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This study assessed spatial summation of first-order (luminance-defined) and second-order (contrast-
defined) motion. Thresholds were measured for identifying the drift direction of 1 c/deg., luminance-
modulated and contrast-modulated dynamic noise drifting at temporal frequencies of 0.5, 2 and 8 Hz.
Image size varied from 0.125� to 16�. The effects of increasing image size on thresholds for luminance-
modulated noise were also compared to those for luminance-defined gratings. In all cases, performance
improved as image size increased. The rate at which performance improved with increasing image size
was similar for all stimuli employed although the slopes corresponding to the initial improvement were
steeper for first-order compared to second-order motion. The image sizes at which performance for first-
order motion asymptote were larger than for second-order motion. In addition, findings showed that the
minimum image size required to support reliable identification of the direction of moving stimuli is
greater for second-order than first-order motion. Thus, although first-order and second-order motion
processing have a number of properties in common, the visual system’s sensitivity to each type of motion
as a function of image size is quite different.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction 1999). Thus the principles governing the perception of second-or-
1.1. First-order and second-order motion

The human visual system is responsive to spatiotemporal infor-
mation conveyed by a range of image properties. These are gener-
ally categorised as first-order (variations in luminance) or second-
order (variations in more complex textural properties such as con-
trast) image statistics. A major unresolved debate in human vision
concerns the issue of whether or not first-order motion and sec-
ond-order motion are encoded by different low-level mechanisms.
Although there is an abundance of evidence to suggest that first-
order and second-order image properties are encoded separately
in the mammalian visual system, at least in the initial processing
stages (see Baker (1999), Smith (1994), Lu and Sperling (1995,
2001b) for reviews), a single mechanism could in principle handle
both (Johnston, McOwan, & Buxton, 1992). For example in terms of
the latter Benton and Johnston (2001) have shown mathematically
that the motion of second-order contrast variations is available
from conventional image spatiotemporal gradients in the lower
contrast regions. Furthermore some phenomena such as the oppo-
site motion induced in a static visual noise carrier, when its con-
trast is modulated by a moving waveform are difficult to explain
if first-order and second-order motion are processed entirely sep-
arately in initial processing stages (Johnston, Benton, & McOwan,
ll rights reserved.
der image properties are still the subject of much controversy and
warrant further study.

1.2. Spatial summation

Spatial summation in vision is a long-established phenomenon
and, in short, refers to the fact that performance for detecting the
presence of a visual stimulus improves as the size of that stimulus
increases (Barlow, 1958; Campbell & Robson, 1968; Howell & Hess,
1978; Legge & Foley, 1980; Robson & Graham, 1981). Spatial sum-
mation functions are an important aspect of vision as they provide
a behavioural measure of how visual information is integrated
across retinal receptive fields (e.g. Anderson & Burr, 1991). A num-
ber of studies have investigated the nature of spatial summation
for first-order and second-order information in the spatial domain
(e.g. Schofield & Georgeson, 1999; Sukumar & Waugh, 2007; Wong
& Levi, 2005). However these studies have not provided consistent
results, suggesting that spatial summation functions may be heav-
ily dependent on different stimulus parameters (stimulus type, fre-
quency, etc.).

Schofield and Georgeson (1999) measured sensitivity to station-
ary first-order and second-order signals as a function of Gaussian
blob width (defined as 2.5 times the standard deviation of the cir-
cularly symmetric Gaussian modulation function) and found simi-
lar effects for luminance-modulated and contrast-modulated
noise. Sensitivity for detecting both types of stimuli increased as
blob size increased and saturated at a similar blob size (�40 arc
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min). In addition, the sensitivity curves for luminance-modulated
and contrast-modulated noise blobs were virtually parallel. These
findings led Schofield and Georgeson (1999) to conclude that the
similarity of the detection curves for first-order and second-order
stimuli might reflect processing by the same or a functionally sim-
ilar process. Landy and Oruc (2002) assessed the effects of spatial
summation on second-order spatial processing using texture-
quilts and found that performance plateaued at approximately
15�. Wong and Levi (2005) have also measured spatial summation
areas for second-order stimuli in normal and amblyopic observers
using static 1 c/deg. contrast-modulated noise Gabor patterns.
They found that detection thresholds decreased at approximately
the same rate in normal and amblyopic observers and saturated
(flattened) at an image size of 6–8 cycles. In a control experiment,
Wong and Levi (2005) compared their findings for second-order
Gabors with spatial summation areas for static first-order Gabors
in four normal observers. They found that, unlike second-order Ga-
bors for which performance asympoted at an image size of around
6–8 cycles, for first-order Gabors performance failed to asymptote
over the range of image sizes employed. Although Wong and Levi
(2005) did not pursue this finding further, their results suggest that
spatial summation areas are larger for first-order, compared to sec-
ond-order, patterns.

