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accuracy derived from the experiment was: DD (5%) – 83.4% 
and 68% pixels passing, DTA (3mm) – 99.0% and 96,7%, gamma 
parameter (for DD (3%), DTA (3mm)) – 90% and 75,5% 
respectively for AAA and PBC algorithms. The comparison 
between studied parameters DD, DTA and γ for both 
algorithms implicated AAA as an appropriate approach 
in radiotherapy treatment planning. 
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The effect of nuclear fragmentation in the passage of 180MeV 
protons through the human body tissue is discussed. Prostate 
cancer protontherapy with these intermediate-energy 
protons is discussed in light of model calculation. 
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Rationale: An alternative approach for the improvement of 
radiotherapy consists in increasing differentially the radiation 
dose between tumors and healthy tissues using nanoparticles 
(NPs) that have been beforehand internalized into the tumor. 
These high-Z NPs can be photo-activated by monochromatic 
synchrotron X-rays, leading to a local dose enhancement 
delivered to the neighboring tumor cells[1]. This 

enhancement is due to secondary and Auger electrons 
expelled from the NPs by the radiations. In order to carry the 
NPs into the tumor center, macrophages are currently under 
study for their phagocytosis and diapedesis abilities[2] (cf. 
Figure adapted from [3] and [4]). In this study we 
characterized J774A.1 macrophages’ internalization kinetics 
and subcellular distribution of iron NPs and compared them 
to the internalization abilities of the F98 glioblastoma cell 
line. 
Materials and Methods: Three aspects of internalization were 
examined: first, the location of internalized NPs in J774A.1 
macrophages and F98 glioblastoma cells following a 24h 
incubation with iron NPs (0.3 mg/mL in the cell culture 
medium) was determined by optical microscopy after cell 
slicing. Subsequently, the iron intake after a 24h incubation 
with NPs (0.3 mg/mL and 0.06 mg/mL in the cell culture 
medium) was characterized for the two types of cells using 
ICP-MS. Finally, the internalization dynamics were studied by 
live phase-contrast microscopy imagining for 11 hours and by 
absorbance measurements for 24 hours using a plate reader. 
Results: F98 tumor cells and J774A.1 macrophages are both 
able to endocytose NPs: we measured ~61±10 pg of 
internalized iron per macrophage compared with ~33±5 pg 
per F98 cell (initial iron concentration: 0.3 mg/mL in culture 
medium). F98 internalizing NPs for 10 hours showed stress 
signs during the first minutes after the NPs injection, but 
behaved like F98 control cells during the rest of the 
experiment. Finally, we determined that the internalization 
kinetics for J774A.1 had a typical saturation time of one 
hour. 
Conclusion: Macrophages seem to be promising vectors for 
NPs, being able to endocytose and retain in their cytoplasm 
larger quantities of NPs than tumor cells. Our following 
studies will attempt to shed light on their other potential 
abilities as “Trojan Horses”. 
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