
JOURNAL OF COMBINATORIAL THEORY 1, 157-173 (1966) 

The Power Group Enumeration Theorem* 

FRANK HARARY AND ED PALMER 

Department of Mathematics, University of Michigan, 

Ann Arbor, Michigan 

ABSTRACT 

The number of orbits of a permutation group was determined in a fundamental 
result of Burnside. This was extended in a classical paper by P61ya to a solution of 
the problem of enumerating the equivalence classes of functions with a given weight 
from a set X into a set Y, subject to the action of the permutation group A acting 
on X. A generalization by de Bruijn solved the counting problem when two per- 
mutation groups are involved, A acting on X and B on Y. Thus the P61ya formula 
is the special case of the de Bruijn result in which B is the identity group. The Power 
Group Enumeration Theorem achieves the same result using only one permutation 
group: the power group, B a, acting on the set yx of functions, de Bruijn's method 
was used to count self-complementary graphs by R. C. Read and finite automata 
by M. Harrison. These results as well as the number of self-converse directed graphs 
and others are easily obtained by the proper use of the Power Group Enumeration 
Theorem. 

INTRODUCTION 

M a n y  problems in combina tor ia l  analysis are formula ted  in such a 

way that, in order  to find the number  o f  objects having  a specified prop-  

erty, it is necessary to c o u n t  the number  o f  equivalence classes of  

objects with regard to some pe rmuta t ion  group. Of ten  these equivalence 

classes consist o f  funct ions f f r o m  one set X into ano ther  set Y such that  

two permuta t ion  groups are involved:  A acting on X and B acting on Y. 

* Work supported by the U. S. Air Force Office of Scientific Research under grant 
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Then two functions f and g from X into Y are regarded as equivalent with 
respect to this pair of  groups if there exist permutations at in A and fl 
in B such that for all x in X, f l f ( ~ x )  = g(x).  

N. G. de Bruijn [I] has provided a method for solving this type of  
problem by generalizing the classical enumeration theorem of Pdlya [10]. 

Our main result can be interpreted as an independent derivation of  
de Bruijn's result as it has actually been used in solving enumeration prob- 
lems; see [1, 9, 11, 12]. The implementation of the conjecture that such 
a derivation could be accomplished on the basis of  Pdlya's original 
theorem had to wait on the discovery of the appropriate combination of 
the two groups A and B into a single permutation group. 

The power group of A and B is denoted by B a and acts on yx ,  the 
functions from X into Y. When used in conjunction with its cycle index, 
the power group enables us to derive directly and naturally a formula for 
the number of classes of functions. 

The matter can be further complicated when integral weights are as- 
signed to the functions in such a way that each function in a given class 
has the same weight. Then the problem is to find the number of classes 
of functions which have a given weight. Both de Bruijn's formulation 
and our application of the power group to P61ya's method can readily 
be modified to handle this situation. 

1. THE POWER GROUP 

Let A be a permutation group of  order m = ] A [ acting on the set 
X = { x l , . . . ,  Xd} of objects. Let B be another permutation group of 
order n = [B[  acting on the set Y = {Yl . . . . .  Ye}. Thus the degrees 
of A and B are d and e, respectively. The set of functions from X into 
Y is denoted by y x ;  we assume there are at least two such functions. 

In [6] the permutation group [B] A, called the exponentiation 1 of A and 
B, acting on y x  is defined in the following way: 

For  each permutation c~ in A and each sequence (fix, t2 . . . . .  fie) of 
d permutations from B there is a unique permutation (c~; ill, fl~ . . . . .  fla) 
in [B] a so that for every f in y x  and every xi in X, 

(a;  ill, f12 . . . . .  fld) f (xi) = fl , i f  (axi).  (1) 

x Previously denoted by B a in [6]. 
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It  is clear that the order of  [B] a is mn a and that  the degree is e a. 

Now we introduce another permutation group B a, called the power  

group of A and B, which also acts on y x .  For  each pair of  permutations 
in A and/3 in B, there is a unique permutation (a;/3) in B A so that 

for every f in y x  and x in X, 

(ce;/3)f(x) = fl f (ot x ) .  (2) 

Obviously the order of B a is m n  and the degree is e a. 

