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The free flavan-3-ol and proanthocyanidin (PA) profile and the antioxidant capacity of wines Vitis vinifera
L., 2006 and 2007 vintages, from the São Joaquim region, at southern Brazil, are reported here for the first
time. Catechin and epicatechin were the two main monomers in the wine samples, followed by gallocate-
chin and epigallocatechin; and the PA B1 was the main dimer. The terminal units of the PAs were consti-
tuted mainly by catechin units, with the co-presence of epicatechin, gallocatechin, epigallocatechin and
traces of epicatechin gallate. The epicatechin and epigallocatechin units were the main constituents of
the extension units of PAs with the co-presence of catechin and epicatechin gallate. The values for the
mean degree of polymerisation ranged from 4.9 to 9.8. The wine samples demonstrated effective scav-
enging activity against DPPH and ABTS radicals and against lipid peroxidation in vitro. A positive corre-
lation existed between flavan-3-ol content and antioxidant capacity in vitro.

� 2010 Elsevier Ltd. Open access under the Elsevier OA license. 
1. Introduction

The proanthocyanidins (PAs), also known as condensed tannins,
are oligomers and polymers of flavan-3-ols, which are widely dis-
tributed in the plant kingdom. In particular, procyanidins consist-
ing of catechin units [(+)-catechin and (�)-epicatechin], and
prodelphinidins, based on gallocatechin units [(+)-gallocatechin
and (�)-epigallocatechin], represent a ubiquitous group of plant
phenolics (Prieur, Rigaud, Cheynier, & Moutounet, 1994; Souquet,
Cheynier, Brossaud, & Moutounet, 1996). There is a lack of chemi-
cal studies on these groups, possibly due to the difficulties associ-
ated with determining tannins, given their polymeric nature and
large structural diversity.

In wine, flavan-3-ols are one of the major classes of flavonoids
present. They are found in grape skin and seeds from which they
are extracted into the must during vinification (Souquet et al.,
1996). These compounds are particularly important in terms of
the sensory characteristics of wines, such as astringency and
bitterness (Chira, Schmauch, Saucier, Fabre, & Teissedre, 2009),
which are dependent on the structure and degree of polymerisa-
tion (Souquet et al., 1996). Moreover, it has been reported that
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PAs have high antioxidant capacity in vitro (Mattivi, Zulian,
Nicolini, & Valenti, 2002; Raza & John, 2007; Rigo et al., 2000)
and in vivo (Cirico & Omaye, 2006). Monomeric units of catechins,
including catechin itself, epicatechin, gallocatechin, and gallate es-
ters, for instance, have been shown to increase plasma antioxidant
capacity and the resistance of low-density lipoproteins (LDL) to
oxidation (Frankel, Waterhouse, & Teissedre, 1995).

São Joaquim is a new wine growing region located in the high
plains of Santa Catarina State, in southern Brazil. It is known in Bra-
zil as the coldest place in the country, and it lies at the highest alti-
tude (1200–1400 m) in relation to other viticulture regions in
Brazil (Falcão et al., 2008a). According to the Geoviticulture Multi-
criteria Climatic Classification System (Tonietto & Carbonneau,
2004) the weather in the São Joaquim – SC region is classified as
‘‘Cool, Cool nights and Humid’’: Huglin’s heliothermal index-HI:
1714; cool night index: 12.1 �C; and dryness index – DI: 200 mm,
humid. The summed GDD results for the period of the phenological
cycle (budburst – harvest) of the grapevines characterised São Joa-
quim – SC as ‘‘Region I’’ (<1389 GDD), that is a ‘‘cold region’’ in
terms of the Winkler Regions. It is believed that the São Joaquim
regional characteristics (orographic, climate) are favourable for
the cultivation of vines and consequently the production of high
quality wines. Falcão, de Revel, Rosier, and Bordignon-Luiz
(2008b) verified these characterisations, mainly through obtaining
good results for the volatile composition of Cabernet Sauvignon
wines produced in this region.
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In this study, an HPLC-DAD–MS method was developed to char-
acterise and quantify the main monomers (catechin, epicatechin,
gallocatechin, epigallocatechin and epicatechin gallate), PA dimers
(B1 and B2) and their phloroglucinol adducts in the Cabernet Franc,
Merlot, Sangiovese and Syrah wines, from 2006 and 2007 vintages,
from São Joaquim – SC, Brazil. The ability of these wines to scav-
enge DPPH and ABTS radicals and to inhibit lipid peroxidation
in vitro (TBARS – thiobarbituric acid reactive substances) were also
evaluated, as well as their correlation with the flavan-3-ol
composition.
2. Materials and methods

2.1. Chemicals

All chromatographic solvents were HPLC grade and were
purchased from Carlo Erba (Rodano, Italy). Pure, HPLC grade (+)-
catechin (C), (�)-epicatechin (EC), (�)-gallocatechin (GC), (�)-epi-
gallocatechin (EGC) and (�)-epicatechin gallate (ECG) were
obtained from Sigma (Steinheim, Germany). The PAs B1 [(�)-epi-
catechin-(4b-8)–(+)-catechin] and B2 [(�)-epicatechin-(4b-8)–
(�)-epicatechin] were obtained from Extrasynthese (Genay,
France). Phloroglucinol was purchased from Aldrich (Steinheim,
Germany). Folin–Ciocalteau reagent, vanillin, 2-thiobarbituric acid
(TBA), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,20-azino-bis(3-eth-
ylbenzthiazoline-6-sulphonic acid) (ABTS), 5,50-dithiobis (2-nitro-
benzoic acid) (DTNB) and butylated hydroxytoluene (BHT) were
purchased from Sigma–Aldrich Co. (St. Louis, USA).

