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Let K be a knot in a sphere S3. We denote by t(K ) the tunnel number of K . For two knots
K1 and K2, we denote by K1�K2 the connected sum of K1 and K2. In this paper, we will
prove that if one of K1 and K2 has high distance while the other has distance at least 3
then t(K1�K2) = t(K1) + t(K2) + 1.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression bodies V and W with S =
∂+W = ∂+V , then we say M has a Heegaard splitting, denoted M = V ∪S W . In this case, S is called a Heegaard surface of
M . Moreover, if the genus g(S) of S is minimal among all the Heegaard surfaces of M , then g(S) is called the genus of M ,
denoted by g(M). If there are essential disks B ⊂ V and D ⊂ W such that ∂ B = ∂ D (resp. ∂ B ∩ ∂ D = ∅), then V ∪S W is
said to be reducible (resp. weakly reducible). Otherwise, it is said to be irreducible (resp. strongly irreducible). See [1]. The
distance between two essential simple closed curves α and β on S , denoted by d(α,β), is the smallest integer n � 0 so
that there is a sequence of essential simple closed curves α0 = α, . . . ,αn = β on S such that αi−1 is disjoint from αi for
1 � i � n. The distance of the Heegaard surface S , denoted by d(S), is defined to be min{d(α,β)}, where α bounds a disk
in V and β bounds a disk in W . See [4].

Let K be a knot in a 3-sphere S3, we denote by η(K ) the open regular neighborhood of K in S3, and E(K ) the com-
plement of K , i.e. the manifold S3 − η(K ). Let V ∪S W be a minimal Heegaard splitting of E(K ). We may assume that
∂ E(K ) ⊂ ∂−W . If d(S) is minimal along all the minimal Heegaard splittings of E(K ), then d(S) is called the distance of K ,
denoted by d(K ). It is well known that there exist knots of arbitrarily of high distance, see [7]. The tunnel number of K ,
denoted by t(K ), is defined to be g(E(K )) − 1. For two knots K1 and K2, we denote by K1�K2 the connected sum of K1
and K2. It is well known that t(K1�K2) � t(K1)+ t(K2)+ 1 from a natural construction of a Heegaard splitting of E(K1�K2).
Hence there is a question called the super additivity of tunnel number as follows:

Question 1. If t(K1�K2) = t(K1) + t(K2) + 1?

In generality, the superadditivity of tunnel number does not hold. For example, Morimoto [8] gave examples to show
that t(K1�K2) < t(K1) + t(K2), and Kobayashi [5] gave examples to show that t(K1�K2) − t(K1) − t(K2) can be arbitrarily
large. When does the superadditivity of tunnel number hold? Morimoto [9] proved that the superadditivity of tunnel holds

* Corresponding author.
E-mail address: rfqiu@math.ecnu.edu.cn (R. Qiu).
0166-8641/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2011.07.020

https://core.ac.uk/display/82453333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.topol.2011.07.020
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:rfqiu@math.ecnu.edu.cn
http://dx.doi.org/10.1016/j.topol.2011.07.020


X. Gao et al. / Topology and its Applications 158 (2011) 2240–2243 2241
Fig. 1.

if both K1 and K2 are meridionally small and not m-primitive. If both K1 and K2 are high distance knots, the superadditivity
of tunnel number does also hold, see [2] and [6]. The main result of this paper is the following:

Theorem 1. If d(K1) � 2(t(K1) + t(K2) + 2) while d(K2) � 3, then t(K1�K2) = t(K1) + t(K2) + 1.

2. The proof of Theorem 1

Let F be either a properly embedded connected surface in a 3-manifold M or a connected sub-surface of ∂M . If there is
an essential simple closed curve on F which bounds a disk in M or F is a 2-sphere which bounds a 3-ball in M , then we
say F is compressible; otherwise, F is said to be incompressible. If F is an incompressible surface not parallel to ∂M , then
F is said to be essential.

Let P be a separating connected compact surface in a 3-manifold M which cuts M into two 3-manifolds M1 and M2.
P is said to be bicompressible if P is compressible in both M1 and M2. P is strongly compressible if there are compressing
disks for P in M1 and M2 which have disjoint boundaries in P ; otherwise P is weakly incompressible. By definition, if
M = V ∪S W is a strongly irreducible Heegaard splitting, then S is weakly incompressible in M .

Now let P be a bicompressible closed surface in an irreducible 3-manifold M . By maximally compressing P in both sides
and deleting any resulting 2-sphere components, we get a surface sum structure of M as follows:

M = N1 ∪F P
1

H P
1 ∪P H P

2 ∪F P
2

N2,

where H P
i is a compression body with ∂+H P

i = P , and F P
i is a collection (may be empty) of close surfaces of genus at least

one for i = 1,2. In this case, P is a Heegaard surface of the manifold H P
1 ∪P H P

2 . Hence d(P ) is well defined as a Heegaard
surface. Two weakly incompressible surfaces P and Q are said to be well-separated in M if H P

1 ∪P H P
2 is disjoint from

H Q
1 ∪P H Q

2 after isotopy.
Two basic results on the distance of Heegaard splitting as follows:

Hartshorn–Scharlemann Theorem. ([3,11]) Let M = V ∪S W be a Heegaard splitting, and P be an incompressible surface in M.
Then either P can be isotoped to be disjoint from S or d(S) � 2 − χ(P ).

Scharlemann–Tomova Theorem. ([13]) Let P and Q be bicompressible but weakly incompressible connected closed separating
surfaces in a 3-manifold M. Then either

(1) P and Q are well-separated, or
(2) P and Q are isotopic, or
(3) d(P ) � 2g(Q ).