Most recently, Sukumar and Waugh (2007) investigated spatial
summation areas for static first-order and second-order patterns
by measuring detection thresholds for luminance-modulated and
contrast-modulated Gaussian noise blobs. They found that spatial
summation areas were different for detecting luminance-defined
and contrast-defined blobs. However they found that modulation
thresholds saturated at smaller image sizes for luminance-defined
than for contrast-defined stimuli. That is, spatial summation areas
were larger for the contrast-defined (second-order) patterns, con-
trary to that found previously by Wong and Levi (2005).

The effects of spatial summation on the perception of second-
order motion has received comparatively little attention. However,
Zanker (1993) investigated the disruptive effect of uncorrelated vi-
sual noise on the ability to detect both first-order motion (a dis-
placed rectangular region of random dots) and second-order
motion (defined by either flicker or relative motion) across a
limited range of image sizes. Performance was measured at a fixed
image width (0.608�) but image height was varied in the range
0.076–4.864�. He found that when the height of the moving objects
increased, sensitivity (percentage of noise superimposed on the
image without destroying the perceived motion percept) contin-
ued to increase for all types of motion. In each case there was little
evidence that a summation limit had been reached and changes in
image size were restricted to a single spatial dimension. Thus the
spatial integration area for second-order motion perception re-
mains unclear and warrants further study. Therefore the present
study investigated the effect of image size on thresholds for dis-
criminating the direction of first-order (luminance-defined) and
second-order (contrast-defined) motion.

2. Experiment 1: spatial summation of first-order and second-
order motion signals

Experiment 1 investigated the effect of image size on perfor-
mance for determining the drift direction of first-order
(luminance-modulated dynamic noise) and second-order (con-
trast-modulated dynamic noise) motion.

2.1. Methods

2.1.1. Observers
Four observers (CVH, LS, MA and LA) took part in the study. CVH

was an author and LS, MA, and LA were naïve observers. All had
normal or corrected-to-normal visual acuity and had no history
of any visual disorders.

2.1.2. Apparatus and stimuli
Stimuli were generated using a Macintosh G5 and presented on a

Dell monitor (update rate of 75 Hz) using custom software written
in the C programming language. For precise control of luminance
contrast the number of intensity levels available was increased
from 8 to 14 bits using a Bits++ attenuator (Cambridge Research Sys-
tems). The mean luminance of the display was approximately
68 cd/m2. Images were viewed binocularly and in darkness at a dis-
tance of 69.5 cm. To ensure that the second-order motion stimuli
did not contain any luminance artifacts, the monitor was carefully
gamma-corrected using a photometer and look-up-tables (LUT). As
an additional precaution, the adequacy of the gamma-correction
was also checked psychophysically using a sensitive motion-null-
ing task (Gurnsey, Fleet, & Potechin, 1998; Ledgeway & Smith,
1994; Lu & Sperling, 2001a; Scott-Samuel & Georgeson, 1999).

Stimuli were vertically-oriented, 1 c/deg., luminance-modu-
lated or contrast-modulated dynamic noise patterns, drifting at
either 0.5, 2 or 8 Hz. The size of the image varied from 0.125� to
16�, horizontally and vertically. First-order motion was produced
by adding a sinusoidal grating to a 1-bit, spatially 2-d, random
noise carrier of 0.15 Michelson contrast. The noise carrier was gen-
erated by assigning individual (single) screen pixels (1.88 arc min)
to be either ‘‘white” or ‘‘black” with equal probability and there
was no spatial variation in luminance within each noise element.
A new stochastic noise sample was used for each separate image
in the motion sequence. The luminance profile of the first-order
motion stimulus as a function of space and time, L(x, y, t), can be
described by the equation:

Lðx; y; tÞ ¼ Lmean 1þm cosf2pðfx�xtÞ þ /g þ cRðx; y; tÞ½ � ð1Þ

where Lmean is the mean luminance of the display (68 cd/m2), f is
spatial frequency (c/deg.), x is temporal drift frequency (Hz), / is
the initial spatial phase (randomised at the beginning of each trial),
m is the amplitude (modulation depth) and c is the contrast of the
noise carrier R(x, y, t) prior to modulation, chosen to be either �1 or
+1 with probability 0.5. The modulation depth (m) of the sinusoidal
luminance modulation could be varied in the range 0–1 according
to the following equation:

m ¼ ðLmax � LminÞ=ðLmax þ LminÞ ð2Þ

where Lmax and Lmin are the maximum and the minimum mean
luminances in the image, respectively, averaged over adjacent noise
elements with opposite polarity.

