〈�1; Ai = Bi, i = 1, m〉
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be a semigroup with cancellation. In [20], it was defined a new alphabet �, �1 ⊂ �, �1, �2 ∈ �, and a finite set F of
words in the alphabet �, F= {(Ai, Bi), i = 1, n}, where n > m (i.e., the defining relations of � are included into F).
We will not need the explicit forms of � and F.

The group N(�) admits a presentation as a tower of groups with stable letters. Let

G0 = 〈�i , �̃i , i = 1, n〉
be the free group of rank 2n, and let

G1 = 〈G0, �; �̂ia = a�̂2
i , a ∈ �, i = 1, n〉,

G2 = 〈G1, lai , a ∈ �; blai = laib, b ∈ �, i = 1, n〉,
G3 = 〈G2, 	ki , 	̃ki , i = 1, n, k = 1, 2; a	̂1i = 	̂1ial−1

ai , alai 	̂2i = 	̂2ia, a ∈ �, 	̂ki ∈ {	ki , 	̃ki}, i = 1, n〉,
G4 = 〈G3, di; �−1

i 	−1
1i 	̃1i �̃idi = di	2iQi	

−1
2i , adi = dia, a ∈ �, Qi = A−1

i Bi, i = 1, n〉,
where �̂ki and 	̂ki stand for one of the letters �ki , �̃ki and 	ki , 	̃ki , respectively.

Define G+
s (s = 1, 4) to be the anti-isomorphic group relative to the map x �→ x+, where x is a letter in the alphabet

of Gs .
Let

N(�) = 〈G4, G
+
4 , p; EpE+ = p, E ∈ {	̂−1

2i lai 	̂2i , 	̂
−1
2i d−1

i laidi 	̂2i , 	̂
−1
2i d−1

i �̂idi 	̂2i , 	̃
−1
2i d−1

i 	̃−1
1i 	1idi	2i},

a ∈ �, 	̂ki ∈ {	ki , 	̃ki}, i = 1, n〉,
where in each relation 	̂ki stands for one of the letters 	̃ki or 	ki .

In fact, the tower N(�) is the tower of HNN-extensions, i.e., the stable letters are regular at each step [20] (see also
[10]).

Let us recall the definition of the map f mentioned above. If u is a word in �, then

f (u) = X(u)pX+(u),

where X(u) = u�1�2.
The following theorem is the main technical result of [20].

Theorem 3.1. For arbitrary u, v ∈ �, we have

u = v (�) ⇐⇒ X(u)pX+(u) = X(v)pX+(v) (N(�)).

In other words, u = v(�) if and only if X−1(u)X(v) = Ap (or X+(u)(X+(v))−1 = Bp).

Here Ap := V (E) and Bp := V ((E+)−1), so these are elements of the subgroups generated by E and (E+)−1,
respectively. Let us put Ap−1 := Bp and Bp−1 := Ap. We use the same notations for any HNN-extension. For

example, Adi
in G4 stands for any group word in �−1

i 	−1
1i 	̃1i �̃i , a, where a ∈ �, i = 1, n.

Let us recall the Britton Lemma for HNN-extensions using N(�) as an example. It says that if W ∈ G4\G3 and
W = 1, then W contains a subword p−�Ap�p�.

In the proof of Theorem 3.1, given in [20], the following Novikov’s equality criterion had been used.

Theorem 3.2 ([20, Theorem, Chapter 4], see also [10]). Let Ap = W(�), where W is a group word in �. Then Ap

belongs to the subgroup generated by C−1QiC, where C’s are stable group words in �, i.e., �iC = C�k(C)
i , i = 1, n.

This is the main group-theoretical result of [20].
Next Proposition 3.4 is a generalization of the Novikov equality criterion. In the proof, we will use the notion

of a semi-canonical word and the main technical Lemma 3 from [10] that any word Ap can be transformed to a
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semi-canonical form. Let us recall that a semi-canonical form of Ap is a product of words:

	̂−1
2i V (lai)	̂2i , (3.1)

C−1Q�
iC, (3.2)

	̂−1
2i V1(lai)d

−1
i W(�i , �̃i , lai , C

−1QiC, A−1NiA, A−1QiMiA)diV2(lai)	̂2i (3.3)

with some additional properties (see [10, Section 3]); here C’s are stable group words in �.

