# A note on tunnel number of composite knots 

Xutao Gao ${ }^{\text {a }}$, Qilong Guo ${ }^{\text {a }}$, Ruifeng Qiu ${ }^{\text {b,* }}$<br>${ }^{\text {a }}$ Department of Mathematics, Dalian University, Dalian 116022, China<br>b Department of Mathematics, East China Normal University, Shanghai 200241, China

## ARTICLE INFO

## Article history:

Received 23 June 2011
Accepted 20 July 2011

## Keywords:

Distance
Heegaard splitting
Tunnel


#### Abstract

Let $K$ be a knot in a sphere $S^{3}$. We denote by $t(K)$ the tunnel number of $K$. For two knots $K_{1}$ and $K_{2}$, we denote by $K_{1} \sharp K_{2}$ the connected sum of $K_{1}$ and $K_{2}$. In this paper, we will prove that if one of $K_{1}$ and $K_{2}$ has high distance while the other has distance at least 3 then $t\left(K_{1} \sharp K_{2}\right)=t\left(K_{1}\right)+t\left(K_{2}\right)+1$.


© 2011 Elsevier B.V. All rights reserved.

## 1. Introduction

Let $M$ be a 3-manifold. If there is a closed surface $S$ which cuts $M$ into two compression bodies $V$ and $W$ with $S=$ $\partial_{+} W=\partial_{+} V$, then we say $M$ has a Heegaard splitting, denoted $M=V \cup_{S} W$. In this case, $S$ is called a Heegaard surface of $M$. Moreover, if the genus $g(S)$ of $S$ is minimal among all the Heegaard surfaces of $M$, then $g(S)$ is called the genus of $M$, denoted by $g(M)$. If there are essential disks $B \subset V$ and $D \subset W$ such that $\partial B=\partial D$ (resp. $\partial B \cap \partial D=\emptyset$ ), then $V \cup_{s} W$ is said to be reducible (resp. weakly reducible). Otherwise, it is said to be irreducible (resp. strongly irreducible). See [1]. The distance between two essential simple closed curves $\alpha$ and $\beta$ on $S$, denoted by $d(\alpha, \beta)$, is the smallest integer $n \geqslant 0$ so that there is a sequence of essential simple closed curves $\alpha_{0}=\alpha, \ldots, \alpha_{n}=\beta$ on $S$ such that $\alpha_{i-1}$ is disjoint from $\alpha_{i}$ for $1 \leqslant i \leqslant n$. The distance of the Heegaard surface $S$, denoted by $d(S)$, is defined to be $\min \{d(\alpha, \beta)\}$, where $\alpha$ bounds a disk in $V$ and $\beta$ bounds a disk in $W$. See [4].

Let $K$ be a knot in a 3 -sphere $S^{3}$, we denote by $\eta(K)$ the open regular neighborhood of $K$ in $S^{3}$, and $E(K)$ the complement of $K$, i.e. the manifold $S^{3}-\eta(K)$. Let $V \cup_{S} W$ be a minimal Heegaard splitting of $E(K)$. We may assume that $\partial E(K) \subset \partial_{-} W$. If $d(S)$ is minimal along all the minimal Heegaard splittings of $E(K)$, then $d(S)$ is called the distance of $K$, denoted by $d(K)$. It is well known that there exist knots of arbitrarily of high distance, see [7]. The tunnel number of $K$, denoted by $t(K)$, is defined to be $g(E(K))-1$. For two knots $K_{1}$ and $K_{2}$, we denote by $K_{1} \sharp K_{2}$ the connected sum of $K_{1}$ and $K_{2}$. It is well known that $t\left(K_{1} \sharp K_{2}\right) \leqslant t\left(K_{1}\right)+t\left(K_{2}\right)+1$ from a natural construction of a Heegaard splitting of $E\left(K_{1} \sharp K_{2}\right)$. Hence there is a question called the super additivity of tunnel number as follows:

Question 1. If $t\left(K_{1} \sharp K_{2}\right)=t\left(K_{1}\right)+t\left(K_{2}\right)+1$ ?

In generality, the superadditivity of tunnel number does not hold. For example, Morimoto [8] gave examples to show that $t\left(K_{1} \sharp K_{2}\right)<t\left(K_{1}\right)+t\left(K_{2}\right)$, and Kobayashi [5] gave examples to show that $t\left(K_{1} \sharp K_{2}\right)-t\left(K_{1}\right)-t\left(K_{2}\right)$ can be arbitrarily large. When does the superadditivity of tunnel number hold? Morimoto [9] proved that the superadditivity of tunnel holds

[^0]

Fig. 1.
if both $K_{1}$ and $K_{2}$ are meridionally small and not $m$-primitive. If both $K_{1}$ and $K_{2}$ are high distance knots, the superadditivity of tunnel number does also hold, see [2] and [6]. The main result of this paper is the following:

Theorem 1. If $d\left(K_{1}\right) \geqslant 2\left(t\left(K_{1}\right)+t\left(K_{2}\right)+2\right)$ while $d\left(K_{2}\right) \geqslant 3$, then $t\left(K_{1} \sharp K_{2}\right)=t\left(K_{1}\right)+t\left(K_{2}\right)+1$.