Note that, when all/3i are the same r ,  then the permutation 

( ~ ; / 3 . / 3 ~ ,  �9 �9 � 9  

in [B] a may be written (ce;/3). Thus the power group may be regarded 
as the "diagonal"  of the exponentiation group. 

The power group B a induces an equivalence relation on the set of 
functions y x .  Any two functions f and g in y x  are said to be "equivalent" 
if there is a permutation 7 in B a such that 7 ( f )  ---= g. Thus f and g are 
equivalent whenever there are permutations a in A and/3 in B so that, 
for each x in X , / 3 f ( a x )  = g ( x ) .  Note that this equation is precisely 
the same as in de Bruijn's equivalence of functions. 

Following the terminology of  Carmichael [3], we say that the permu- 
tation groups A and B are isomorphic if they are isomorphic as abstract 
groups, and we write A ~ B. We say that A and B are identical if they 
are not only abstractly isomorphic, but the correspondence also preser- 
ves the sets being permuted; this is written A ~ B. We will require ano- 
ther operation on A and B. The permutation group A + B, called a the 
sum of A and B, acts on the disjoint union X u Y. For every pair of 
permutations ~ in A and/3 in B, there is a permutation c~/3 in A + B 
such that for any z in X U Y: 

a(z) ,  z e X 
~/3 (~) = ~(z) ,  z e r" (3) 

Thus the order of A q- B is mn and the degree is d + e. 

THEOREM 1. The permuta t ion  groups A + B and  B a are isomorphic.  

x This operation is also variously known as direct product, direct sum, product, 
union and justaposition. 
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PROOF. Define the map rp from B a onto A + B by ~e(a; fl) = ~-1 f. 
For two permutations (ai; fix) and (c~; fl~) in B A, we know from the 
definition that their product in B a is (~1; fl~)(~2; f12)= ( a ~ l ;  fllfl2). 
Therefore we have: 

= ~i-la~ x/~xfl2 
= ( ~ ) - 1  ~ f ~  

= ~0(~2a~; f~fl~) 

= ~ 0 ( ( ~ ; / ~ 0  ( ~ ;  f~) ) .  

Thus ~ is a homomorphism from B a onto A + B. It  is also clear/y 1 - 1 
and hence B a =~ A + B. 

Now that we have established that the power group B ~ is isomorphic 
with the sum of A and B, it follows that B a ~ A B. 

The cycle index of a permutation group is defined next; it tells the 
cyclic structure of its permutations. Let A be any permutation group 
of order m and degree d. Let a be any permutation in A, written in the 
usual way as the product of disjoint cycles. Let je(a)  be the number of  
cycles of length k in the disjoint cycle decomposition of a. In addition 
let ax . . . .  , aa be variables. Then by the cycle index Z(A) of A is meant 
the following formal sum, which is a polynomial in the variables ae: 

1 a ]k (a) 
Z(A)=- N Z H ae . (4) 

aeA k=l  

Now let h(x) be any polynomial. By Z(A, h(x)) we mean the poly- 
nomial obtained from Z(A) by replacing each ae by h(xe). For polyno- 
mials ha(x) . . . .  , ha(x) it is convenient to denote by Z(A; ha(x ) . . . . .  
hd(x)) the polynomial obtained from Z(A) on substituting he(x) for 
each ak. 

P61ya has shown the importance of the cycle index of a permutation 
group in enumeration problems. Therefore it is natural to try to find 
a convenient formula for the cycle index of any new permutation group. 
We will find that the cycle index of the power group plays an important 
role in enumeration theory. 