Lemma 3.3. Any semi-canonical word Ap is di-irreducible, i.e., it contains no subword of the form d−�
i Ad�

i
d�
i .

Proof. See the proof of the Corollary in [10]. �

Proposition 3.4. Let us have an equality

Ap = W(�, �i , lai)

(thus W is a group word in this letters). Then there exists a group word W1(�) such that Ap = W1 (actually, W1 =
W1(C

−1QiC)).

Proof. By [10], Lemma 3, the word Ap can be assumed to be a semi-canonical in the sense of that paper. From
Lemma 3.3, our assumption on W, and the Britton Lemma, it follows that Ap has no letters di at all, i.e, Ap has no
subwords (3.3). Now by the definition of semi-canonical words, the di-free word Ap should be 	̂i-irreducible. Again,
our assumption on W and the Britton Lemma imply that Ap has no letters 	̂i , i.e., it has no subwords (3.1). Finally,
Ap is a product of subwords (3.2). �

Now we prove the following

Proposition 3.5. Let u 
= v(�), a ∈ �, i ∈ [1, n]. Then the elements

lai , l
+
ai, pX(u)pX+(u)(X+(v))−1p−1X(v)−1p−1

are independent, i.e., they generate freely a free subgroup in N(�).

Proof. Assume that

V (lai, l
+
ai, pX(u)pX+(u)(X+(v))−1p−1X(v)−1p−1) = 1,

where V (x1, x2, x3) is a nontrivial freely reduced word. It is clear that x3 appears in V since elements lai , l
+
ai are

independent. Then by the Britton Lemma V contains a subword p−�Ep�, E = Ap� . We have the following options:

(1) � = −1. Then E
.= X+(u)(X(v)+)−1 =Bp. By Novikov’s Theorem 3.1 we obtain u = v(�), that contradicts the

assumption.
(2) � = 1 and E

.= V (lai, l
+
ai) = Ap, where V 
= 1. We have Ap ∈ G4, V ∈ G4 ∗ G+

4 . It follows that V does not
contain l+ai . By the Proposition 3.4, V is equal to a �-word, that contradicts the definition of G2.

(3) � = 1 and E
.= X(v)−1p−1pX(u) = Ap. By Novikov’s Theorem 3.1 we obtain u = v(�), that is impossible.

�

4. On the Adyan original construction

In 1957, S. I. Adyan proved that there is no algorithm to decide whether a given (arbitrary) finitely presented group
has a given Markov property (for “almost all” Markov’s properties). Recall that a property ℘ is said to be a Markov
property if there exist a finitely presented group with ℘ and a finitely presented group that cannot be embedded into any
finitely presented group with ℘. The main idea of the proof was to construct a special extension of the Novikov group
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(see below). The main difficulty in Adyan’s paper was to prove that the Novikov group is a subgroup in the extension.
In this paper we simplify the Adyan’s proof by using Gröbner–Shirshov bases.

Let us recall some definitions and properties from [1].
To construct the extension, Adyan first re-arranges the positive alphabet of N(�) to an order a1, a2, . . . , an (this n

is nothing to do with n from the previous section) and adds new letters q1, . . . , qn. Then he adds new defining relations
to the group N(�), depending on two words u, v from the semigroup �. Let Au,v(N(�)) be the original Adyan
extension [1]. We need to know some properties of Au,v(N(�)).

The sub-extension G of N(�) formed by letters q1, . . . , qn−1 and the corresponding relations is a tower of HNN-
extensions of N(�). Thus the group N(�) is a subgroup in this sub-extension G (see [1, Lemma 1, Chapter 2]). So
we only need to prove that this sub-extension is a subgroup in the whole extension.

We state here some explicit definitions from [1] related to the letter qn. For two words u, v ∈ �, let

a(u, v) := pX(u)pX+(u)(X+(v))−1p−1(X(v))−1p−1.