Second-order motion was produced by multiplying, rather than
adding, a drifting sinusoidal waveform (unsigned for the purposes
of multiplication) with a noise field:

Lðx; y; tÞ ¼ Lmean½1þ h1þm cosf2pðfx�xtÞ þ /gicRðx; y; tÞ� ð3Þ

where the parameters are identical to those in Eq. (1). The depth (m)
of the contrast modulation could be varied in the range 0–1 accord-
ing to the following equation:

m ¼ ðCmax � CminÞ=ðCmax þ CminÞ ð4Þ

where Cmax and Cmin are the maximum and the minimum local
Michelson contrasts in the image, respectively, computed over
neighbouring noise elements with opposite polarity. Stimulus
examples are shown in Fig. 1.

2.2. Procedure

A single-interval, two-alternative, forced-choice task was em-
ployed. On each trial, observers were presented with a fixation
cross. Trials were self-paced. Observers initiated each trial by



Fig. 1. Examples of the: (a) luminance-modulated (first-order) and (b) contrast-modulated (second-order) dynamic noise patterns.
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pressing the spacebar, after which the stimulus was presented on-
screen for 500 ms. The observers’ task was to judge the motion
direction of the pattern. This was always orthogonal to the pat-
tern’s orientation and was chosen to be left or right with equal
probability.

On each trial the modulation depth of the moving pattern was
varied according to a modified 1-up 3-down staircase designed
to converge on the modulation depth corresponding to 79.4% cor-
rect performance (Levitt, 1971; Wetherill & Levitt, 1965). At the
beginning of each run of trials the pattern modulation depth was
initially set to a suprathreshold level (�6 dB above threshold)
and the initial staircase step size was chosen to be half this value.
On subsequent reversals the step size was halved and testing was
terminated after a total of 16 reversals. Threshold estimates were
taken as the mean of the last four reversals in each staircase. Each
observer completed a minimum of four runs of trials (i.e. stair-
cases) for each condition and the order of testing was randomised.
The mean threshold and SEM were then calculated for each
condition.
3. Results

Fig. 2 shows thresholds for determining the direction of 1 c/deg.
first-order and second-order motion as a function of overall stim-
ulus size (identical in both spatial dimensions) at temporal fre-
quencies of: (a) 0.5, (b) 2 and (c) 8 Hz.

To characterise spatial summation mechanisms for the two
classes of motion, the data were fit with the following equation
using a conventional least-squares procedure:

y ¼
ðsgnða� xÞ þ 1Þðxa Þ

c þ sgnðx� aÞ þ 1
2

� �
b; ð5Þ

where x is image size and a, b and c are constants. a is the image size
after which there was no further performance improvement (corre-
sponding to the knee-point of the function) and asymptoted at the
lowest modulation depth threshold (b) and c determines the slope
of the descending limb of the function (on log–log co-ordinates).

Note that sgn() is the signum function and is equal to either +1, 0
or�1 depending on whether the argument in parentheses is >0, 0 or
<0, respectively. It is important to emphasise that the knee-point
parameter of Eq. (5) was not chosen arbitrarily by eye, but was deter-
mined automatically (directly) by the fitting procedure. This ensured
that the location of a knee-point, if indeed present in the data, was
objective and unbiased. Curve fit values for each observer (CVH, LS,
MA and LA) and stimulus type (luminance-modulated and con-
trast-modulated dynamic noise) are given in Table 1.
Unsurprisingly thresholds for second-order motion were mark-
edly higher than for first-order motion. Observers could reliably
determine first-order motion direction across all image sizes tested
(with the exception of observer MA who could not accurately iden-
tify direction below an image size of 0.25� at 8 Hz). However sec-
ond-order motion direction could not be determined below an
image size of 0.25� at temporal frequencies of 0.5 and 2 Hz and
0.5� at 8 Hz (again with the exception of observer MA who was un-
able to determine the direction of second-order motion below an
image size of 1� at 8 Hz). The general difference in asymptote
and the increased variability between observers’ performance at
8 Hz for second-order motion may be due, at least in part, to the
fact that this temporal frequency is approaching the upper acuity
limit for second-order motion stimuli (e.g. Hutchinson & Ledge-
way, 2006).