To find Z(B a) we proceed as follows. By definition of the cycle index 
we have: 
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1 d j~(a) 
Z(A)=m Z IIa~ , (5) 

aeX k=l  

n [3eB k = l  7~ ' 
(6) 

ed 

1 ~ ll-~'Jk<~')- (7) Z(BA) = mnn ~, a e=l 

For  each 7 = (a;f l )  in B a, the formulae for Je(7) in terms of the 
je(a) and j~(fl) are: 

d (Z ~ --"~'~ 
j l ( a ; f l )  = II  sjs([J)] , (8) 

k=l 

where 

( ~  sj~(fl)) '~(~, = 1 whenever je(a) = 0; 

and for k > 1 we use MSbius inversion to obtain 

1 (+) 
j e (a ; f l )  = -~- ~ /z jl(ces;fls). (9) 

Note that, if the contribution 

then that of  a ~ is 

of the permutation c~ to Z(A) is 

d 
is(a) H a s , 

$=1 

d 

1-1 a ('' k)h<~) (10) s/(s , lr  ' 

where (s, k) is the g c d of  s and k. 
We now justify Eqs. (8) and (9). Consider any permutation y = (a;fl) 

in the power group B a. First we show how to obtain formula (8) for 
jl(ce; fl). Let ze be any cycle of length k in the disjoint cycle decomposi- 
tion of ce. Let S be the set of elements of  X which are permuted by ze. 
Define me(/?) as the number of  functions in ys  which are fixed by the 
permutation (z~;fl). Then obviously 

d 

jl(~z; t5') = I I  (mk(fl))/k{=) , (11) 
e=l  

where (rne(fl)) ~k(a) = 1 whenever j e ( a ) =  O. 
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Also it is clear that a function f in ys  which is fixed by (zk; t )  must 
assume all of its functional values in the set of elements permuted by a 
single cycle z~ of length s in the disjoint cycle decomposition o f t .  Suppose 
for such a function that f ( x )  = y for some x in z,  and y in z s. Then 
(zk;fl)~f(x) =flSf(zkSx ) =f(zkSx).  But since f is fixed by (zk;fl), 
it is also fixed by (zk;fl)'. Therefore ( z e ; f l )S f ( x )= f ( x ) ,  and so 

z i  s y =f(z~Sx). Similarly y = f ( k x )  for all i. Now f (zkx)  = fl-ly and 
so the equations involving x and y also hold for zkx and fl-ly. Continuing 
in this manner it is easy to see that slk. Since y in zs was arbitrary, there 
are exactly s such functions for each cycle z~. Thus me(t) = ~slk sj~(fl) 
and on substitution in (11) we obtain (8). 

Now we observe that, for any integer k, a function f in yx  is fixed by 
(uk; ilk) if and only i f f  is an element of a cycle of length s in the disjoint 
cycle decomposition of  (a;  t )  for some sJk. Adding these terms, we have 

j l ( ~ ; / ~  ~) = Z sjs(~;/~). 
sl~ 

Solving for jk(~; t )  we may obtain a recursion formula for jk(~; t )  
in terms of j l (uk;f l  ~) and js(~;fl)  with s < k. Applying the familiar 
MSbius inversion formula to the preceding equation, we immediately 
obtain (9). The use of  (8), (9), and (10) gives j~(a; t )  in terms of the 
numbers A(a)  and A(fl). 

Let A be any permutation group acting on the set X. A subset of X 
containing exactly k elements is called a k-subset. Two k-subsets of X, 
say $1 and $2 are called A-equivalent if there is a permutation ~t in A 
such that t~(S1)----$2. By applying P61ya's theorem, the observation 
made in [8] is obtained: 

THEOREM [8]. The number of A-inequivalent k-subsets of  X is the coef- 
ficient of x k in Z(A, 1 q- x). 

This theorem may be considered to be a generalization of Burnside's 
theorem [2] on the number of transitivity systems of a permutation group, 
which is the above statement with k = 1. 

Applying the theorem to the power group we have: 

COROLLARY 1. The number of equivalence classes of functions in yx  
determined by B a is the coefficient of  x in Z(B ~, 1 q- x). 

Since we know the cycle index of  the power group we can obtain an 
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explicit formula for the coefficient of x. Using the definition of the cycle 
index the notation from above, we have 

1 ea 
Z(B A, 1 + x) = - -  ~] a I-I (1 + x~)& (~:p). (12) 

For  each permutation (~;/3) in B a, the coefficient of x in the product 
above comes from (1 + x)Jl(~; a) = 1 + jl(ce;/3)x 4- �9 �9 �9 . Hence the 
contribution of each (~;/3) to the coefficient of x in Z(B a, 1 + x) is 
simply j~(~;/3). Therefore the number of equivalence classes of functions 
in y x  determined by B a is 

1 
N = - -  Z a j~(ce;fl). (13) 

This is, of  course, just the application of Burnside's theorem to B A. 
By formula (8) and substitution we obtain: 

1__ 
N =  (14) 

mn (a;,6)eB = 

Now using the definition of the cycle index we restate this useful result 
in the following form. 