Now an−2 := p, an−1 := lai , an := l+ai , and

qn−2qn−1 = qn−1an−2 (4.1)

is the relation corresponding to the letter qn−1;

qn−1qn = qnan−1, anqna(u, v)qn = qnan (4.2)

are the relations corresponding to the letter qn.

We can prove the following

Proposition 4.1. Elements an, an−1, a(u, v), qn−1(u 
= v in �) freely generate a free subgroup in the sub-extension
G.

Proof. Assume that there exists a freely reduced word V (x1, x2, x3, x4) and V (an, an−1, a(u, v), qn−1) = 1 in the
sub-extension. By Proposition 3.5, V contains entries of the letter qn−1. So by the Britton Lemma, V has a subword

q−�
n−1W(an, an−1, a(u, v))q�

n−1,

where W = A
q�
n−1

. We have to check the following cases:

(1) � = 1. Then W(an, an−1, a(u, v)) is equal to Aqn−1 = qt
n−2, that contradicts the Britton Lemma (W ∈ N(�) and

G is the tower of HNN-extensions of N(�)).
(2) � = −1, then W = a−t

n−2 = p−t . So

ptW(l+ai, lai , pX(u)pX+(u)(X+(v))−1p−1(X(v))−1p−1) = 1. (4.3)

By the Britton Lemma, this word has a subword p−�Ep� with E = Ap� . We have the following cases:

(a) � = −1 and E
.= X+(u)(X+(v))−1 = Bp (i.e., p−�Ep� is a subword of a(u, v));

(b) � = 1 and E
.= (X(v))−1p−1pX(u) = Ap (i.e., p−�Ep� is a subword of a(u, v)a(u, v));

(c) � = 1 and E
.= W1(lai , l

+
ai) =Ap, where W1 
= 1 (i.e., p−�Ep� is a subword of ptW1(lai , l

+
ai)a(u, v), t < 0,

and it is not the next case (d));
(d) � = 1 and E

.= X(u) = Ap (i.e., p−�Ep� is a subword of pta(u, v) = pt+1X(u)pX+(u)(X+(v))−1

p−1(X(v))−1p−1, t < − 1).

Cases (2a), (2b) are impossible by Novikov’s Theorem 3.1 (otherwise u = v in �, it is a contradiction).
Case (2c) is impossible by Proposition 3.4 (otherwise, the word W1(lai , l

+
ai) is equal to a �-word, so W1 is empty; it

is a contradiction).
Case (2d) is impossible by Novikov’s Theorem 2 ([20, Chapter 6, Section 2]) and Lemma 2 ([20, Chapter 6, Section

1]). Let us give some details. From X(u) = Ap it follows X(u)pX+(u) = p. Then by Novikov’s Theorem 2 ([20,
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Chapter 6, Section 2]), X(u) is equal to 1 in a Novikov’s system B. By Novikov’s Lemma 2 ([20, Chapter 6, Section
1]), a non-empty positive word in � cannot be equal to 1 in B. But X(u) = u�1�2 is non-empty. �

Since Proposition 4.1, it is sufficient to prove that every group G with four independent elements can be embedded
into the extension corresponding to the adjunction of the letter qn in the Adyan original construction. Thus we focus
our attention on this extension.

5. The Adyan (two-relation) extension

Let G be an arbitrary group that contains four independent letters � = {q0, a0, a, a1}. Let F4 = gr〈q0, a0, a, a1〉. By
the Adyan extension of G with respect to the fixed free subgroup F4 we mean the following group (in a semigroup
presentation):

A(G, F4) = 〈G, q, q−1; q0q = qa0, a1qaq = qa1, q
�q−� = 1, � = ±1〉.

We have already proved that the original Adyan group from [1] is of such form.
Now we define a presentation of A(G, F4) by generators and defining relations. First we define a partition of G as

G = F4∪̇{ui; i ∈ I },
where I is a well-ordered index set and ui < uj if i < j .