2.2. Samples

Wines from the 2006 and 2007 vintages of the Cabernet Franc,
Merlot, Sangiovese and Syrah varieties sampled from São Joaquim,
Santa Catarina State (SC), Brazil, were analysed. Experimental plots
of varieties were delimited in young commercial vineyards and
used to make the wines. The region of São Joaquim is located in
Santa Catarina State at altitudes of 1200–1400 m, coordinates 28�
latitude and 49� longitude, and these are the highest altitudes of
vineyards in Brazil. According to the USDA classifications the soil
of this region is inceptisol, that is, a well drained soil with a soft fri-
able consistency, a high capacity for water retention and absence
of stones (Falcão et al., 2008a). The vineyards are located at 28�
150 latitude, 49� 500 longitude and 1290 m altitude. The vines of
the varieties Cabernet Franc, Merlot, Sangiovese and Syrah were
planted in 2003, and the clones used were 986, 181, VCR23 and
VCR1, respectively. The rootstock used was Paulsen 1103 (Vitis ber-
landieri Planch � Vitis rupestris Scheele); the vertical shoot position-
ing trellis system training was used; the row and vine spacing was
3.0 � 1.2 m and the vineyard yield was between 6 and 7 t/ha.

2.2.1. Wine production
The wines were all produced under the same conditions in the

commercial winery of São Joaquim – SC through a traditional skin-
contact technique. The berries were separated from the stalks,
crushed and maintained in a stainless steel vat. The maceration
period was 15 days, with one or two daily pumping events at
22–28 �C. The must was separated from the solid parts and trans-
ferred to other stainless steel vats. Prior to initiating the alcoholic
fermentation, a commercial sulphating agent (12 g 100 kg�1 of
must, corresponding to 60 mg L�1 of free SO2) (Noxitan, Pascal Bio-
tech, Paris), Saccharomyces cerevisae strain (20 g 100 kg�1) (Fermol
Rouge, Pascal Biotech, Paris) and commercial enzymes with pecto-
lytic activity (2–4 g h L�1) (Pectinex SPL/Ultra, Pascal Biotech,
Paris) were added to the musts. Malic acid consumption by lactic
acid bacteria occurred spontaneously within 60–75 days. Once
alcohol fermentation had finished the wines were stored in French
oak wood for approximately 1 year. Before bottling, Noxitan
(35 mg L�1 of free SO2, on average) was added. The wine samples
from 2007 and 2006 vintages were analysed after 1 and 2 years
of aging in bottle, respectively. The wines were stored at 10 �C
prior to analysis.

2.3. Sample preparation for HPLC-DAD–MS analysis

The wine was purified and concentrated using the method de-
scribed by Pastor del Rio and Kennedy (2006) with the following
modifications. Ten millilitres of wine, dealcoholised under reduced
pressure at 30 �C, were applied on the C18-SPE cartridge (1 g,
Waters, Milford, MA) previously activated with 4 mL of methanol
followed by 10 mL of water. The applied sample was washed with
50 mL of water, eluted with 40 mL of methanol, evaporated, and
then dissolved in 2 mL of methanol. The sample preparation and
analysis were carried out in triplicate for each wine.

2.4. PA composition

The PA subunit composition, percentage of galloylation (%G),
percentage of prodelphinidins (%P), and mean degree of polymeri-
sation (mDP), were determined after acid-catalysis in the presence
of excess phloroglucinol (phloroglucinolysis) (Kennedy & Jones,
2001). A solution of 0.2 N HCl in methanol, containing 100 g L�1

phloroglucinol and 20 g L�1 ascorbic acid, was prepared. One hun-
dred microlitres of concentrated and purified wine sample (item
2.3) was reacted with 100 lL of the phloroglucinol reagent at
50 �C for 20 min and then combined with 1000 lL of 40 mm aque-
ous sodium acetate to stop the reaction. The final solutions were
filtered through 0.22 lm, 13 mm PTFE syringe tip filters (Millipore,
Bedford, MA) into LC vials and immediately injected into a HPLC-
DAD–MS system.