THEOREM 2. (Power Group Enumeration Theorem, Constant Form). 
The number of equivalence classes of  functions in y x  determined by the 
power group B a is 

1 
- -  ~ Z(A;  mr(t) ,  m2(fl) . . . . .  ma(fl)) (15) N = I B I a ~ B  

where 

mk(fl) = • sjs(fl). 
slIc 

Thus we have seen that counting the number of inequivalent functions 
from X into Y which are determined by two permutation groups A and B 
is a very straightforward and natural procedure, when use is made of 
the power group B a. The problem is essentially one of finding the func- 
tions fixed by the permutations in B a. It is easy to see that formula (15) 
is implicitly contained in de Bruijn [1, p. 173]. 
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2. ENUMERATION OF WEIGHTED FUNCTIONS 

There are many enumeration problems in which integral weights are 
assigned to the functions so that each function in an equivalence class 
determined by the power group has the same weight. Frequently one 
wants to know the number of different (inequivalent) functions having 
a given weight. The answer can be expressed as a series. 

N(x)  = N o -k N ix  -1- N2x 2 -1- " '"  

in which Ni is the number of different functions of weight i. 
Now consider the power group B a acting on yx .  Let w be a function 

from Y into the set {0, 1, 2 . . . .  } of non-negative integers. As usual w 
is called a weight function. For each f in yx,  we define the weight o f f ,  
denoted W ( f ) ,  by 

W ( f )  = Z w ( f ( x ) ) .  (16) 
x e X  

It is important that all functions in an equivalence class determined by 
the power group have the same weight. A criterion for this condition to 
be satisfied is provided by the next theorem. 

THEOREM 3. A necessary and sufficient condition for two equivalent 
functions to have the same weight is the existence o f  a partition Yo, 

Y1 . . . . .  Y~ of  Y with [ Yi ] = ni such that 

(a) B is a subgroup of  S,o + �9 �9 �9 + Sn~ where S~, the symmetric group 
of  degree ni, acts on Yi, 

(b) w ( y ) = i  for each y in Yi and i~-O,  1 , . . . , r .  

PROOF. For  the sufficiency, suppose f and g are equivalent functions. 
Then for some (a; fl) in B a, (6; fl)f---- g so that f l f ( 6 x )  ~- g(x) for all 
x in X. Note that w(f l f (ax ) )  = w ( f ( a x ) ) .  Therefore, by (16), 

W(g) = Z w ( f l f ( 6 x ) )  
x~x 

= Z w ( f ( a x ) )  
x q X  

= • w ( f ( x ) )  
x E X  

= W ( f ) .  
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For  the necessity, let Yi = w-l(i) for all i ---- 0 to r. Then condition (b) 
follows. Let ni -~ I Yi] for each i. Let C ~ S,o + �9 �9 �9 -k S,~ with S,~ 
acting on Y~. Then C is the largest permutation group acting on Y such 
that for any y in Y and any t3 in C, w(y) = w(fly). If  B is not  a subgroup 
of C, then there is an element y in Y and a permutation/3 in B such 
that w(y)~/: w(/3y). Let f and g in y x  be defined by f ( x ) =  y and 
g (x) =/3(y) for all x in X. Then obviously f and g are equivalent but 
W ( f )  :/: W(g). 

From now on we assume that equivalent functions have the same 
weight. Therefore we have B acting on Y in accordance with the condi- 
tions of Theorem 3. To obtain the generating function N(x) which enu- 
merates functions in y x  according to weight, we now need only modify 
the variables m~(/3) which appear in the statement of Theorem 2. 