Then we define G by generators

Y = (� ∪ �−1)∪̇U, U = {ui, i ∈ I }
and relations

uiuj = w, w ∈ F4 ∪ U, i, j ∈ I ; (5.1)

uic = uj ; cui = uk, i, j, k ∈ I, c ∈ � ∪ �−1; (5.2)

cc−1 = 1, c ∈ � ∪ �−1. (5.3)

Note that, for example, uic /∈ F4, otherwise, ui ∈ F4 that is impossible.
We obtain a semigroup presentation of A(G, F4) in the set of generators X = Y ∪ {q, q−1}.
Let us impose the deg–tower order on the set of Y-words starting with the deg–lex order of words in � ∪ �−1. Then

leading words of relations (5.1), (5.2), (5.3) occupy the left-hand side of these relations. For example, we have

wt ′(uic) = (1, 2, ui, c) > wt ′(uj ) = (1, 1, uj , 1).

We define the tower order of words in X = Y ∪̇Z starting with the deg–tower order of words in Y = (� ∪ �−1)∪̇U .
Denote the elements w, uj , uk from the right-hand sides of the defining relations of G, (5.1), (5.2) by uiuj , uic, cui ,

respectively.
Also we use the following notation:

Aq := qn
0 =: Bq−1 , Bq := an

0 =: Aq−1 .

For all words Aq� , Bq� appearing in one relation, the number n is a fixed integer. Similarly, we define

aq := q�
0 =: bq−1 , bq := a�

0 =: aq−1 , � = ±1.

We write f ∨ g for (f, g)w. It is especially convenient when the composition (f, g)w is unique and there is no need to
specify w.
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6. Gröbner–Shirshov Basis of A(F4)

Recall that we fix the deg–lex order in F4 and the tower order in A(F4).

Theorem 6.1. The Gröbner–Shirshov bases of A(F4)

(F4 = gr〈q0, a0, a, a1〉) consists of the trivial relations and Eqs. (6.1)–(6.13):

aq�q� = q�bq� , (6.1)

q�Bq�a1q
−� = Aq�a1q

�a�; (6.2)

q�Bq�a−1
1 q−� = Aq�a−�q−�a−1

1 ; (6.3)

q�Bq�a�q� = Aq�a−1
1 q�a1, (6.4)

(2 ∨ 3) a1q
�a�Bq−�a−1

1 q� = q�a1Aq−�a�q�a−1
1 , (6.5)

(2 ∨ 4) a1q
�a�Bq−�a−�q−� = q�a1Aq−�a−1

1 q−�a1, (6.6)

(2 ∨ 2) a1q
�a�Bq−�a1q

� = q�a1Aq−�a1q
−�a−�, (6.7)

(3 ∨ 2) a−�q−�a−1
1 Bq−�a1q

� = q�a−1
1 Aq−�a1q

−�a−�, (6.8)

(3 ∨ 3) a−�q−�a−1
1 Bq−�a−1

1 q� = q�a−1
1 Aq−�a�q�a−1

1 , (6.9)

(3 ∨ 4) a−�q−�a−1
1 Bq−�a−�q−� = q�a−1

1 Aq−�a−1
1 q−�a1, (6.10)

(4 ∨ 2) a−1
1 q�a1Bq�a1q

−� = q�a�Aq�a1q
�a�, (6.11)

(4 ∨ 3) a−1
1 q�a1Bq�a−1

1 q−� = q�a�Aq�a−�q−�a−1
1 , (6.12)

(4 ∨ 4) a−1
1 q�a1Bq�a�q� = q�a�Aq�a−1

1 q�a1. (6.13)

We write (i ∨ j) meaning (6.i ∨ 6.j ). In each relation, the leading word stands in the left-hand side. To apply a
relation to another one means to eliminate the leading word of the first relation in the leading word of the second one.

Proof. The proof consists of checking compositions. Observe that the compositions of (6.2)–(6.4) with each other are
relations (6.5)–(6.13), and that the compositions of (6.2)–(6.4) with (6.1) are trivial. We have to check the compositions
of the following types:

• (i ∨ j) ∨ k,

• 2 ∨ (2 ∨ i), 3 ∨ (4 ∨ i), 4 ∨ (3 ∨ i),

• (i ∨ 2) ∨ (2 ∨ j), (i ∨ 3) ∨ (4 ∨ j), (i ∨ 4) ∨ (3 ∨ j), where 2� i, j, k�4,
• compositions of (6.1)–(6.13) with trivial relations.