2.5. HPLC-DAD–MS analysis

The HPLC-DAD–MS analysis was performed on a Waters 2690
HPLC system (Waters, Milford, MA, USA) equipped with a Waters
996 DAD and a Micromass ZQ electrospray ionisation-mass spec-
trometer (ESI-MS) in negative mode. The compound separation
was performed using an Atlantis C18 column (5.0 lm,
4.6 � 250 mm; Waters, Manchester, UK) protected by a guard col-
umn containing the same material. The flow rate was
0.90 mL min�1 and the injection volume 10 lL. The mobile phases
consisted of 2.5% acetic acid in H2O (A) and methanol (B). The sep-
aration (Fig. 1) was carried out at 40 �C in 47 min, under the fol-
lowing conditions: linear gradients starting at 5% B, to 6% B in
5 min, to 18% B in 25 min, to 30% B in 1 min, and finally to 100%
B in 16 min. The column was then washed with 100% of B for
1 min and afterwards equilibrated for 7 min prior to each analysis.
The UV–Vis spectra were recorded from 210 to 400 nm, with
detection at 280 nm. The MS detector operated at a capillary volt-
age of 3000 V, extractor voltage of 6 V, source temperature of
150 �C, desolvation temperature of 500 �C, cone gas flow (N2) of
50 L h�1 and a desolvation gas flow (N2) of 1200 L h�1. ESI-MS
spectra ranging from m/z 100 to 1500 were taken in the negative
mode with a dwell time of 0.1 s.

The quantification of the flavan-3-ols and PA dimers was per-
formed by MS with the external standard method using the molec-
ular ions (M�H)�, which were m/z 289.3 for catechin and
epicatechin, m/z 305.3 for gallocatechin and epigallocatechin, m/z
441.4 for epicatechin gallate and m/z 577.5 for B1 and B2 dimmers.
The optimal cone voltage (CV) for all ions was 30 V. The phloroglu-
cinol adducts were identified on the basis of their retention times
and of their molecular ion (m/z 413.3 for C and EC-phloroglucinol;



Fig. 1. HPLC-DAD–MS chromatograms of flavan-3-ols (MS) and phloroglucinol
adducts (DAD). Peak numbering: 1, catechin; 2, epicatechin; 3, gallocatechin; 4,
epigallocatechin; 5, epicatechin gallate; 6, B1; 7, B2; 8, epigallocatechin–phloro-
glucinol; 9, catechin–phloroglucinol; 10, epicatechin–phloroglucinol; 11, epicate-
chin gallate–phloroglucinol.
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m/z 429.3 for EGC-phloroglucinol and m/z 565.5 ECG-phloroglu-
cinol) and the main fragment by MS. Their quantification, as equiv-
alents of their corresponding free flavan-3-ol (external standard
method), was obtained by the UV signal at 280 nm, assuming the
same molar absorptivity between each flavan-3-ol and its corre-
sponding phloroglucinol adduct.
2.5.1. Method validation
The experimental limit of detection (LOD) and limit of quantita-

tion (LOQ) for the HPLC–MS method were estimated at signal-to-
noise ratios of 3 and 10, respectively. Method repeatability was as-
sessed using one wine, and was based on 12 consecutive determi-
nations with 12 purifications and concentration applied to the
same wine. The distribution of the test results under repeatability
conditions was estimated both for the direct HPLC–MS analysis of
free flavan-3-ols and PA dimers, and for the HPLC-DAD–MS analy-
sis of the proanthocyanidins after phloroglucinolysis.
2.6. Spectrophotometric analysis

Total phenols (TP) were directly measured using Folin–Ciocal-
teau reagent (Singleton & Rossi, 1965), and concentrations were
determined by means of a calibration curve as gallic acid equiva-
lents, mg L�1 of wine. The catechins and proanthocyanidins reac-
tive to vanillin (PROC) were analysed according to Broadhurst
and Jones (1978) and expressed as catechin equivalents per mg L�1

of wine. Also, the spectrophotometric analyses were performed in
triplicate for each wine.

2.7. In vitro antioxidant activity

The free radical scavenging activity of the wine samples was
evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical
scavenger method measured at 518 nm (Brand-Williams, Cuvelier,
& Berset, 1995) and ABTS 2,20-azino-bis(3-ethylbenzthiazoline-6-
sulphonic acid) according to Re et al. (1999), measured at
754 nm. Lipid peroxidation inhibition was assayed using the TBARS
method, as described by Chen and Tappel (1996). Results were ex-
pressed as Trolox equivalents (mm TEAC). The analyses were car-
ried out in triplicate.

2.8. Statistical analysis

Analysis of variance (ANOVA), the Tukey HSD Test and PCA
were carried out using Statistica 7 (2006) (StatSotft Inc., Tulsa,
OK) and p < 0.05 values were considered statistically significant.
3. Results and discussion

3.1. Method validation

The linear regression, the square of the correlation coefficient of
the regression line, and the limits of detection and quantitation ob-
tained from the calibration data for catechin, epicatechin, gallo-
catechin, epigallocatechin, epicatechin gallate, PA B1 and PA B2
standards are shown in Table 1.