Let 7 ---- (c~;/3) be any permutation in the power group B a. Suppose 
ze is any cycle of length k in the disjoint cycle decomposition of a. 
Again let S be the set of  elements of X which are permuted by zk. For 
each i = 0, 1, 2 . . . . .  define rnik(/3) as the number of functions f in ys  
which are fixed by the permutation (zk;/3) and which have 

Y~ w ( f ( x ) )  ---- i. 
x~S 

For convenience let mk(fl, x ) =  Zim~k(/3)xi. Note that ink(~3, 1) 
= mk(/3) as defined in Theorem 2. Then the desired generating function 
N(x) is given by 

1 
-- Z Z(A; m1(/3, x), m2(fl, x ) , . . . ,  ma(fl, x)). (17) N(x) ] B I Z~B 

Once again the formula for Z(B A) provides the means for finding an 
explicit expression for m~(/3, x). From condition (a) in Theorem 3 
we know that each permutation fl in B can be written as fl ----/3o/31" " "/3~ 
with/3i acting on Yi for each i. 

Using the same approach as made in the derivation of  formula (8) 
for j l(a;/3) we have: 

mt(fl, x) = ]1(/3o) -k jl(/31)x -k jl(fl2)x 2 - ] - ' ' ' ,  

m2(/3, x) = [Jl(flo) + 2j2(/30)] + [Jl(fl0 + 2J2(fl~)]x 2 

+ []~(/3~) + 2j2@~)lx 4 + . . . ,  

ma(/3, x) = [Jl(flo) q- 3j8(/30)] -k [J~(fl0 + 3J3(fl0]x z 

-~- [Ja(flz) ~- 3J,(/3~)]x 6 -k - ' * ,  
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F 
mk(fl, x) = [ 

Therefore 

and in general 

+ 

Note that the coefficient of x ~ depends only on k and the partition 
of fit. Collecting these observations, we have the following result. 

THEOREM 4. (Power Group Enumeration Theorem, Polynomial Form). 

The polynomial which enumerates according to weight the equivalence 

classes o f  functions in y x  determined by the power  group B a is 

where 

N ( x )  = - -  
1 

"~ Z(A; ml(fl, x), m~(fl, x) ,  . . . , ma(fl, x)) ,  

t=0 

P61ya's theorem is immediately obtained from Theorem 4 when 
B is identity group on Y. Then the above formula becomes 

N ( x )  = Z ( A ;  ml (x ) ,  ml(x2), . . . , ml(xa))  

where m~(x) is obtained from the formula above for ml(fl, x )  by taking fl 
as the identity permutation acting on Y. In P61ya's terminology, ml(x)  

is known as the "figure counting series." 
The difference between this expression for N ( x )  in Theorem 4 and 

that given by de Bruijn's theorem is now shown to be merely formal. 
It is just a matter of a change in notation and some routine algebraic 
manipulations. 

First assume that B ~ B0 q-B1 q - . . .  + B~ with Bi acting on Y,/ 
and w(y)  = i for all y in Yi. In most applications B has this form. Let 

It is very easy to see, as observed by P61ya [10], that 

Z ( B )  = Z(Bo)  Z(B1) " " Z(B~). (19) 
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For any non-negative integer j and any variable b, we have 

bS [ 0 s (20) 

Here it is understood that if j = 0 then bS = 1 even when b --- O. 
By 

( 0 0 O )  
" 7 ~  Z A ;  Oz1,  Oz9 Oz d 

is meant the formal differential operator obtained from Z(A)  on 
replacing each ak in formula (4) by O/Ozk. Then, for any function 
f ( z l , . . . ,  za), ( 0 0  

Z A ; Ozl ' Oz~ ' f (Z1 " zd)  

has the usual meaning. Using this notation and that of (20), it is ob- 
vious that 

[( 0 0 0) 
Z(A;  mx(fl, x), mz(fl, x) . . . . .  ma(fl, x))  ~ Z A; Ozl ' Oz2 . . . . .  Oza 

exp{mx(fl, x)zl  -t- m2(fl, x)zz -5 . . .  + ma(fl, x)za}] (21) 
z i=O " J 

Using the derivative notation, the formula for me(fl, x) in Theorem 4, 
and (19) for the cycle index of B, one can obtain with routine algebraic 
operations the formula for N(x)  given by de Bruijn's theorem: 