We denote left- and right-hand sides of relation (i), 2� i�13, by Li and Ri , respectively. If S is a word of length
n and k�n, then (k)S(S(k)) is a suffix (prefix) of S of the length n − k.

Observe that the composition (i ∨ j), 2� i, j �4, has the following form:

Ri (
(1)Lj ) = (L

(1)
i )Rj , (6.14)
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where

w1
.= Li (

(1)Lj )
.= (L

(1)
i )Lj ,

(a) Let us check the compositions of type (i ∨ j) ∨ k, 2� i, j, k�4. The ambiguity is

w
.= Ri (

(1)Lj )(
(1)Lk)

.= Ri (
(1)L

(1)
j )Lk

and the composition is

(L
(1)
i )Rj (

(1)Lk) =Ri (
(1)L

(1)
j )Rk . (6.15)

Now apply the relation (j ∨ k) to (6.15) and obtain

(L
(1)
i )(L

(1)
j )Rk =Ri (

(1)L
(1)
j )Rk . (6.16)

It follows from the form of w1(i ∨ j) that

(L
(1)
i )(L

(1)
j )

.= Li (
(1)L

(1)
j ). (6.17)

Finally, we apply (i) to (6.16) and obtain

Ri (
(1)L

(1)
j )Rk

.= Ri (
(1)L

(1)
j )Rk .

We have checked the triviality of composition (6.15).
(b) Let us check the compositions 2 ∨ (2 ∨ i) , 2� i�4. The ambiguity and the composition are given by

w
.= q−�Bq−�a1q

�a�((1)Li ),

Aq−�a1q
−�a−�a�((1)Li ) = q−�Bq−�q�a1Ri ,

Aq−�a1q
−�((1)Li ) = Bq�a1Ri (6.18)

for Bq−� = Aq� . The ambiguity (2 ∨ i) has the form

w1
.= q�Bq�a1q

−�((1)Li )
.= q�Bq�a1Li

so we have

q−�((1)Li )
.= Li . (6.19)

Now apply the relations (i) and (6.19)–(6.18) and obtain

Bq�a1Ri
.= Bq�a1Ri .

Triviality of the composition (6.18) is now checked.
Compositions

3 ∨ (4 ∨ i), 4 ∨ (3 ∨ i)

can be processed similarly.
(c) Consider the compositions (2 ∨ 2) ∨ (2 ∨ i), 2� i�4. The ambiguity and the composition are

w
.= a1q

�a�Bq−�a1q
�a�((1)Li ),

q�a1Aq−�a1q
−�((1)Li ) = a1q

�a�q�Bq�a1Ri . (6.20)
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Apply the relation (6.4) to the right-hand side of the last equality to obtain:

q�a1Aq−�a1q
−�((1)Li ) = a1a

−1
1 q�a1Bq�a1Ri ,

q�a1Aq−�a1q
−�((1)Li ) = q�a1Bq�a1Ri .

Upon applying equality (6.19), we obtain

q�a1Bq�a1Ri
.= q�a1Bq�a1Ri .

Triviality of the composition (6.20) is now checked.
Compositions

(i ∨ 2) ∨ (2 ∨ j), (i ∨ 3) ∨ (4 ∨ j), (i ∨ 4) ∨ (3 ∨ j)

can be processed similarly.
(d) Now we will check the compositions (i ∨ (q−�q� = 1)). We have the following ambiguity and the composition,

respectively:

w
.= Liq

�, Riq
� = L

(1)
i . (6.21)

Here � is chosen in such a way that Liq
� is an ambiguity. It is easy to see that there exist k, 2�k�4, and Lk

with B
.= 1 such that

Riq
� .= (R

(2)
i )Lk .

Let us cancel (R
(2)
i )Rk = (R

(3)
i )((1)Rk) and apply (6.1). We obtain the desired graphical equality.