The % RSD obtained experimentally with 12 analyses of the
wine sample were as follows: for free flavan-3-ols: catechin,
3.80%; epicatechin, 3.78%; gallocatechin, 4.04%; epigallocatechin,
2.87%; PA B1, 3.86%; and PA B2, 3.56%; for proanthocyanidins, ter-
minal units: catechin, 4.71%; epicatechin, 4.07%; gallocatechin,
4.03%; epigallocatechin, 3.06%; and epicatechin gallate, 4.57%;
and extension units: catechin, 6.75%; epicatechin, 3.17%; epigallo-
catechin, 1.87%; and epicatechin gallate 6.26%. All results were
considered acceptable for research purposes.

3.2. Free flavan-3-ol composition

The flavan-3-ol monomers catechin (C), epicatechin (EC), gallo-
catechin (GC) and epigallocatechin (EGC) and PA dimers B1 and B2
were identified and quantified in wine samples of Cabernet Franc,
Merlot, Sangiovese and Syrah, from 2006 and 2007 vintages, from
São Joaquim – SC, Brazil (Fig. 1, Table 2). The main flavan-3-ol
monomers found were catechin and epicatechin. These results
are in agreement with those in the literature, since these are the
main monomers in the skin and seeds of grapes (Chira et al.,
2009; Mattivi, Vrhovsek, Masuero, & Trainotti, 2009; Prieur et al.,
1994) and, consequently, in wine. Catechin was the main monomer
in the wine samples evaluated, with the highest concentrations ob-
served in all samples, representing, on the average, 60% of the total
monomers, as also observed in other studies (Monagas, Gómez-
Cordovés, Bartolomé, Laureano, & Ricardo da Silva, 2003). The
highest concentrations of catechin were observed in Merlot 2007



Table 1
Linear regression, R2, limits of detection (LOD) and quantitation (LOQ) obtained for the standards of free flavan-3-ols and PAs B1 and B2.

Compound Linear regression y = ax + b R2 LOD (mg/L) LOQ (mg/L)

Catechin y = 905500x � 88,100 0.9962 0.11 0.36
Epicatechin y = 89300x + 169,000 0.9951 0.08 0.27
Gallocatechin y = 111000x + 21,800 0.9956 0.27 0.93
Epigallocatechin y = 106000x + 39,800 0.9932 0.32 1.06
Epicatechin gallate y = 109000x + 199,000 0.9937 0.03 0.10
PA B1 y = 43600x + 26,400 0.9965 0.15 0.49
PA B2 y = 40700x + 8440 0.9948 0.17 0.58

Table 2
Content of monomeric and dimeric flavan-3-ols, total phenols (TP) and total proanthocyanidins (PROC) in wine samples.

Vintage 2006 2007

Cabernet Franc Merlot Sangiovese Syrah Cabernet Franc Merlot Sangiovese Syrah

Catechin 12.25 ± 0.09a 25.03 ± 0.37b 20.38 ± 0.41c 29.72 ± 0.78d 22.03 ± 0.57c 34.71 ± 0.28e 13.72 ± 0.06a 19.54 ± 0.54c

Epicatechin 4.64 ± 0.19a 10.44 ± 0.29b 8.23 ± 0.18c 11.89 ± 0.44d 5.69 ± 0.18a 16.08 ± 0.63e 4.07 ± 0.09a 9.14 ± 0.10c

Gallocatechin 3.59 ± 0.06a 3.64 ± 0.04a 2.91 ± 0.06b 3.28 ± 0.07c 4.59 ± 0.09d 4.07 ± 0.05e 6.26 ± 0.06f 1.92 ± 0.05g

Epigallocatechin 1.47 ± 0.06a 2.35 ± 0.05b 1.91 ± 0.03c 2.06 ± 0.02c 1.89 ± 0.06c 2.53 ± 0.03b,d 2.66 ± 0.01d 1.87 ± 0.07e

PA B1 6.38 ± 0.14a 17.19 ± 0.31b 10.76 ± 0.23c 20.64 ± 0.69d 12.75 ± 0.33c 35.47 ± 0.42e 10.33 ± 0.38c 24.30 ± 0.34f

PA B2 2.37 ± 0.04a 8.02 ± 0.14b,d 5.63 ± 0.09c 9.86 ± 0.25b 7.29 ± 0.12c,d 25.87 ± 0.37e 5.58 ± 1.52c 12.20 ± 0.11f

Total monomers 21.95a 41.46b 33.44c 46.95d 34.20c 57.40e 26.71f 32.47c

Total dimers 8.75a 25.20b 16.40c 30.49d 20.04b 61.34e 14.92c 36.51f

TP 2680.4 ± 12.4a 2692.1 ± 40.3a 2287.6 ± 31.1b 2732.2 ± 37.2a 2691.4 ± 26.2a 2813.7 ± 16.2c 2732.1 ± 27.9a 2790.5 ± 34.2a

PROC 828.2 ± 11.8a 894.9 ± 10.9b 725.6 ± 19.2c 860.6 ± 14.2b 808.3 ± 16.3a 1073.9 ± 31.1d 867.9 ± 25.2b 872.1 ± 24.3b

Values in units of mg L�1 ± standard deviation over three replications in one wine sample. ANOVA to compare data; values with different letters within each row are
significantly different (Tukey test, p < 0.05).
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and Syrah 2006 samples. Epicatechin represented approximately
25% of the monomers quantified in the samples, with concentra-
tions ranging from 4 to 16 mg L�1, Merlot and Syrah being the vari-
eties showing the highest concentrations. It was observed that
concentrations of catechin in Merlot and Cabernet Franc varieties
were higher in the 2007 vintage compared to the previous vintage,
and the opposite was observed for Sangiovese and Syrah varieties.
The same behaviour was observed for epicatechin.