THEOREM (D~ BRUIJN). The polynomial which enumerates according to 
weight the number o f  equivalence classes of  functions from X into Y with 
respect to the permutation groups A and B is given by 

0 
N ( x ) =  [ Z ( A ;  OZl 

where 

] ' OZ 3 . . . . .  OZ g ( o t ;  b t ' l '  bt,2, bt,3 . . . .  ) 2) 
t~O z i 

t [d/s] t b t , .=  exp s • z.~(xt) "~ . 
k=l 

Here are the details for obtaining (22) from Theorem 4: 
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N(x) -- 

But 

1 
Z Z(A;  m~(fl, x), m2(fl, x) . . . . .  ma(fl, x)) 

IBla~B 

I B l , a ~  \ Oz~ . . . . .  Oza 

exp{m~(fl, x)z~ + . . .  + md(t3, x)za} ]~= ~ 

[( o o ) ,  
= Z A;oz~ . . . .  'Oz~ ~ Z fleB 

exp{mlCS, x)zl @ "'" ~- md(fl, X)Za}J �9 
zi~O 

1 
Y, exp{ml(fl, x)z I -~ " " " 21-. ma(fl, x)za} 

IBla~B 

1 [exp d Sjs(flo)) exp {k=l 

exp {~__~ 1 (~lcSjs( f l2 ' )X 'kZ,@ " ' ' ]  

1 
= - -  E [exp{jl(flo) ~ ze + 2j2(flo) ~, z2~ + 3ja(flo) ~ z3k + ' "  "} I B a~B 

exp{jl(fll) "~ xkzk -Jr- 2A(fll) E x2lC'z2~ -]- 3Ja(fll) E XakZ3k q-'" "} 

exp{jl(fl2) Y, (x~)~ze -k 2j2(f12) E (x~)2~:z2e -}- 3j3(f12) ?g (x2)a~zak 
+ . . . } . . . ]  

1 
-- Y~ [(exp Y~ zk)h(~o~(exp 2Y~ z~,0h(~o)(exp 3 Y~ z3k)is(~o ~ ' ' '  

(exp ~ xkze)h~al)(exp 2 Y, x2~z2~)h(a~)(exp 3 3", x3ez3~)h(a~... 

(exp ~ (x~)kz~)J~(as~(exp 2 Y~ (X2)2kZ2k)S~(a~ ~ 

(exp 3 ~ (x~)aez3~)Y,(a~) �9 . .  ] 

= f i  Z ( B  t, expN (xt)~ze, exp 2 ~  (xt)~z2~, exp 3 Y~ (xt)3~z3~, . .  .). 
/=0 

slk 

Hence it is convenient to introduce the otherwise contrived-looking 
notation 

[d/s] } 
bt, s -~ exp is  ~--1 (xt)kSZks 

and one then obtains the formula (22) of de Bruijn. 
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Formula (22) and Theorem 4 are thus seen to yield precisely the same 
results. 

3. GRAPHICAL APPLICATIONS 

Two significant applications of de Bruijn's theorem to graphical enu- 
meration problems were made by R. C. Read. In [11] Read has shown 
how to compute the number of self-complementary graphs with p points. 
In [12] Read gives the generating function for the enumeration of 
graphs with p points whose lines are colored with n colors such that the 
colors are interchangeable. 

Before discussing these problems in detail, we give some of the usual 
notation and definitions associated with the enumeration of graphs. 
As above, the symmetric group acting on the set {1 . . . . .  p} o f p  objects 
is denoted by Sp. The "pair group" S~ ~) of the symmetric group is the 
permutation group which acts on all subsets of {1 . . . . .  p} containing 
exactly two objects, as induced by the elements of Sp. A formula for 
Z(S~ ~) is given in [4]. The permutation group consisting of a single 
permutation, the identity element, which acts on k objects, is denoted 
by E~. 

