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1. Introduction

Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression bodies V and W with S =
9+W =9, V, then we say M has a Heegaard splitting, denoted M =V Us W. In this case, S is called a Heegaard surface of
M. Moreover, if the genus g(S) of S is minimal among all the Heegaard surfaces of M, then g(S) is called the genus of M,
denoted by g(M). If there are essential disks B C V and D C W such that 9B = 9D (resp. BN adD = @), then V Us W is
said to be reducible (resp. weakly reducible). Otherwise, it is said to be irreducible (resp. strongly irreducible). See [1]. The
distance between two essential simple closed curves o and 8 on S, denoted by d(«, 8), is the smallest integer n > 0 so
that there is a sequence of essential simple closed curves @p =, ..., = B on S such that «;_q is disjoint from «; for
1 <i < n. The distance of the Heegaard surface S, denoted by d(S), is defined to be min{d(«, 8)}, where o bounds a disk
in V and B bounds a disk in W. See [4].

Let K be a knot in a 3-sphere S3, we denote by n(K) the open regular neighborhood of K in $3, and E(K) the com-
plement of K, i.e. the manifold S — n(K). Let V Us W be a minimal Heegaard splitting of E(K). We may assume that
0E(K) Cc 9_W. If d(S) is minimal along all the minimal Heegaard splittings of E(K), then d(S) is called the distance of K,
denoted by d(K). It is well known that there exist knots of arbitrarily of high distance, see [7]. The tunnel number of K,
denoted by t(K), is defined to be g(E(K)) — 1. For two knots Ky and K», we denote by K%K, the connected sum of K
and Kj. It is well known that t(K18K2) < t(K1) +t(K2) + 1 from a natural construction of a Heegaard splitting of E(K1£K>).
Hence there is a question called the super additivity of tunnel number as follows:

Question 1. If t(K1£K2) = t(Kq) + t(K2) +1?

In generality, the superadditivity of tunnel number does not hold. For example, Morimoto [8] gave examples to show
that t(K1£K>) < t(Ky) + t(K3), and Kobayashi [5] gave examples to show that t(K£K3) — t(Kq) — t(K3) can be arbitrarily
large. When does the superadditivity of tunnel number hold? Morimoto [9] proved that the superadditivity of tunnel holds
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Fig. 1.

if both K7 and K, are meridionally small and not m-primitive. If both K; and K; are high distance knots, the superadditivity
of tunnel number does also hold, see [2] and [6]. The main result of this paper is the following:

Theorem 1. If d(K1) > 2(t(K1) + t(K2) + 2) while d(K») > 3, then t(K11K>) = t(K1) + t(K2) + 1.
2. The proof of Theorem 1

Let F be either a properly embedded connected surface in a 3-manifold M or a connected sub-surface of dM. If there is
an essential simple closed curve on F which bounds a disk in M or F is a 2-sphere which bounds a 3-ball in M, then we
say F is compressible; otherwise, F is said to be incompressible. If F is an incompressible surface not parallel to dM, then
F is said to be essential.

Let P be a separating connected compact surface in a 3-manifold M which cuts M into two 3-manifolds My and M.
P is said to be bicompressible if P is compressible in both M1 and M,. P is strongly compressible if there are compressing
disks for P in M; and M, which have disjoint boundaries in P; otherwise P is weakly incompressible. By definition, if
M =V Us W is a strongly irreducible Heegaard splitting, then S is weakly incompressible in M.

Now let P be a bicompressible closed surface in an irreducible 3-manifold M. By maximally compressing P in both sides
and deleting any resulting 2-sphere components, we get a surface sum structure of M as follows:

M = N1 Ugp HY Up H3 Ugr Na,

where HiP is a compression body with 3+Hf =P, and FiP is a collection (may be empty) of close surfaces of genus at least
one for i =1, 2. In this case, P is a Heegaard surface of the manifold Hf Up Hg. Hence d(P) is well defined as a Heegaard
surface. Two weakly incompressible surfaces P and Q are said to be well-separated in M if Hf Up Hf is disjoint from
H? Up H? after isotopy.

Two basic results on the distance of Heegaard splitting as follows:

Hartshorn-Scharlemann Theorem. ([3,11]) Let M = V Us W be a Heegaard splitting, and P be an incompressible surface in M.
Then either P can be isotoped to be disjoint from S or d(S) <2 — x (P).

Scharlemann-Tomova Theorem. ([13]) Let P and Q be bicompressible but weakly incompressible connected closed separating
surfaces in a 3-manifold M. Then either

(1) P and Q are well-separated, or
(2) P and Q are isotopic, or
(3) d(P) <2g(Q).