In relation to spatial summation, thresholds for discriminating
the direction of first-order and second-order motion decreased as
image size increased. As is typical of spatial summation, after an
initial rapid improvement in performance at relatively small image
sizes, performance began to asymptote. Fig. 2 combined with the
values derived from fitting Eq. (5) to the data revealed a number
of important aspects of spatial summation for first-order and
second-order motion. The slope of the initial performance
improvement was steeper for first-order motion compared to sec-
ond-order motion. Average (across observers) slopes for first-order
motion were �1.178 (±0.07), �0.97 (±0.67) and �0.85 (±0.07) at
temporal frequencies of 0.5, 2 and 8 Hz, respectively. The corre-
sponding values for second-order motion were �0.80 (±0.16),
�0.78 (±0.05) and �0.65 (±0.06), respectively. In addition, perfor-
mance consistently reached asymptotic levels at smaller image
sizes for second-order motion [2.54 (±0.52), 2.56 (±1.06) and 5.12
(±1.05) deg. at temporal frequencies of 0.5, 2 and 8 Hz, respec-
tively], compared to first-order motion [3.48 (±0.46), 4.97 (±2.48)
and 8.11 (±1.37) deg.]. Finally, in terms of the effects of temporal
frequency, in general, slopes became shallower and summation
areas became larger as temporal frequency increased. This was
true of both first-order motion and second-order motion. Another
point worth noting is that in a number of cases, estimates of the
slope values were less reliable (errors were larger) for second-or-
der than for first-order motion.
4. Experiment 2: luminance-defined gratings vs. luminance-
modulated dynamic noise

Some of the findings of Experiment 1 are not in agreement with
some previous studies that have examined spatial summation of
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Fig. 2. Thresholds for discriminating the direction of first-order (closed circles) and second-order (open circles) motion as a function of stimulus size. Note that in this case the
width and height of the image were always identical, so image size refers to the spatial extent in each dimension. Patterns had a spatial frequency of 1 c/deg. and drifted at
temporal frequencies of either: (a) 0.5, (b) 2 or (c) 8 Hz. Data are shown for four observers (CVH, LS, MA and LA). Error bars represent ±1 SEM. Data have been fit with Eq. (5).
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first-order and second-order signals in the spatial domain (e.g.
Sukumar & Waugh, 2007). As such, the precise nature of spatial
summation may be heavily dependent on the types of stimuli em-
ployed and, perhaps most importantly in this case, whether they
are stationary or moving. In light of this, Experiment 2 repeated
a previous experiment with first-order stimuli in the spatial do-
main (Schofield & Georgeson, 1999) but with moving stimuli.

Schofield and Georgeson (1999) have previously measured
detection thresholds for stationary first-order Gaussian blobs, de-
fined either by luminance or luminance-modulated noise, as a



Table 1
Curve fit parameters for each observer for luminance-modulated dynamic noise (first-order motion) and contrast-modulated dynamic noise (second-order motion). The change in
threshold as a function of image size was, in most cases, well described by Eq. (5).

Observer Temporal frequency (Hz) Luminance-modulated dynamic noise (LMDN) Contrast-modulated dynamic noise (CMDN)

a b c R2 a b c R2

CVH 0.5 4.775 (0.395) 0.0077 (0.0003) �0.984 (0.047) 0.842 3.294 (0.474) 0.116 (0.006) �0.764 (0.060) 0.964
2 7.007 (0.589) 0.0039 (0.0001) �0.807 (0.030) 0.974 2.951 (0.319) 0.092 (0.003) �0.709 (0.044) 0.946
8 6.859 (1.040) 0.0047 (0.0003) �0.849 (0.052) 0.890 2.804 (0.497) 0.282 (0.006) �0.649 (0.097) 0.548

LS 0.5 2.931 (0.288) 0.0079 (0.0004) �1.280 (0.058) 0.969 1.068 (0.141) 0.333 (0.025) �1.256 (0.204) 0.975
2 4.590 (0.399) 0.0043 (0.0002) �1.076 (0.028) 0.998 2.671 (0.503) 0.139 (0.005) �0.692 (0.062) 0.969
8 7.315 (1.363) 0.0048 (0.0002) �0.813 (0.060) 0.968 4.021 (0.634) 0.253 (0.013) �0.635 (0.043) 0.996

MA 0.5 2.686 (0.261) 0.0101 (0.0005) �1.231 (0.043) 0.980 2.62 (0.445) 0.259 (0.025) �0.624 (0.098) 0.819
2 5.084 (0.434) 0.0057 (0.0003) �0.906 (0.029) 0.943 2.477 (0.252) 0.148 (0.004) �0.806 (0.054) 0.907
8 6.116 (0.759) 0.0054 (0.0003) �1.035 (0.054) 0.920 7.515 (1.506) 0.221 (0.029) �0.802 (0.076) 0.822