In agreement with other studies (Prieur et al., 1994), gallocate-
chin and epigallocatechin were present at lower levels. The per-
centage of gallocatechin ranged from 6% to 23% of the total
monomers. Among the studied samples Sangiovese 2007 and Cab-
ernet Franc 2006 and 2007 variety samples contained �23% and
15% of the total monomers as gallocatechin, respectively. Epicate-
chin gallate was responsible for �6% of the free monomers quanti-
fied in this study.

Among the proanthocyanidins oligomers, dimers B1 and B2 are
present at higher concentrations in grapes and, consequently, in
wine (Monagas et al., 2003). PA B1 was the main dimer in the wine
samples, contributing with more than 60% of the dimers, as also re-
ported in other studies (Cosme, Ricardo-da-Silva, & Laureano,
2009). PA B1 is the main dimer in grape skins and during wine fer-
mentation it is easier to extract than PA B2, present in high concen-
trations in seeds. Thus, for the varieties investigated, flavan-3-ols
from grape skins contributed more to the wine flavan-3-ol compo-
sition, in agreement with results reported in the literature (Ferná-
ndez, Kennedy, & Agosin, 2007).

Merlot and Syrah wine samples showed the highest values for
the sum of total monomers and dimers flavan-3-ols, especially
for Merlot 2007 (118 mg L�1). Regarding percentage distribution,
Cabernet Franc and Syrah wines, 2006 vintage, presented the high-
est monomer contents, followed by Sangiovese and Cabernet Franc,
2007 vintage, Merlot and Syrah, 2006 vintage, and Merlot and Syr-
ah, 2007 vintage. The highest proportions of dimers were present
in the samples of Merlot and Syrah from 2007 vintage (up to
51%), a finding previously observed in the Spanish wines Tempran-
illo, Graciano and Cabernet Sauvignon by Monagas et al. (2003). It
is interesting to note that both the vintage and grape variety influ-
enced the flavan-3-ol composition of the wines (p < 0.05), but with
different behaviours according to the vintage. This was also ob-
served by Chira et al. (2009), who evaluated, for two consecutive
vintages, the tannin composition from the skin and seed extracts
of Merlot and Cabernet Sauvignon grapes in Bordeaux, France.

3.3. Proanthocyanidin composition (PAs)

Grape and wine PAs are constituted of several oligomers and
polymers with a very complex molecular structures. Phloroglucin-
olysis, which is the depolymerisation of PAs in an acid environ-
ment in the presence of phloroglucinol, gives access to important
information regarding PA composition (Kennedy & Jones, 2001).
Data on the PA structural composition of wine samples are shown
in Table 3. Structurally, PAs present in wine samples comprised
catechin, epicatechin, gallocatechin and epicatechin gallate as ter-
minal and extension units, only gallocatechin not being detected as
an extension unit (Table 3). Thus, the PAs of the wine samples ana-
lysed consisted of a mixture of procyanidins and prodelphinidins.
The terminal units of wine samples were mainly comprised of cat-
echin (from 55% to 66%), as also observed in other studies for both
grape skin and seed (Mattivi et al., 2009; Pastor del Rio & Kennedy,
2006). Merlot 2007 and Syrah (2006 and 2007) wines showed the
highest concentrations of the terminal unit catechin, followed by
Cabernet Franc and Sangiovese wines. The highest proportions of
this terminal unit were observed in all samples of 2006 vintage
and in the Syrah 2007 wine. The epicatechin terminal unit had
the second higher concentrations and proportions (from 22% to
41%). The Merlot 2007 wine presented the highest concentrations
and proportions of epicatechin terminal units (40.8%), followed
by Cabernet Franc and Syrah 2007.

The highest proportion of gallocatechin terminal units (10.8%)
was found in the Sangiovese 2007 wine sample, followed by Syrah
wines, in both vintages evaluated (2.5%), while the lowest was
found in Merlot 2006 wine (0.6%). The highest percentage of epi-
gallocatechin (8.2%) was, as for gallocatechin, found in Sangiovese



Table 3
Structural characteristics and composition (percent in moles) of PAs in wine samples.