Self-Complementary Graphs 

The complement of a graph G is denoted by G. A graph G is self- 
complementary if G ~ G, i.e., G and G are isomorphic. Read showed 
how to compute the number of self-complementary graphs with p points 
by first applying de Bruijn's theorem to count the number of graphs 
with p points up to complementation. In counting graphs up to comple- 
mentation, two graphs G1 and G2 are regarded as equivalent whenever 
GI=~ G2 or G I ~  (~2- 

Let the pair group S~ 2) act on X ~), the collection of all 2-subsets 
of X = {1 . . . . .  p). Let S~, the symmetric group of degree 2, act on 
Y = {0, 1 }. It is easy to show that the number of graphs with p points 
up to complementation is the same the number of equivalence classes 

S(~) of functions in Y x(~ determined by the power group $2~ �9 Briefly, a 
function f i n  Y x(~) represents a graph G whose points are {1 . . . . .  p} 
and in which point i as adjacent with point j whenever f({i ,  j}) ---- 1. 
Thus the elements O, 1 of Y are used to indicate the absence or presence 

of a line. If  the permutation (a; (O1)) of S~(~ ~) sends f to g, then g is a 
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function which represents the complement of G. Applying Corollary 1 
we see that the number of graphs with p points up to complementation 

,St ~ is the coefficient of x in Z(S2~ ,  1 q -x ) .  
Now we apply Theorem 2, the Power Group Enumeration formula, 

with A ~ S~ ~) and B ~ S~. The two permutations of $2 are (0) (1) 
and (01). Therefore for fl = (0) (1), we have Jl(fl) = 2, Js(fl) = 0 for 

s > l, and so for this fl, mk(fl) = 2 for all k = l to ( P ). For f l =  (O1), 

we have J2(fl) = 1, js(fl) = 0 for s -~- 2, and so for this fl, mk(fl) = 2 
when 2 ] k and m~(fl) = 0 when 2 J" k. Thus the number of graphs up 
to complementation is 

�89 {Z(S~t2~; 2, 2 . . . .  ) q- Z(S~2); O, 2, O, 2 . . . .  )}. (23) 

Read observed that the number of graphs on p points up to comple- 
mentation could be obtained by taking A ---- S~ 2~ and B ------ $2 and by 
applying that special case of de Bruijn's theorem which gives the for- 
mula (15) of Theorem 2; de Bruijn had already applied this special case 
of his theorem with A arbitrary and B----$2 to obtain similarly 

�89 (Z(A; 2, 2, 2, 2 . . . .  ) q- Z(A; 0, 2, 0, 2 . . . .  )}. 

Now to count the number of self-complementary graphs with p points, 
Read's procedure has four steps. 

STEP 1. Count the number c v of graphs with p points up to comple- 
mentation. 

STEP 2. Observe that the number of graphs with p points counted 
twice if self-complementary and once if not is 2cp. 

STEP 3. From P61ya's result as given in [4] we know that the total 
number of graphs on p points is Z(S~2~; 2, 2 . . . .  ). 

STEP. 4. Substracting the result of Step 3 from that of Step 2, we find 
that the number of self-complementary graphs is Z(S~2); 0, 2, 0, 2 , . . .  ). 

Explicit formulas for the number of self-complementary graphs and 
digraphs with a given number p of  points appear in Read [11], who thus 
solved one of the problems in [7]. 



THE P O W E R  G R O U P  ENUMERATION THEOREM 171 

Graphs with n-Colored Lines 

Theorem 4, the polynomial  fo rm of  the Power Group  Enumera t ion  
Theorem,  provides a simple approach  to the problem of  deriving the 
count ing polynomial ,  Cp~(x), which enumerates graphs with p points 
whose lines are colored with n colors such that  the colors are inter- 
changeable. This result was first given by Read [12] using de Bruijn's 
formula,  (22). 

