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In Corollary 4.2 we showed that for subcategories C of mod II closed 
under extensions of the form C = Sub M there are only a finite number of 
nonisomorphic indecomposable objects in C which are Ext-injective and only 
a finite number which are Ext-projective. In this addendum we show that 
these numbers are the same, and at the same time we show a close 
connection with the theory of tilting modules ([ 2, see also [I]). 

We first make the following observation. 

LEMMA A.l. Let M be a A-module and O-+foM+fl J, -+ J, be a minimal 
injective resolution of M. Then there is an exact sequence 0 -+ Ext’( , M) -+ 
D(TrDM, I-( ,J,)( ,Imf)-+O. 

Proof We have a minimal projective resolution D(J,)-+ D(J,,) + 
D(M) + 0, hence an exact sequence D(J,,)* -+ D(J,)* + Tr D(M) --) 0. From 
this we get an exact sequence of functors D(D(J,)*, )- D(D(JO)*, ) -+ 
D(Tr DM, ) + 0. Since D(Ji) is projective, we have a natural isomorphism 
(D(J,)*, > ’ D(Ji) 0 -3 and further a natural isomorphism 
D(Ji) @ -q D( , J,). This gives an exact sequence ( , J1)+ ( , Jo)-+ 
D(Tr DM, ) + 0. We now get our desired exact sequence by considering the 
commutative exact diagram. 
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PROPOSITION A.2. Assume M = M. Then Sub M is closed with respect to 
extensions if and only if Ext’(M, M) = 0 and rM(J1) c Q-‘(M), where 
0 + M -+ J, + J, is part of a minimal injective resolution of M and rM(J,) = 

1C Imf If E G% JAI. 

Proof From Corollaries 5.3 and 5.7 we have that SubM is closed with 
respect to extensions if and only if (Tr DM, M) = 0 and hence if and only if 
D(Tr DM, M) = 0. Now by using Lemma A.1 we have that 
D(Tr DM, M) = 0 if and only if Ext’(M, M) = 0 and (M, Q-‘(M)) -+(“*i) 
(M, J1) is an isomorphism, where i is the inclusion R-‘(M) C. J,, which is 
the same as saying that Ext’(M, M) = 0 and 7M(J,) c C’(M). 

COROLLARY A.3. Assume M= ii? is a faithful module. Then Sub M is 
closed with respect to extensions tf and only r$ Ext’(M, M) = 0 and inj . dim 
M< 1. 

Proof. If M is faithful, we have a monomorphism A + M” for some n. If 
Z is injective, r,,(Z) = Z then implies that r,(Z) = I. Hence r,(J,) = 
J, c R-‘(M) if and only if inj . dim M < 1. Our result now follows from 
Proposition A.2. 

COROLLARY A.4 Assume M = ii? is a faithful module such that Sub M 
is closed with respect to extensions. Then the Ext-injective modules in Sub M 
all have injective dimension at most one. 

Proof. Let Z be the injective A-module DAop and C = Sub M. Then in the 
notation of Section 4, we have the exact sequence O+ A’,+ I,+ Z which 
induces the exact sequence of functors O-+ ( ,A’,)IC+ 
( ,Z,)lC+( ,Z)IC-+O. H ence the fact that M is faithful implies that 
Zc + Z -+ 0 is exact. Also we know by Theorem 4.1, that the indecomposable 
summands of A’, and Zc are precisely the indecomposable Ext-injective 
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modules in C. Since I, is in add M, we have by Corollary A.2 that inj . dim 
I, < 1, which gives the desired result. 

COROLLARY A.5. Assume M = b?i is a faithful A-module such that Sub 
M is closed with respect to extensions. Then the number of nonisomorphic 
indecomposable Ext-injectives and nonisomorphic indecomposable Ext- 
projectives in Sub M coincide. 

ProoJ Let A = A, lt . . . Jl A, be a direct sum of the nonisomorphic 
indecomposable Ext-injectives in Sub M. Then DA satisfies the following 
axioms for a tilting module given by Happel and Ringel [2]: 

(1) proj . dim DA < 1. 

(2) Ext’(DA, DA) = 0. 

(3) There exists an exact sequence 0 --f Aop -+ A’ + A” + 0 with A’ and 
A” in add DA. 

Hence by Corollary 3.2 of [2] we have that the number of nonisomorphic 
indecomposable summands of A is the same as the number of nonisomorphic 
indecomposable projective n-modules, which by Proposition 3.1 are exactly 
the Ext-projectives in Sub M when M is faithful. 

We now get our main result. 

THEOREM A.6 Assume that Sub M is closed with respect to extensions. 
Then SubM has the same number of nonisomorphic indecomposable Ext- 
projectives and Ext-injectives. 

Proof: We only make the observation that M is a faithful A/ann M- 
module and that we have the embedding Sub M c mod(/l/ann M) E mod .4. 
Hence the result follows from Corollary A.5. 
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