LA 0.5 3.537 (0.318) 0.0074 (0.0002) �1.217 (0.044) 0.983 3.212 (1.102) 0.223 (0.012) �0.565 (0.135) 0.914
2 3.196 (0.431) 0.0063 (0.0002) �1.078 (0.075) 0.777 2.159 (0.327) 0.124 (0.012) �0.897 (0.059) 0.991
8 12.152 (1.829) 0.0048 (0.0004) �0.702 (0.032) 0.963 6.127 (0.657) 0.269 (0.006) �0.500 (0.031) 0.993
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function of blob size. Interestingly they found that the range of
spatial integration was different for these two first-order stimuli,
in that sensitivity saturated at smaller blob sizes for luminance-de-
fined blobs (�10 arc min) than for luminance-modulated noise
blobs (�40 arc min). To investigate whether these differences in
sensitivity to first-order stimuli in the spatial domain transfer to
the perception of motion, we measured performance for discrimi-
nating the direction of conventional luminance-defined gratings as
a function of stimulus size and compared performance to that for
discriminating the direction of luminance-modulated dynamic
noise.

4.1. Methods

All experimental methods were identical to those employed in
Experiment 1 with the exception that stimuli were 1 c/deg. lumi-
nance-defined gratings (i.e. no noise carrier was present), drifting
at 2 Hz.

4.2. Results

Fig. 3 shows thresholds for determining the direction of 1 c/deg.
luminance-defined gratings. For comparison purposes the equiva-
lent data for luminance-modulated dynamic noise have also been
replotted from Fig. 2b. Curve fit values for luminance-defined grat-
ings derived from fitting Eq. (5) to each observer’s data are given in
Table 2. In agreement with previous findings for static patterns
(e.g. Schofield & Georgeson, 1999), thresholds for judging the
direction of luminance-defined gratings were typically lower and
summation areas were smaller than those for identifying the direc-
tion of luminance-modulated dynamic noise [3.94 (±0.49) and 4.97
(±2.48) deg., respectively]. However the initial slopes of the
descending portion of the functions (i.e. prior to asymptote) for
the two stimulus types were similar [�1.08 (0.05) and �0.97
(±0.67), respectively]. It may be worth noting that, in terms of
the image size at which performance asymptoted, although the
curve fitting procedure did converge on a knee-point, in some
cases performance appeared, at least qualitatively, to still be
improving at the largest image size employed (i.e. 16�). This was
true of both luminance-defined gratings and luminance-modu-
lated dynamic noise.

Also, at a given image size, thresholds for conventional lumi-
nance gratings were consistently lower than those for lumi-
nance-modulated dynamic noise. These findings are in agreement
with Schofield and Georgeson (2003) who suggested that the addi-
tion of a noise carrier to a luminance-defined grating may mask the
first-order signal and hence lead to poorer sensitivity.
5. Experiment 3: image height or number of cycles?

To separate the effects of curtailing image height and image
width, in a final experiment we re-measured thresholds for deter-
mining the drift direction of first-order (luminance-modulated dy-
namic noise) and second-order (contrast-modulated dynamic
noise) motion. However, rather than varying both the width AND
the height of the stimuli to vary image size, in the present experi-
ment we kept one dimension constant (either height or width) at
16� and varied the other from 0.125� to 16�.

5.1. Methods

The experimental methods were identical to those employed in
Experiment 1, with the exception that image size only varied in
one dimension, either horizontally or vertically, whilst the spatial
extent in the other dimension remained at 16�. We measured thresh-
olds for two observers, CVH (an author) and AA (a naïve observer), for
first-order and second-order motion at 1 c/deg. and 2 Hz.

5.2. Results and discussion

Fig. 4a shows the results for two observers when only the image
width (number of visible cycles) was varied. Fig. 4b shows the re-
sults for the same observers when the image height was varied,
thereby maintaining the number of cycles. Curve fit values derived
from fitting Eq. (5) to the data are given in Table 3.