## 2. The proof of Theorem 1

Let $F$ be either a properly embedded connected surface in a 3 -manifold $M$ or a connected sub-surface of $\partial M$. If there is an essential simple closed curve on $F$ which bounds a disk in $M$ or $F$ is a 2 -sphere which bounds a 3-ball in $M$, then we say $F$ is compressible; otherwise, $F$ is said to be incompressible. If $F$ is an incompressible surface not parallel to $\partial M$, then $F$ is said to be essential.

Let $P$ be a separating connected compact surface in a 3-manifold $M$ which cuts $M$ into two 3-manifolds $M_{1}$ and $M_{2}$. $P$ is said to be bicompressible if $P$ is compressible in both $M_{1}$ and $M_{2} . P$ is strongly compressible if there are compressing disks for $P$ in $M_{1}$ and $M_{2}$ which have disjoint boundaries in $P$; otherwise $P$ is weakly incompressible. By definition, if $M=V \cup_{S} W$ is a strongly irreducible Heegaard splitting, then $S$ is weakly incompressible in $M$.

Now let $P$ be a bicompressible closed surface in an irreducible 3-manifold $M$. By maximally compressing $P$ in both sides and deleting any resulting 2 -sphere components, we get a surface sum structure of $M$ as follows:

$$
M=N_{1} \cup_{F_{1}^{P}} H_{1}^{P} \cup_{P} H_{2}^{P} \cup_{F_{2}^{P}} N_{2}
$$

where $H_{i}^{P}$ is a compression body with $\partial_{+} H_{i}^{P}=P$, and $F_{i}^{P}$ is a collection (may be empty) of close surfaces of genus at least one for $i=1$, 2. In this case, $P$ is a Heegaard surface of the manifold $H_{1}^{P} \cup_{P} H_{2}^{P}$. Hence $d(P)$ is well defined as a Heegaard surface. Two weakly incompressible surfaces $P$ and $Q$ are said to be well-separated in $M$ if $H_{1}^{P} \cup_{P} H_{2}^{P}$ is disjoint from $H_{1}^{Q} \cup_{P} H_{2}^{Q}$ after isotopy.

Two basic results on the distance of Heegaard splitting as follows:

Hartshorn-Scharlemann Theorem. ([3,11]) Let $M=V \cup_{S} W$ be a Heegaard splitting, and $P$ be an incompressible surface in $M$. Then either $P$ can be isotoped to be disjoint from $S$ or $d(S) \leqslant 2-\chi(P)$.

Scharlemann-Tomova Theorem. ([13]) Let P and $Q$ be bicompressible but weakly incompressible connected closed separating surfaces in a 3-manifold $M$. Then either
(1) $P$ and $Q$ are well-separated, or
(2) P and $Q$ are isotopic, or
(3) $d(P) \leqslant 2 g(Q)$.

Let $K_{1}$ and $K_{2}$ be two knots in $S^{3}$. Then there is an essential annulus $A$ which cuts $E\left(K_{1} \sharp K_{2}\right)$ into $E\left(K_{1}\right)$ and $E\left(K_{2}\right)$. Furthermore, $A$ is a meridional annulus on both $\partial E\left(K_{1}\right)$ and $\partial E\left(K_{2}\right)$. Now let $\partial E\left(K_{i}\right) \times I$ be a regular neighborhood of $\partial E\left(K_{i}\right)$ in $E\left(K_{i}\right)$ such that $\partial E\left(K_{i}\right)=\partial E\left(K_{i}\right) \times\{0\}$ for $i=1,2$. We denote by $T_{i}$ the surface $\partial E\left(K_{i}\right) \times\{1\}$. Let $E=\left(\partial E\left(K_{1}\right) \times\right.$ I) $\cup_{A}\left(\partial E\left(K_{2}\right) \times I\right), E_{i}=E\left(K_{i}\right)-\partial E\left(K_{i}\right) \times[0,1)$ for $i=1$, 2. Then $E_{i}$ is homeomorphic to $E\left(K_{i}\right)$. Now $E\left(K_{1} \sharp K_{2}\right)$ has a natural decomposition as $E\left(K_{1} \sharp K_{2}\right)=E_{1} \cup_{T_{1}} E \cup_{T_{2}} E_{2}$. See Fig. 1. The following lemma is a simple observation.