Let K; and K, be two knots in S3. Then there is an essential annulus A which cuts E(K14K>) into E(K1) and E(K>).
Furthermore, A is a meridional annulus on both 9E(K;) and 9E(K3). Now let dE(K;) x I be a regular neighborhood of
d0E(K;) in E(K;) such that dE(K;) = 0E(K;) x {0} for i =1, 2. We denote by T; the surface dE(K;) x {1}. Let E = (0E(K7) X
1)U (OE(Ky) x I), E; = E(Kj) —9E(K;) x [0, 1) for i =1, 2. Then E; is homeomorphic to E(K;). Now E(K;£K>) has a natural
decomposition as E(K11K2) = E1 Ur, E Ur, E>. See Fig. 1. The following lemma is a simple observation.
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Lemma 2.1.

(1) g(E) = 2. Furthermore, E has a minimal Heegaard splitting Hy Us Hy such that T; C 0_H;.
(2) E contains no essential closed surface.

Suppose that t(K1£Ky) =t(Ky) + t(Ky) + 1. Then g(E(K18K3)) = g(E(K1)) + g(E(K3)). Now by Lemma 2.1(1), from the
view of amalgamation, g(E(K1£K3)) = g(E1) 4+ g(E2) + g(E) — g(T1) — g(T>). Hence g(E;Ur; E) = g(E(K;))+1 is a necessary
condition for the superadditivity of tunnel number. In generality, let K be a knot, and A be a meridian annulus on JE(K).
Let T be a torus, and B be an annulus on T. Let N = E(K) Ua—gxo} T % I.

Question 2. If g(N) = g(E(K)) +1?
By the argument in [9], if K is an m-primitive knot in S3, then g(N) < g(E(K)). But we have the following lemma:

Lemma 2.2.

(1) g(N) = g(E(K)).
(2) Ifd(K) > 3, then g(N) = g(E(K)) + 1.

Proof. Recalling that N = E(K) Up—pxjoy T x I.

(1) Now let r be a simple closed curve on T such that r intersects the core of the annulus B in one point. Let X be
the manifold obtained by attaching a solid torus J to N along T x {1} so that r x {1} bounds a disk D in J. Then X is
homeomorphic to X = E(K). See Fig. 2. Let V Us W be a Heegaard splitting of N. Then S is also a Heegaard surface of
X = E(K). Hence Lemma 2.2(1) holds.

(2) Let N=V Us W be a minimal Heegaard splitting. If S is weakly reducible, then, by the argument in Lemma 2.2(1),
S is also a weakly reducible Heegaard surface of E(K). Since d(K) > 3, g(S) > g(E(K)) + 1. Hence Lemma 2.2(2) holds.
Assume that V Us W is strongly irreducible. Now S N A # . By Schultens’s lemma, each component of S N A is essential
on both S and A. Furthermore, one of SN E(K) and SN (T x I), say S N E(K), is bicompressible. See [14]. Hence there
are two essential disks D C V and B C W such that D, B C E(K). Hence D and B are disjoint from A. Since SN A # ¢,
d(@D,dB) <2, d(S) <2. Hence Lemma 2.2(2) holds. O

Remark. Note that if K is m-primitive, then d(K) <2 and g(N) = g(E(K)). In addition, there are many examples such that
K is m-primitive and d(K) = 2. Furthermore, Kobayashi and Rieck gave examples to show that K; and K are non-primitive
but t(K1Ky) < t(Kq) + t(K3). See [5]. Hence the condition “d(K) > 3” looks like natural for g(N) = g(E(K)) + 1.

Proof of Theorem 1. By the assumptions, d(K1) > 2(t(K7) + t(K3) + 2) while d(K3) > 3. Hence d(K1) > 2(g(E(K1)) +
g(E(K>2))). Let E(K18K3) =V Us W be a minimal Heegaard splitting. Then g(S) < g(E(Ky7)) + g(E(K>3)).

Case 1. S is strongly irreducible.

Since Hi Us, H> is a Heegaard splitting of E; with d(S1) > 2(g(E(K1)) + g(E(K2))). By Scharlemann-Tomova Theorem,
either S and S are well-separated, or S and Si are isotopic, or d(S1) < 2g(S). Since V Us W is a Heegaard splitting of M,
S and Si are not well-separated and not isotopic. Hence g(S) = g(E(K1)) + g(E(K>)).
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Case 2. V Us W is weakly reducible.
VUs W =(Vq1Up, W1) Up, ---Ug,_; (Va Up, Wp),

where each V;Up, W; is strongly irreducible, each F; is essential. See [12]. Since V Us W is minimal, each V; Up, W; is non-
trivial. Hence g(P;) < g(S)—1 < g(E(K1))+g(E(K2))—1, g(F;) < g(P;). By Hartshorn-Scharlemann Theorem, each F; can be
isotoped to be disjoint from E. Since a compression body contains no essential closed surfaces, one component of U?:l F; is
isotopic to Ti. For details, see [10]. Hence V Us W is an amalgamation of a Heegaard splitting of E; and a Heegaard splitting
of EUr, E; along Ty. By Lemma 2.2(2), g(E(K11K2)) = g(E(K1)) + g(E(K2)). Hence t(K1£K2) =t(K1) +t(Kx)+1. O
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