Irrespective of whether image height or width was varied, per-
formance for discriminating the direction of first-order motion be-
came asymptotic at larger image sizes than performance for
discriminating the direction of second-order motion, consistent
with the results of Experiment 1. However there were some differ-
ences in the data shown in Fig. 4 depending on which dimension
varied. Curtailing the image width (i.e. the number of grating cy-
cles presented on-screen) produced results that most closely
resembled those produced in Experiment 1 (see Fig. 2 & Table 1
for comparison). Varying image height, whilst image width re-
mained at 16�, produced a greater difference between the image
size at which performance for each variety of motion flattened
(spatial summation areas), compared to when image width varied
and height remained constant at 16�. The slopes representing the
descending limb of the functions were also typically shallower.

6. General discussion

The findings of the present study have shown: (1) smaller
spatial summation areas for second-order (contrast-modulated
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Table 2
Curve fit parameters for each observer for conventional luminance-defined gratings
(first-order motion). The change in threshold as a function of image size was well
described by Eq. (5).

Observer a b c R2

CVH 4.964 (0.328) 0.0018 (0.00007) �1.037 (0.021) 0.994
LS 3.344 (0.246) 0.0025 (0.00011) �1.010 (0.036) 0.966
MA 2.870 (0.185) 0.0026 (0.00012) �1.227 (0.030) 0.923
LA 4.568 (0.281) 0.0015 (0.00006) �1.126 (0.025) 0.985
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dynamic noise) compared to first-order (luminance-modulated dy-
namic noise) motion and (2) slightly smaller spatial summation
areas for conventional luminance gratings compared to lumi-
nance-modulated dynamic noise.

Spatial summation ratios from Experiments 1 to 3 are shown in
Fig. 5. Performance for determining the direction of first-order mo-
tion asymptoted at larger image sizes compared to second-order
motion (Fig. 5a). This difference, averaged across observers, corre-
sponded to factors of 1.580 (±0.399), 1.906 (±0.195) and 1.766
(±0.344) for 0.5, 2 and 8 Hz, respectively. Performance levels for
determining the direction of luminance-modulated dynamic noise
became asymptotic at larger image sizes compared to luminance-
defined gratings. However this difference was much less pro-
nounced (Fig. 5b), being in the region of around 1.25 (±0.224). Fi-
nally, when image width (number of cycles) varied and height
remained constant at 16�, performance for determining the direc-
tion of first-order motion asymptoted at larger image sizes com-
pared to second-order motion by a factor of 1.388 (±0.24) and
when image height varied and width remained constant this differ-
ence was even greater. In this case (Fig. 5c), performance for deter-
mining the direction of first-order motion asymptoted at larger
image sizes compared to second-order motion by a factor of
2.747 (±1.043).

The slopes derived from fitting Eq. (5) to the data produced
average values (across conditions and observers) of �0.99
(±0.054) for first-order motion and �0.74 (±0.057) for second-or-
der motion. The slopes corresponding to the initial performance
improvement for first-order motion are in broad agreement with
the linear systems-based model of Graham (1989), possibly reflect-
ing summation within a single-channel or neuron receptive field.
The slopes corresponding to the initial performance improvement
for second-order motion lie somewhere between linear (�1) and
probability (�0.5) summation, possibly reflecting some degree of
summation both within (linear) and between (across) channels
based on a pooling of each channel’s independent output. That
the slopes corresponding to the summation functions for second-
order motion are typically shallower may reflect more between-
channel pooling than for first-order motion. This may be due to
broader tuning (less specificity and sensitivity) of second-order
channels such that between-channel pooling provides a stronger
signal of motion than within-channel summation from a less sen-
sitive channel.
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Fig. 4. Thresholds for discriminating the direction of first-order (closed circles) and second-order (open circles) motion as a function of (a) stimulus width (number of cycles)
and (b) stimulus height. Patterns had a spatial frequency of 1 c/deg. and drifted at 2 Hz. Data is shown for two observers and error bars represent ±1 SEM.

Table 3
Curve fit parameters for each observer for luminance-modulated dynamic noise (first-order motion) and contrast-modulated dynamic noise (second-order motion) when the
image width varied and its height remained constant at 16�, or vice versa.