Fig. 2.

## Lemma 2.1.

(1) $g(E)=2$. Furthermore, $E$ has a minimal Heegaard splitting $H_{1} \cup_{S} H_{2}$ such that $T_{i} \subset \partial_{-} H_{i}$.
(2) E contains no essential closed surface.

Suppose that $t\left(K_{1} \sharp K_{2}\right)=t\left(K_{1}\right)+t\left(K_{2}\right)+1$. Then $g\left(E\left(K_{1} \sharp K_{2}\right)\right)=g\left(E\left(K_{1}\right)\right)+g\left(E\left(K_{2}\right)\right)$. Now by Lemma 2.1(1), from the view of amalgamation, $g\left(E\left(K_{1} \sharp K_{2}\right)\right)=g\left(E_{1}\right)+g\left(E_{2}\right)+g(E)-g\left(T_{1}\right)-g\left(T_{2}\right)$. Hence $g\left(E_{i} \cup_{T_{i}} E\right)=g\left(E\left(K_{i}\right)\right)+1$ is a necessary condition for the superadditivity of tunnel number. In generality, let $K$ be a knot, and $A$ be a meridian annulus on $\partial E(K)$. Let $T$ be a torus, and $B$ be an annulus on $T$. Let $N=E(K) \cup_{A=B \times\{0\}} T \times I$.

Question 2. If $g(N)=g(E(K))+1$ ?

By the argument in [9], if $K$ is an $m$-primitive knot in $S^{3}$, then $g(N) \leqslant g(E(K))$. But we have the following lemma:

## Lemma 2.2.

(1) $g(N) \geqslant g(E(K))$.
(2) If $d(K) \geqslant 3$, then $g(N)=g(E(K))+1$.

Proof. Recalling that $N=E(K) \cup_{A=B \times\{0\}} T \times I$.
(1) Now let $r$ be a simple closed curve on $T$ such that $r$ intersects the core of the annulus $B$ in one point. Let $X$ be the manifold obtained by attaching a solid torus $J$ to $N$ along $T \times\{1\}$ so that $r \times\{1\}$ bounds a disk $D$ in $J$. Then $X$ is homeomorphic to $X=E(K)$. See Fig. 2. Let $V \cup_{S} W$ be a Heegaard splitting of $N$. Then $S$ is also a Heegaard surface of $X=E(K)$. Hence Lemma 2.2(1) holds.
(2) Let $N=V \cup_{S} W$ be a minimal Heegaard splitting. If $S$ is weakly reducible, then, by the argument in Lemma 2.2(1), $S$ is also a weakly reducible Heegaard surface of $E(K)$. Since $d(K) \geqslant 3, g(S) \geqslant g(E(K))+1$. Hence Lemma 2.2(2) holds. Assume that $V \cup_{S} W$ is strongly irreducible. Now $S \cap A \neq \emptyset$. By Schultens's lemma, each component of $S \cap A$ is essential on both $S$ and $A$. Furthermore, one of $S \cap E(K)$ and $S \cap(T \times I)$, say $S \cap E(K)$, is bicompressible. See [14]. Hence there are two essential disks $D \subset V$ and $B \subset W$ such that $D, B \subset E(K)$. Hence $D$ and $B$ are disjoint from $A$. Since $S \cap A \neq \emptyset$, $d(\partial D, \partial B) \leqslant 2, d(S) \leqslant 2$. Hence Lemma 2.2(2) holds.

Remark. Note that if $K$ is $m$-primitive, then $d(K) \leqslant 2$ and $g(N)=g(E(K)$ ). In addition, there are many examples such that $K$ is $m$-primitive and $d(K)=2$. Furthermore, Kobayashi and Rieck gave examples to show that $K_{1}$ and $K_{2}$ are non-primitive but $t\left(K_{1} \sharp K_{2}\right) \leqslant t\left(K_{1}\right)+t\left(K_{2}\right)$. See [5]. Hence the condition " $d(K) \geqslant 3$ " looks like natural for $g(N)=g(E(K))+1$.

Proof of Theorem 1. By the assumptions, $d\left(K_{1}\right) \geqslant 2\left(t\left(K_{1}\right)+t\left(K_{2}\right)+2\right)$ while $d\left(K_{2}\right) \geqslant 3$. Hence $d\left(K_{1}\right) \geqslant 2\left(g\left(E\left(K_{1}\right)\right)+\right.$ $g\left(E\left(K_{2}\right)\right)$ ). Let $E\left(K_{1} \sharp K_{2}\right)=V \cup_{S} W$ be a minimal Heegaard splitting. Then $g(S) \leqslant g\left(E\left(K_{1}\right)\right)+g\left(E\left(K_{2}\right)\right)$.