Let K1 and K2 be two knots in S3. Then there is an essential annulus A which cuts E(K1�K2) into E(K1) and E(K2).
Furthermore, A is a meridional annulus on both ∂ E(K1) and ∂ E(K2). Now let ∂ E(Ki) × I be a regular neighborhood of
∂ E(Ki) in E(Ki) such that ∂ E(Ki) = ∂ E(Ki) × {0} for i = 1,2. We denote by Ti the surface ∂ E(Ki) × {1}. Let E = (∂ E(K1) ×
I)∪A (∂ E(K2)× I), Ei = E(Ki)− ∂ E(Ki)×[0,1) for i = 1,2. Then Ei is homeomorphic to E(Ki). Now E(K1�K2) has a natural
decomposition as E(K1�K2) = E1 ∪T1 E ∪T2 E2. See Fig. 1. The following lemma is a simple observation.
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Lemma 2.1.

(1) g(E) = 2. Furthermore, E has a minimal Heegaard splitting H1 ∪S H2 such that Ti ⊂ ∂−Hi .
(2) E contains no essential closed surface.

Suppose that t(K1�K2) = t(K1) + t(K2) + 1. Then g(E(K1�K2)) = g(E(K1)) + g(E(K2)). Now by Lemma 2.1(1), from the
view of amalgamation, g(E(K1�K2)) = g(E1)+ g(E2)+ g(E)− g(T1)− g(T2). Hence g(Ei ∪Ti E) = g(E(Ki))+1 is a necessary
condition for the superadditivity of tunnel number. In generality, let K be a knot, and A be a meridian annulus on ∂ E(K ).
Let T be a torus, and B be an annulus on T . Let N = E(K ) ∪A=B×{0} T × I .

Question 2. If g(N) = g(E(K )) + 1?

By the argument in [9], if K is an m-primitive knot in S3, then g(N) � g(E(K )). But we have the following lemma:

Lemma 2.2.

(1) g(N) � g(E(K )).
(2) If d(K ) � 3, then g(N) = g(E(K )) + 1.

Proof. Recalling that N = E(K ) ∪A=B×{0} T × I .
(1) Now let r be a simple closed curve on T such that r intersects the core of the annulus B in one point. Let X be

the manifold obtained by attaching a solid torus J to N along T × {1} so that r × {1} bounds a disk D in J . Then X is
homeomorphic to X = E(K ). See Fig. 2. Let V ∪S W be a Heegaard splitting of N . Then S is also a Heegaard surface of
X = E(K ). Hence Lemma 2.2(1) holds.

(2) Let N = V ∪S W be a minimal Heegaard splitting. If S is weakly reducible, then, by the argument in Lemma 2.2(1),
S is also a weakly reducible Heegaard surface of E(K ). Since d(K ) � 3, g(S) � g(E(K )) + 1. Hence Lemma 2.2(2) holds.
Assume that V ∪S W is strongly irreducible. Now S ∩ A �= ∅. By Schultens’s lemma, each component of S ∩ A is essential
on both S and A. Furthermore, one of S ∩ E(K ) and S ∩ (T × I), say S ∩ E(K ), is bicompressible. See [14]. Hence there
are two essential disks D ⊂ V and B ⊂ W such that D, B ⊂ E(K ). Hence D and B are disjoint from A. Since S ∩ A �= ∅,
d(∂ D, ∂ B) � 2, d(S) � 2. Hence Lemma 2.2(2) holds. �
Remark. Note that if K is m-primitive, then d(K ) � 2 and g(N) = g(E(K )). In addition, there are many examples such that
K is m-primitive and d(K ) = 2. Furthermore, Kobayashi and Rieck gave examples to show that K1 and K2 are non-primitive
but t(K1�K2) � t(K1) + t(K2). See [5]. Hence the condition “d(K ) � 3” looks like natural for g(N) = g(E(K )) + 1.

Proof of Theorem 1. By the assumptions, d(K1) � 2(t(K1) + t(K2) + 2) while d(K2) � 3. Hence d(K1) � 2(g(E(K1)) +
g(E(K2))). Let E(K1�K2) = V ∪S W be a minimal Heegaard splitting. Then g(S) � g(E(K1)) + g(E(K2)).

Case 1. S is strongly irreducible.
Since H1 ∪S1 H2 is a Heegaard splitting of E1 with d(S1) � 2(g(E(K1)) + g(E(K2))). By Scharlemann–Tomova Theorem,

either S and S1 are well-separated, or S and S1 are isotopic, or d(S1) � 2g(S). Since V ∪S W is a Heegaard splitting of M ,
S and S1 are not well-separated and not isotopic. Hence g(S) = g(E(K1)) + g(E(K2)).
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Case 2. V ∪S W is weakly reducible.

V ∪S W = (V 1 ∪P1 W1) ∪F1 · · · ∪Fn−1 (Vn ∪Pn Wn),

where each V i ∪Pi W i is strongly irreducible, each Fi is essential. See [12]. Since V ∪S W is minimal, each V i ∪Pi W i is non-
trivial. Hence g(Pi) � g(S)−1 � g(E(K1))+ g(E(K2))−1, g(Fi) < g(Pi). By Hartshorn–Scharlemann Theorem, each Fi can be
isotoped to be disjoint from E1. Since a compression body contains no essential closed surfaces, one component of

⋃n
i=1 Fi is

isotopic to T1. For details, see [10]. Hence V ∪S W is an amalgamation of a Heegaard splitting of E1 and a Heegaard splitting
of E ∪T2 E2 along T1. By Lemma 2.2(2), g(E(K1�K2)) = g(E(K1)) + g(E(K2)). Hence t(K1�K2) = t(K1) + t(K2) + 1. �
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