Condition Observer Luminance-modulated dynamic noise (LMDN) Contrast-modulated dynamic noise (CMDN)

a b c R2 a b c R2

Image width varies CVH 3.652 (0.456) 0.0051 (0.0003) �0.654 (0.037) 0.890 2.243 (0.184) 0.119 (0.001) �0.752 (0.083) 0.487
AA 2.544 (0.417) 0.0037 (0.00009) �0.763 (0.073) 0.961 2.216 (0.203) 0.148 (0.011) �0.803 (0.968) 0.968

Image height varies CVH 11.99 (4.09) 0.0038 (0.0005) �0.439 (0.002) 0.990 7.035 (1.236) 0.111 (0.002) �0.221 (0.016) 0.945
AA 5.534 (0.95) 0.0046 (0.0003) �0.437 (0.019) 0.912 1.460 (0.279) 0.182 (0.005) �0.866 (0.11) 0.653
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Models of first-order and second-order motion propose that the
image first undergoes orientation-selective filtering at a given spa-
tial scale, after which two parallel pathways emerge, one for
encoding first-order motion and the other for encoding second-or-
der motion. After initial filtering, one pathway simply extracts the
first-order motion energy whereas the other pathway incorporates
rectification (or response squaring) followed by an additional ori-
entation-selective filtering stage in order to make the second-order
information visible to conventional ‘first-order’ motion detectors.
It has been proposed that first-order motion undergoes simple
luminance-based filtering in V1 whereas for second-order motion,
first-order information is first extracted in V1, after which it is rec-
tified, and the post-rectified outputs further filtered by V2 (e.g.
Wilson, Ferrera, & Yo, 1992). The differences between spatial sum-
mation areas for the two types of motion may also reflect differ-
ences in the type and neural location of summation. Whereas for
first-order motion it is likely that our findings tentatively reflect
single-channel spatial summation mechanisms perhaps in V1, for
second-order motion our findings may reflect single-channel sum-
mation of the second-order image by V1, followed by post-rectifi-
cation summation of pooled outputs in say area V2, producing
shallower slopes and different summation areas overall. However,
this conclusion must remain speculative as comparatively little is
known about the neural basis of second-order motion processing
and pinpointing the exact anatomical locus where second-order
motion sensitivity first emerges in visual cortex is fraught with dif-
ficulty (e.g. due to the extensive feedback connections between vi-
sual areas). Although evidence from human brain-imaging studies
(fMRI) is somewhat equivocal with regard to the existence of
grossly distinct cortical regions for encoding each type of motion



Fig. 5. Average spatial summation (image size at which performance became asymptotic) ratios for: (a) luminance-modulated (first-order) and contrast-modulated (second-
order) dynamic noise in Experiment 1, (b) luminance-modulated dynamic noise and luminance-defined gratings in Experiment 2 and (c) luminance-modulated (first-order)
and contrast-modulated (second-order) dynamic noise in Experiment 3. Error bars represent +1 SEM calculated across observers.
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(Dumoulin, Baker, Hess, & Evans, 2003; Nishida, Sasaki, Murakami,
Watanabe, & Tootell, 2003; Seifert, Somers, Dale, & Tootell, 2003))
a recent adaptation study (Ashida, Lingnau, Wall, & Smith, 2007)
suggests that two separate, but co-localised, mechanisms may ex-
ist in extrastriate areas MT, MST and V3A. This is commensurate
with electrophysiological research which has identified neurones
sensitive to both first-order motion and second-order motion in
many cortical areas of the mammalian visual system. These include
areas 17 and 18 in the cat (Zhou & Baker, 1993, 1994, 1996), and
primate areas V1, MT and MSTd (e.g. Albright, 1992; Chaudhuri
& Albright, 1997; Geesaman & Andersen, 1996).

Our findings may also reflect differences in sensitivity to first-
order and second-order motion. In the fovea the highest modula-
tion depth possible for second-order motion stimuli is around 10
times threshold, whereas for an equivalent first-order stimulus
the maximum modulation depth possible is around 100 times
threshold. Such marked differences in sensitivity to first-order
and second-order motion extend into the periphery where sensi-
tivity to second-order motion is particularly poor. For low stimulus
drift rates (e.g. 0.5 Hz), the direction of contrast-modulated grat-
ings cannot even be identified by 8� eccentricity. Rather, con-
trast-modulated gratings appear to remain stationary (Pantle,
1992). A number of studies have suggested that sensitivity to sec-
ond-order motion declines more rapidly with eccentricity than for
first-order motion (Zanker, 1997). However, others suggest that
sensitivity to the two motion types does in fact scale similarly with
eccentricity (e.g. Smith, Hess, & Baker, 1994; Smith & Ledgeway,
1998; Solomon & Sperling, 1995). Regardless of the rate of sensitiv-
ity decline with increasing eccentricity, second-order motion per-
ception is certainly much more restricted than first-order motion
perception in peripheral vision. This may represent an important
functional reason why second-order perception asymptotes at
much smaller images sizes than first-order motion perception. In
the case of first-order motion, although sensitivity is markedly
poorer in the periphery compared to the fovea, it is still sufficient
to lead to additive performance improvements as stimuli are spa-
tially extended. However, for second-order motion, it may be that
spatially extending stimuli into the periphery, where sensitivity is
so poor, is of little further benefit.