Case 1. $S$ is strongly irreducible.
Since $H_{1} \cup_{S_{1}} H_{2}$ is a Heegaard splitting of $E_{1}$ with $d\left(S_{1}\right) \geqslant 2\left(g\left(E\left(K_{1}\right)\right)+g\left(E\left(K_{2}\right)\right)\right)$. By Scharlemann-Tomova Theorem, either $S$ and $S_{1}$ are well-separated, or $S$ and $S_{1}$ are isotopic, or $d\left(S_{1}\right) \leqslant 2 g(S)$. Since $V \cup_{S} W$ is a Heegaard splitting of $M$, $S$ and $S_{1}$ are not well-separated and not isotopic. Hence $g(S)=g\left(E\left(K_{1}\right)\right)+g\left(E\left(K_{2}\right)\right)$.

Case 2. $V \cup_{S} W$ is weakly reducible.

$$
V \cup_{S} W=\left(V_{1} \cup_{P_{1}} W_{1}\right) \cup_{F_{1}} \cdots \cup_{F_{n-1}}\left(V_{n} \cup_{P_{n}} W_{n}\right),
$$

where each $V_{i} \cup_{P_{i}} W_{i}$ is strongly irreducible, each $F_{i}$ is essential. See [12]. Since $V \cup_{S} W$ is minimal, each $V_{i} \cup_{P_{i}} W_{i}$ is nontrivial. Hence $g\left(P_{i}\right) \leqslant g(S)-1 \leqslant g\left(E\left(K_{1}\right)\right)+g\left(E\left(K_{2}\right)\right)-1, g\left(F_{i}\right)<g\left(P_{i}\right)$. By Hartshorn-Scharlemann Theorem, each $F_{i}$ can be isotoped to be disjoint from $E_{1}$. Since a compression body contains no essential closed surfaces, one component of $\bigcup_{i=1}^{n} F_{i}$ is isotopic to $T_{1}$. For details, see [10]. Hence $V \cup_{S} W$ is an amalgamation of a Heegaard splitting of $E_{1}$ and a Heegaard splitting of $E \cup_{T_{2}} E_{2}$ along $T_{1}$. By Lemma 2.2(2), $g\left(E\left(K_{1} \sharp K_{2}\right)\right)=g\left(E\left(K_{1}\right)\right)+g\left(E\left(K_{2}\right)\right)$. Hence $t\left(K_{1} \sharp K_{2}\right)=t\left(K_{1}\right)+t\left(K_{2}\right)+1$.

## Acknowledgements

The authors thank the referee for careful reading and some comments. The first and second authors are partially supported by a grant of NSFC (No. 10901029).

## References

[1] A. Casson, C.McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275-283.
[2] K. Du, J. Ma, R. Qiu, M. Zhang, Heegaard genera of annular 3-manifolds, J. Knot Theory Ramifications 20 (2011) 547-566.
[3] K. Hartshorn, Heegaard splittings of Haken manifolds have bounded distance, Pacific J. Math. 204 (2002) 61-75.
[4] J. Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001) 631-657.
[5] T. Kobayashi, A construction of arbitrarily high degeneration of tunnel numbers of knots under connected sum, JKTR 3 (1994) 179-186.
[6] F. Li, G. Yang, F. Lei, Heegaard genera of high distance are additive under connected sum, Topology Appl. 157 (2010) 1188-1194.
[7] Y. Minsky, Y. Moriah, S. Schleimer, High distance knots, AGT 7 (2007) 1471-1483.
[8] K. Morimoto, There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Math. Soc. 123 (1995) 3527-3532.
[9] K. Morimoto, On the super additivity of tunnel number of knots, Math. Ann. 317 (2000) 489-508.
[10] R. Qiu, S. Wang, M. Zhang, The Heegaard genera of surface sums, Topology Appl. 157 (2010) 1593-1601.
[11] M. Scharlemann, Proximity in the curve complex: boundary reduction and bicompressible surfaces, Pacific J. Math. 228 (2006) 325-348.
[12] M. Scharlemann, A. Thompson, Thin position for 3-manifolds, AMS Contemporary Math. 164 (1994) 231-248.
[13] M. Scharlemann, M. Tomova, Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006) 593-617.
[14] J. Schultens, Additivity of tunnel number for small knots, Comment. Math. Helv. 75 (2000) 353-367.


[^0]:    * Corresponding author.

    E-mail address: rfqiu@math.ecnu.edu.cn (R. Qiu).