Vintage 2006 2007

Cabernet Franc Merlot Sangiovese Syrah Cabernet Franc Merlot Sangiovese Syrah

Terminal units
Catechin 66.1a 66.0a 65.4a 66.0a 57.1b 54.3c 59.1b 64.1d

Epicatechin 27.9a 28.1a 28.2a 26.1b 36.1c 40.8d 22.1e 32.4f

Gallocatechin 1.2a,c 0.6b 1.0c 2.5d 1.2a,c 1.4a 10.4e 2.6d

Epigallocatechin 4.8a 5.3a 5.4a 5.4a 5.4a 3.4b 8.2c 1.0d

Epicatechin gallate nd nd nd nd 0.15a 0.13a 0.19a 0.11a

Extension units
Catechin 0.6a 0.8b 0.7a 0.8b 0.5c 1.0d 0.4c 0.6a

Epicatechin 52.8a 55.3b,c 54.9b 56.1c 51.4a 61.2d 52.8a 44.9e

Epigallocatechin 44.6a 42.0b 41,6b 41.1b,e 46.4c 36.0d 44.9c 38.8 e

Epicatechin gallate 2.0 1.9 2.9 2.1 1.7 1.8 1.9 2.3
Total terminal units* 67.7a 49.0b 48.1b 76.7c 71.2a,c 94.6d 64.3a 73.2a,c

Total extension units* 261.0a 284.9a 215.9b 326.3c 349.7c 461.0d 568.3e 423.97d

mDPA 4.9a 6.9b 5.5c 5.2c 5.9d 5.8d 9.8e 6.8b

%PB 36.6a 36.7a 35.1b 34.8b 39.7c 30.5d 41.3c 33.7e

%GC 1.5a,c 1.6a,b 2.4d 1.7b,c 1.4e 1.5a,c,e 1.6a,c 2.0f

Values over three replications in one wine sample. ANOVA to compare data; values with different letters within each row are significantly different (Tukey test, p < 0.05).
nd, Not detected.
* Values in units of mg L�1.

A mDP, mean degree of polymerisation.
B %P, percentage of prodelphinidins (total, in terminal plus extension units).
C %G, percentage of galloylation (total, in terminal plus extension units).
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2007. Epicatechin gallate was the only gallate-derivative found in
terminal units, and only in samples from the 2007 vintage, corre-
sponding to an average of 0.15% of the terminal units. Usually, con-
centrations of the gallates as terminal units in wines are low, or
even undetectable (Fernández et al., 2007; Monagas et al., 2003).
This finding has also been observed in grape skins (Chira et al.,
2009; Mattivi et al., 2009).

The extension units present in lowest concentrations were cat-
echin and epicatechin gallate (Table 3). The extension unit catechin
represented up to 1.0% of the total extension units and epicatechin
gallate up to 2.9%. Extension units of wine samples mainly com-
prised epicatechin and epigallocatechin, with a predominance of
epicatechin, which represented more than 44% of the extension
units. A similar profile has been observed by other researchers
(Pastor del Rio & Kennedy, 2006; Prieur et al., 1994) with a small
variation among varieties. Epicatechin represented 44.9–61.2% of
all extension units, while epigallocatechin represented 36–46% of
all extension units, suggesting a high contribution of proanthocy-
anidins from grape skins in the wine samples evaluated.

Comparing the two vintages, it was found that total PAs in the
wine samples from the 2006 vintage was significantly lower than
for the 2007 vintage. The total concentration of the extension units
in the 2007 vintage was significantly higher than in wines of the
previous vintage (p 6 0.05). This is probably due to climatic differ-
ences observed between the two vintage years evaluated. In the
2007 the temperature and the GDD values observed were higher
than in the previous year (data not shown). Many authors have
confirmed that the sun exposure, temperature and GDD positively
influence the PA concentration (Pastor del Rio & Kennedy, 2006).
An alternative hypothesis, which cannot be ruled out, is the
involvement of PAs in the polymerisation reactions generating –
in older wines – new structures which are less hydrolysable by
phloroglucinolysis.

The percentage of galloylation (%G) of the analysed wine sam-
ples (1.5–2.4%G) is in agreement with other published results
(Fernández et al., 2007), although values higher than those pre-
sented in our study have also been reported (Cosme et al., 2009).
The %G is relatively small in wine probably because, in general,
higher concentrations of the gallate-derivatives are present in the
seeds (Mattivi et al., 2009; Prieur et al., 1994), therefore the extrac-
tion of these compounds into wine is more difficult when com-
pared with the PAs present in the skin. Also, according to Di
Stefano, Cravero, and Guidoni (1990), the PAs of the grape seeds
are a source of free gallic acid in the wine, which also decreases
the concentration of gallate-derivatives of PAs in the wines.

In the present study, the percentage of prodelphinidin (sum of
both terminal and extension units, %P) ranged from 30.2 to 41.3.
Similar values have been observed in several studies (Cosme
et al., 2009). The highest values were obtained for Sangiovese
and Cabernet Franc samples, 2007 vintage, due to higher concen-
trations of gallocatechin and epigallocatechin in these samples.
Merlot and Syrah, 2007 vintage, showed the lowest values of %P.
The %P reveals the percentage of the contribution of gallocatechin
and epigallocatechin and indicates the contribution of skin PAs in
wines, since prodelphinidins are absent in the seeds.