(e) Now we will check the compositions (i ∨ j) ∨ (q�q−� = 1),

w
.= Ri (

(1)Lj )q
�,

where � is chosen in such a way that L(i∨j)q
� is an ambiguity (in other words, Lj q

� is an ambiguity). The
corresponding composition is

(L
(1)
i )Rj q

� =Ri (
(1)L

(1)
j ). (6.22)

But Rj q
� = L

(1)
j is a composition (j ∨ (q�q−� = 1), see (6.21). To check the triviality of (6.22), we use the last

relation together with (i) and (6.17).
(f) Finally, we have to check a composition

(v−1v = 1) ∨ (i ∨ j).

We have the ambiguity

w
.= v−1Li∨j ,

where v is the first letter of the word Li∨j , and the composition

v−1Ri∨j = ((1)Li∨j ).

It is enough to observe that there exist k and l such that

v−1Ri∨j
.= Lk∨l , (

(1)Li∨j )
.= Rk∨l .

Theorem 6.1 is proved. �
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7. Gröbner–Shirshov basis for the group A(G, F4)

Now we proceed to the general case defined in Section 5. Let us construct a Gröbner–Shirshov basis of A(G).
First, we have to include the defining relations of G and the Gröbner–Shirshov basis of A(F4) (Theorem 6.1) into a

Gröbner–Shirshov basis of A(G, F4).
Let us fix the following notation: u with indices will denote an element of U, c is any element of � ∪ �−1.
From (6.1) it follows

Aq�q� = q�Bq� . (7.1)

For any u we have in G

uAq� = uAq� , (7.2)

where uAq� ∈ U . Multiplying (7.1) by u from the left, we get new relations in G

uAq�q� = uq�Bq� , if uAq� > u; (7.3)

uq� = uAq�q�B−1
q� , if u > uAq� . (7.4)

We can reduce the second relation to the first one by assuming that u1 = uAq� < u1A
−1
q� = u. So we only need to

keep relations of the form (7.3).
Let us include (7.3) into a Gröbner–Shirshov basis of A(G).
It easy to see that compositions (f, g)w of intersection of (7.3) with defining relations of G are trivial:

w = u1uAq�q�, u1uAq� = u2, (f, g)w = u1uq�Bq� − u2q
� ≡ u1uAq�q�

− u1uq�Bq� ≡ 0(u1u ∈ F4 ∪ U);

w = cuAq�q�, cuAq� = u1, (f, g)w = −u1q
� + cuq�Bq� ≡ 0(cu ∈ U),

w = uAq�q�q−�, q�q−� = 1, (f, g)w = uAq� − uq�Bq�q−� ≡ 0.

Now consider the compositions of inclusion of relations (7.3).
Let

uAq�q� = u1A1q�q�, u 
= u1, u1 > u.

be the ambiguity of two corresponding relations (7.3). Then we have u1 = uA2q� , and A2q� = Aq�A−1
1q� .

The composition u1q
�B1q� = uq�Bq� is trivial modulo the following relation of type (7.3):

uA2q�q� = uq�B2q� , uA2q� > u.

Now consider generalizations of relations (6.6)–(6.13) that we include into a Gröbner–Shirshov basis of A(G, F4):

uAq�a1A1q�q�B−1
1q�a

�B̃q−�a−1
1 q� = uq�Bq�a1Ãq−�a�q�a−1

1 , (7.5)

uAq�a1A1q�q�B−1
1q�a

�B̃q−�a−�q−� = uq�Bq�a1Ãq−�a−1
1 q−�a1, (7.6)

uAq�a1A1q�q�B−1
1q�a

�B̃q−�a1q
� = uq�Bq�a1Ãq−�a1q

−�a−�, (7.7)

uAq�a−�A1q−�q−�B−1
1q−�a

−1
1 B̃q−�a1q

� = uq�Bq�a−1
1 Ãq−�a1q

−�a−�, (7.8)
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uAq�a−�A1q−�q−�B−1
1q−�a