Our findings are consistent with those of Wong and Levi (2005)
who characterised spatial summation for static first-order and sec-
ond-order patterns. They found that, whereas for second-order
patterns performance asympoted at around six cycles, for first-or-
der patterns performance failed to asymptote over the range of im-
age sizes tested. Our findings for moving stimuli are, however, at
odds with those of Sukumar and Waugh (2007) who found that
summation areas for static images were larger for second-order
compared to first-order stimuli. The disparity between the findings
of Sukumar and Waugh (2007) and Wong and Levi’s (2005) study
also demonstrates that the nature and extent of spatial summation
appears to be heavily dependent on the precise characteristics of a
stimulus. For example, they may be due, in part, to the number of
visible grating cycles.

In terms of stimulus size/number of cycles being the limiting
factor in sensitivity to first-order and second-order motion direc-
tion, in agreement with previous observations by Cavanagh and
Mather (1989), we found that observers required at least 0.25 cy-
cles of grating (corresponding to 0.25� at a spatial frequency of
1 c/deg.) to be visible on-screen to accurately determine second-
order motion direction. On the other hand, observers could accu-
rately determine first-order motion direction with only 0.125
visible cycles. They may, in principle, have been able to success-
fully judge first-order motion direction with even fewer cycles.
However, in the present study the smallest image size employed
was 0.125� (i.e. 0.125 grating cycles). Interestingly this pattern of
results closely mirrors the differences found between first-order
motion and second-order motion on psychophysical tasks requir-
ing temporal summation of direction information. For example,
the direction of a sinusoidal contrast modulation, unlike a lumi-
nance modulation, cannot be identified when the stimulus expo-
sure duration is less than about 200 ms (Derrington, Badcock, &
Henning, 1993). One potential explanation of this phenomenon is
that second-order motion detectors in human vision are simply
less selective for stimulus direction than first-order motion sen-
sors, and thus are more vulnerable to the disruptive effects of brief
presentations, which introduce spurious motion in the opposite
direction (see Fig. 1 of Ledgeway & Hess, 2002). It is also interesting
to note that spatially restricting (windowing) a sinusoidal motion
stimulus, such that the number of spatial cycles is severely cur-
tailed, increases the spatial frequency bandwidth of the modula-
tion signal and leads to an analogous smearing of the motion
energy across the two directions. This inevitably introduces some
degree of directional ambiguity into the stimulus. Thus the present
finding that the direction of second-order motion, unlike first-or-
der motion, could not be determined when image width was below
0.25�, is consistent with the notion that the mechanisms that en-
code each variety of motion differ in direction selectivity. Curtail-
ing the image height (but not the width, so the number of cycles
is constant) of a sinusoidal motion pattern introduces artifacts
with energy at different orientations to the modulation signal,
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but not spurious motion in the opposite motion (e.g. see Anderson
& Burr, 1991).

In agreement with Schofield and Georgeson (1999) we found
that, thresholds were typically higher and spatial summation areas
slightly larger for luminance-modulated dynamic noise compared
to luminance-defined gratings. However, as in Schofield and
Georgeson’s (1999) study, both stimulus types produced similar
curves (initial slopes). This may be due, in part, to the ‘temporal
noise’ in the luminance-modulated dynamic noise stimulus ‘mask-
ing’ the fist-order signal. However, in the present study, it was
important that we used luminance-modulated dynamic noise so
that our first-order and second-order (which also necessarily con-
tained a noise carrier) patterns were as equivalent as possible.

In conclusion, the current literature on the nature of spatial
summation of stationary first-order and second-order information
in the human visual system is a matter for debate. This may be be-
cause the precise nature of all aspects of spatial summation (the
slope of the initial performance improvement as stimulus size in-
creases and the size at which performance asymptotes) appears
to be critically dependent on the nature of the stimulus, and the
manner in which data are expressed. The specific spatial character-
istics of the stimuli that influence performance are unclear. In our
case, the spatial summation functions in the present study support
the findings of Wong and Levi (2005) and Schofield and Georgeson
(1999). Moreover, in the case of moving patterns, stimulus drift
rate does not appear to influence greatly these parameters. Finally,
it is worth noting that, as is the case in spatial domain, spatial sum-
mation thresholds for first-order and second-order motion are not
always clear. Consequently, it is difficult to draw firm conclusions
about the functional basis of the differences between them or to
develop a quantitative model at this stage, either for spatial or
temporal vision.
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