The mDP reveals the polymerisation degree of PAs and can
influence the flavan-3-ol bioavailability and bioactivity. The mDP
values observed in our study ranged from 4.9 to 9.8, for Cabernet
Franc 2006 and Sangiovese 2007, respectively. These results are
in agreement with other reported values (Cosme et al., 2009; Mon-
agas et al., 2003). It was also observed that the mDP values of the
2007 wine samples were higher than those of the 2006 vintage,
due to the higher concentration of extension units in the 2007 vin-
tage. These data agree with those of Drinkine, Lopes, Kennedy,
Teissedre, and Saucier (2007) who evaluated different wines from
various vintages from Bordeaux and found that the mDP values de-
creased with age. According to the results obtained for the mDP
values, it can be concluded that, generally, the PAs of the wine
samples are rich mainly in oligomers and short-chain polymers
(mDP around 5–9).

The ANOVA analysis revealed significant differences (p < 0.05)
for the flavan-3-ol composition of wine samples as a function of
both variety and vintage factors, a finding which has been com-
monly reported. According to Mattivi et al. (2009) the biosynthesis
of flavan-3-ols and PAs in grapes seems to be highly specific at the
variety level. It is interesting to note that the composition of fla-
van-3-ols can vary significantly with grape variety and vintage
and can also be influenced by environmental conditions (Mattivi
et al., 2002). Wine composition is in constant evolution during
winemaking, storage in barrels and aging in bottles. According to
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Fig. 2. DPPH, ABTS free radical scavenging activity and lipid peroxidation index
(TBARS; mm TEAC) of Cabernet Franc (CF), Merlot (M), Sangiovese (Sa) and Syrah
(Sy) wine samples from 2006 (06) and 2007 (07) vintages.
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Ribéreau-Gayon, Glories, Maujean, and Dubourdieu (1998), once a
wine is bottled, transformations that occur are dominated by
nonoxidative reactions. Nevertheless, according to Lopes, Saucier,
Teissedre, and Glories (2006) wines are subjected to oxidative
reactions if the bottle closure procedure allows oxygen ingress.
Thus, all these changes influence the phenolic composition of wine
and consequently of flavan-3-ols, which makes it very complex to
study these compounds in wines.

Concentrations of free flavan-3-ols and PAs observed in wines
produced in this new wine-producing region in southern Brazil
are considered appropriate, being in agreement with those ob-
served in several other studies (Cosme et al., 2009; Monagas
et al., 2003; Pastor del Rio & Kennedy, 2006). This is of great impor-
tance since PAs will greatly influence the wine quality, affecting
the wine colour through condensation with anthocyanins, and its
sensory properties (Chira et al., 2009), besides having beneficial
health effects, especially in terms of the potential antioxidant
activity which is also essential to assure the chemical stability to-
wards oxidation of red wines (Mattivi et al., 2002; Rigo et al.,
2000).

3.4. Antioxidant activity

The in vitro antioxidant activity of the wines Cabernet Franc,
Merlot, Sangiovese and Syrah, 2006 and 2007 vintages, were eval-
uated through the capacity to scavenge DPPH and ABTS radicals.
Results are shown in Fig. 2, where an important antioxidant activ-
ity of the wine samples, ranging from 11.2 to 23.17 mm TEAC, can
be observed. Samples from the 2007 vintage were found to be
more effective, and this scavenging activity was estimated to be
higher for the ABTS radical. The antioxidant activity of wine and
its phenolic compounds has been widely studied, being considered
partly responsible for the beneficial effects of moderate wine con-
sumption (Frankel et al., 1995).

Lipid peroxidation is one of the most severe types of damage
caused by an excess of free radicals in the organism. MDA is a
important reactive aldehyde resulting from the peroxidation of
biological membranes. Increased accumulation of MDA and conju-
gated dienes in the cell can result in cellular degradation, and bio-
chemical and functional changes, which can eventually lead to cell
death. In this study we evaluated the potential of wines in the inhi-
bition of in vitro lipid peroxidation by the TBARS method. Fig. 2
shows the capacity of the wine samples to inhibit lipid peroxida-
tion, which can be considered effective based in previous research
of Filip and Ferraro (2003). These authors found that the antioxi-
dant activity (inhibition lipid peroxidation – TBARS) of red wine
was 8.85 mm TEAC and 7.78 mm TEAC for Ilex brevicuspis extract,
a plant used in South America as tea-like beverage. The most sig-
nificant values were observed for samples of Cabernet Franc, Mer-
lot and Syrah from 2007 vintage. The ability of wine to inhibit lipid
peroxidation has been observed in other studies (Frankel et al.,
1995; Rigo et al., 2000) and has been ascribed to the ability of wine
antioxidants to scavenge peroxy radicals.