−1
1 B̃q−�a−1

1 q� = uq�Bq�a−1
1 Ãq−�a�q�a−1

1 , (7.9)

uAq�a−�A1q−�q−�B−1
1q−�a

−1
1 B̃q−�a−�q−� = uq�Bq�a−1

1 Ãq−�a−1
1 q−�a1, (7.10)

uAq�a−1
1 A1q�q�B−1

1q�a1B̃q�a1q
−� = uq�Bq�a�Ãq�a1q

�a�, (7.11)

uAq�a−1
1 A1q�q�B−1

1q�a1B̃q�a−1
1 q−� = uq�Bq�a�Ãq�a−�q−�a−1

1 , (7.12)

uAq�a−1
1 A1q�q�B−1

1q�a1B̃q�a�q� = uq�Bq�a�Ãq�a−1
1 q�a1, (7.13)

where in (7.5)

uAq�a1A1q� > u (7.14)

and the same kind of inequalities holds for (7.6)–(7.13).
If, for example, (7.14) is not valid, then uAq�a1A1q� < u, but Aq�a1A1q� is not a unit in the free group F4. As the

result, we obtain (7.13) with the desired inequality.
It is easy to see that compositions of intersection of (7.5)–(7.13) and the relations of G are trivial.
Now we will check compositions of inclusion of generalized relations (7.5)–(7.13). Leading words of this relations

may include each other only if these words are equal. Here we use that F4 = gp〈q0, a0, a, a1〉 is the free group.
Consider a composition (7.5) and another relation of the same kind

u1A2q�a1A3q�q�B−1
3q�a

�B̃4q−�a−1
1 q� = u1q

�B2q�a1Ã4q−�a�q�a−1
1 ,

u1A2q�a1A3q� > u1. (7.15)

If the left-hand sides of (7.5) and (7.15) coincide, then

B−1
1q� = B−1

3q� , B̃q−� = B̃4q−� ,

uAq�a1A1q� = u1A2q�a1A3q� .

We obtain

uAq� = u1A2q� . (7.16)

The composition of (7.5) and (7.15) is the relation

u1q
�B2q�a1Ã4q−�a�q�a−1

1 = uq�Bq�a1Ãq−�a�q�a−1
1 . (7.17)

This relation is graphically equal to

u1q
�B2q�a1Ãq−�a�q�a−1

1 = uq�Bq�a1Ãq−�a�q�a−1
1 .

By the composition of the type (7.5), this relation is trivial.
Compositions of inclusion of (7.6)–(7.13) are processed similarly. Compositions of inclusion of (7.3) and (7.5)–(7.13)

are also trivial.

Theorem 7.1. Gröbner–Shirshov basis of the Adyan (two-relation) extension A(G, F4) consists of relations (5.1)–(5.3)
of G, Gröbner–Shirshov basis (6.1)–(6.13) of A(F4), and relations (7.3), (7.5)–(7.13).

Proof. Let S be the set of relations from the statement of the theorem. At the beginning of the section we proved that
all compositions of intersection with relations of G and all compositions of inclusion are trivial modulo S.
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It remains to check compositions of intersection of generalized relations (7.5)–(7.13). There are no compositions of
intersection of (7.5)–(7.13) with each other. So it remains to check compositions of intersection of (7.5)–(7.13) with
(6.2)–(6.13).

For example, consider a composition of intersection of (7.5) and (6.11). We have the ambiguity and the composition,
respectively:

w
.= uAq�a1A1q�q�B−1

1q�a
�B̃q−�a−1

1 q�a1
˜̃
Bq�a1q

−�,

uq�Bq�a1Ãq−�a�q�a−1
1 a1

˜̃
Bq�a1q

−� = uAq�a1A1q�q�B−1
1q�a

�q�B̃q�a� ˜̃
Aq�a1q

�a�.

Apply trivial relations and (6.2), (6.4):

uq�Bq�a1Ãq−�a� ˜̃
Aq�a1q

�a� = uAq�a1A1q�A−1
q� a−1

1 q�a1B̃q�a� ˜̃
Aq�a1q

�a�.

Then we have

uAq�a1A1q�A−1
q� a−1

1 = uAq�a1A1q�A−1
q� a−1

1 = uAq� ,

uq�Bq�a1Ãq−�a� ˜̃
Aq�a1q

�a� = uAq�q�a1B̃q�a� ˜̃
Aq�a1q

�a�.

After the application of a relation of type (7.3) we obtain the graphical equality. �

Now Theorem 1.1 follows from Theorem 7.1 and the Composition-Diamond Lemma.
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