Let/71 be the permutat ion group of  order  one and degree one acting 
on the set {0}. As before let A - -  S~ 2) act on X (2). Let  B ---- E 1 ' t-  Sn 

act on Y = {0} U {1 . . . . .  n}. Define the weight funct ion w: Y---~ {0, 1} 
by w(y) = 0 if y = 0 and w(y) = 1 if y 7~ 0. Then  each function f in 
Y x~' represents a graph with exac t ly f - l ( i )  lines of  color  i for  i = 1 . . . .  n. 
Further ,  the weight W ( f )  of  the funct ion f is the number  of  lines in the 
graph represented by f It  follows that  Cp"(x) is just  the polynomial ,  

S (~) N(x), given by Theorem 4 applied to the power group (El + S~) ~ . 
To  illustrate, we show the details for  n = 3: In accordance with nota-  

t ion above, we have B0 =--E1 acting on Y1---- {0} and B1----$8 acting 
on Y2 = {1, 2, 3}. Fo r  each fl in E~ q- $3 we must  compute  rn~(fl, x) 
as given by formula  (18). Recall tha t  for  t ---- 0, 1 the coefficient o f  x t~ 

in m~(fl, x) is ~sl~ sjs(flt). There are three cases. 

CASE 1. fl = (0) (1) (2) (3). 

We have flo = (0) and fll = (1) (2) (3). So A(flo) ---- 1 and Jl(fll) = 3. 
Therefore  mk(fl, x)----1 + 3x k for  all k. 

CASE 2. fl = (0) (12) (3). 

Since flo = (0) and fll = (12) (3), we have A(flo) = 1, A(fll) = 1 and 
A(fll) - -  1. Therefore  ~slk sj~(fll) is Jl(fll) or (Jl(fll) -}- 2A~l)) according 
as k is odd or even. Hence me(fl, x) is 1 + x ~ or 1 + 3x k according as k 
is odd or even. 

C A S E  3. fl = (0) (123). 

Since flo ---- (0) and fll = (123), we have Jl(flo) ----- 1 and Ja(fla) ---- 1. 
Therefore  ~sl~ sjs(fll) is 0 or 3A(fll) according as 3 f k or 3 l k. Hence 
m~(fl, x) is 1 or 1 + 3x ~ according as 3 f k  or 3 [ k. 

I f  fl = (0) (13) (2) or fl = (0) (23) (1), then, of  course, mk(fl, x)  is 
given by Case 2. I f  fl = (0) (132), then m~(fl, x) is as in Case 3. F rom 
Theorem 4 we now have 
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For p = 3: 

Cp~(x) = ~ {Z(S~ ); 1 4- 3x, 1 4- 3x~, . . .  ) 

+3Z(S~2~; 1 4 -x ,  1 + 3 x  2, 1 4 - x  8 . . . .  ) 

4- 2Z(S~);  1, 1, 1 4- 3 x3 , . . .  )}. 

Cza(x)= 1 + x 4- 2x 24-3x  3. 

Read derived a formula for C~(x) by applying de Bruijn's theorem 
with A ~ S~ z), Bo ~ El, and B1 ~ Sn. We illustrate his procedure for 
n = 3. First we have: 

Z(E1; bo,x)Z(S3; b1,1, bl,2, bl,3) 

: ~ bo,~[b~,l 4- 3hi,lb,,2 -~- 2b~,3] 

= ] [bo,lb~,a 4- 3bo,lbl,lbl,~ 4- 2bo,lbl,8]. 

Now bo,1 = exp{ ~ z~} 

ba,l ~ exp{ ~ ZkXk t 

Therefore 

Z(E1; b0,a)Z(Sa; b1,1, b1,2, bl,3) 
- - - - ] [exp{Z z k + 3 ~ g  z~x ~} 

§  z~ § Z zk xk 4- 2 Z z~k x2~} 

4- 2 exp{ Z z~ 4- 3 Z Z3kXak}] 

= ] [exp{(1 § 3X)Zl § (1 4- 3x2)z~ 4- (1 4- 3x~)z~ 4- ," "} 

4- 3 exp{(1 4- X)Zl 4- (1 + 3x2)z~ + (1 + x3)z3 4- " "} 

+ 2 e x p { z a 4 - z 2 + ( 1 4 - 3 x  ~ ) z 3 + . ' ' } .  

Now using (21) we can obtain the same result as before for Cp~(x). 
In conclusion, we note that with the aid of the Power Group Enumera- 

tion Theorem one can always determine the number of equivalence clas- 
ses of functions (with or without weights) from a set X into a set Y acted 
on by permutation groups A and B, respectively, provided one only 
knows the cycle indexes of A and B. 
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