Although it is well known that wine is a complex mixture of
compounds which can act synergistically and be responsible for
the antioxidant properties (Cirico & Omaye, 2006), it is also known
that there are groups which can act more effectively as antioxi-
dants, such as the proanthocyanidins. It is believed that the antiox-
idant potential of red wines is due, mainly, to their content of
flavan-3-ols and PAs (Rice-Evans, Miller, & Paganga, 1996; Rigo
et al., 2000). In this context, the influence of the flavan-3-ol and
PA compositions on the in vitro antioxidant activity of our wine
samples was assessed by principal components analysis (Fig. 3).

The first three principal components explained 82.02% of the to-
tal variance (Fig. 3). Factor 1 was negatively influenced by the main
chemical and antioxidant analysis. C, EC, B1, B2, mDP, TBARS, DPPH
and ABTS influenced negatively Factor 1 and B2 and %P influenced
positively Factor 2. Fig. 3 shows that inhibition of lipid peroxida-
tion, TBARS, and the ABTS radical scavenging were positively corre-
lated with EC, B1, C, B2, EGC. Scavenging of the DPPH radical was
strongly positively correlated with TP and PROC, these two being
parameters also positively correlated with ABTS and TBARS.

In Fig. 3 it can also be observed that Factor 1 separated the wine
samples into two distinct groups for each vintage. Wines from the
2006 vintage were all located on the right and positive side and
wines from the 2007 vintage were located on the negative side.
Wines from the 2007 vintage were associated with the major anal-
ysis carried out. This is probably due to higher concentrations of
the compounds observed in the 2007 vintage, which also pro-
moted, in general, higher antioxidant activity of the wines. The
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Sangiovese 2006 wine was located in the upper quadrant and sep-
arated from other wines of the same vintage because of its higher
%G. Wines from the 2007 vintage, Merlot and Syrah, were associ-
ated with TP and PROC values and with the TBARS, DPPH and ABTS
analysis; Cabernet Franc and Sangiovese were associated with %P,
C, EC, EGC, mDP, B1 and B2 values.

The high correlation between TP and PROC and in vitro antiox-
idant activity of wines has been reported by Rossetto et al. (2004).
The observed flavan-3-ols antioxidant properties are probably due
to the structure of these compounds. According to Rice-Evans et al.
(1996), polyphenols with the ortho-dihydroxy structure in the B
ring have the highest scavenging activities. The degree of polymer-
isation also influences the antioxidant activity of PAs (Rossetto
et al., 2004), and in this study we found that mDP was positively
correlated with TBARS and ABTS. This hypothesis is supported by
the fact that the antioxidant activity of proanthocyanidins is, in
part, dictated by the oligomer chain length. Flavan-3-ol monomers
and dimers were found to inhibit more efficiently LDL oxidation
than trimers and tetramers (Plumb, De Pascual-Teresa, Santos-
Buelga, Cheynier, & Williamson, 1998).

According to some authors, the presence of prodelphinidin in-
creases the antioxidant capacity of PAs due to the increase in the
reactive hydroxyl number (Rice-Evans et al., 1996). In this study,
high amounts of %P were observed and this probably contributed
to the total antioxidant capacity observed, although this parameter
has not been associated directly with antioxidant analysis. Esterifi-
cation of position 3 with acid is another important factor that pos-
itively affects the scavenging capacity of grape PAs (Rice-Evans
et al., 1996). This correlation was not found in our study probably
due to the low concentrations of %G and GC observed in the wine
samples.

Studies on flavan-3-ols as target compounds in research involv-
ing the antioxidant activity of wines are important since it has
been proposed that these compounds can react with biomolecules
and thus modify their metabolism and functions (Galati, Lin, Sultan
& O’Brien, 2006). According to some authors the main function of
catechins as antioxidants in the organism is the scavenging capac-
ity of reactive oxygen and nitrogen species (Plumb et al., 1998),
which can promote an increase in total antioxidant capacity in
the organism and, as a consequence, improve the antioxidant de-
fence system and reduce damage caused by these reactive species
in the organism. Raza and John (2007) suggested that catechin and
their derivatives may affect the metabolism of GSH in vitro, by con-
jugation of these compounds with GSH and through inhibition of
enzymes such as GST and GPx. One report suggested the conjuga-
tion of EGCG with GSH under in vivo conditions (Galati et al., 2006).
4. Conclusions

In conclusion, this study presents the free flavan-3-ol and PA
composition and in vitro antioxidant capacity of the wines Caber-
net Franc, Sangiovese and Syrah, 2006 and 2007 vintages, from a
new wine growing region in the south of Brazil. Until now, these
analyses have never been studied in wines of this region. The quan-
titative method using HPLC-DAD–MS allowed the precise identifi-
cation and quantification of the monomers catechin, epicatechin,
gallocatechin, epigallocatechin and epicatechin gallate, and the di-
mers B1 and B2 along with their adducts after phloroglucinolysis,
giving access to the nature of the terminal and extension units of
the PAs. Flavan-3-ol and PA concentrations were in line with those
reported in the literature from the most renowned regions of pre-
mium wine production; the composition of these compounds cor-
related positively with the in vitro antioxidant activity of the wine
samples, with differences among the varieties and vintages studied
being evident. These interesting results further support the poten-
tial of the region to produce high quality wines.
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