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The transverse polarization of forward Λ hyperons produced in high-energy p–A collisions is expected
to display an extremum at a transverse momentum around the saturation scale. This was first observed
within the context of the McLerran–Venugopalan model which has an x-independent saturation scale.
The extremum arises due to the kt -odd nature of the polarization-dependent fragmentation function,
which probes approximately the derivative of the dipole scattering amplitude. The amplitude changes
most strongly around the saturation scale, resulting in a peak in the polarization. We find that the
observation also extends to the more realistic case in which the saturation scale Q s is x-dependent. Since
a range of x and therefore Q s values is probed at a given transverse momentum and rapidity, this result
is a priori not expected. Moreover, the measurement of Λ polarization over a range of xF values actually
provides a direct probe of the x-dependence of the saturation scale. This novel feature is demonstrated
for typical LHC kinematics and for several phenomenological models of the dipole scattering amplitude.
We show that although the measurement will be challenging, it may be feasible at LHC. The situation at
RHIC is not favorable, because the peak will likely be at too low transverse momentum of the Λ to be a
trustworthy measure of the saturation scale.

© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

It is well known that Λ hyperons produced in collisions of
unpolarized hadrons are to a large degree polarized perpendic-
ularly to the production plane. Even though the origin of this
phenomenon has not been clarified fully yet, for sufficiently large
transverse momentum pt of the Λ, one expects that a parton
description must be applicable. In Ref. [1] it was shown that
the available Λ polarization data for pt > 1 GeV can be de-
scribed within a factorized approach by employing a polarization
and transverse momentum-dependent fragmentation function. This
function, denoted by �N D , describes the fragmentation of an un-
polarized quark into a transversely polarized Λ and is an odd
function of the transverse momentum kt of the quark w.r.t. the
Λ momentum [2]. This kt -odd nature implies that it is essentially
accompanied by the first derivative of the partonic cross section
w.r.t. kt , unlike the unpolarized Λ fragmentation function D , which
is kt -even. This turns the observed Λ polarization into a use-
ful tool, which in this Letter will be applied to the study of the
x-dependence of the saturation scale.
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Once the polarization-dependent fragmentation function is
known from data in the large x or DGLAP region, polarization
measurements in other kinematic regions could point to changes
in the underlying physics. In Ref. [3] this was discussed specif-
ically for the saturation region, the region of small momentum
fraction x where the gluon density is very high and is expected
to saturate according to the nonlinear evolution equations of rel-
evance in that region. The saturation region is characterized by
the so-called saturation scale Q s , i.e. the momentum scale at
which saturation effects become sizable. It was noted within the
context of the McLerran–Venugopalan model [4], which has an
x-independent saturation scale Q s , that the negative valued Λ

polarization displays a minimum at a transverse momentum ap-
proximately equal to Q s . Here, we want to investigate the more
realistic case in which the saturation scale is x-dependent [5–7]. It
may be expected that, since now a range of Q s-values is probed,
the minimum of the polarization is smeared out, and possibly not
recognizable anymore. However, in this Letter we will demonstrate
that this is not the case. In fact, the pronounced minimum of the
polarization can even be used to probe the x-dependence of the
saturation scale. This makes the observable of potential interest
for collider experiments at RHIC, LHC and a future electron–ion
collider, the EIC.

Having discussed this promising use of Λ polarization, let us
now address the possibilities of measuring it in the small-x region.
In high energy scattering the polarization of a spin-1/2 final state
hadron can usually only be measured through self-analyzing par-
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ity violating decays. Exploiting this property it was demonstrated
already more than 30 years ago [8,9] that Λ hyperons emerging
from unpolarized p–A collisions are polarized perpendicularly to
the production plane (cf. Ref. [10] for an extensive review of data).
In the fixed target experiments performed at typical center of mass
energies

√
s ∼ 20 GeV, the transverse momentum dependence of

the degree of polarization shows the characteristic feature that af-
ter a linear rise up to pt ∼ 1 GeV, it stays remarkably constant
up to the highest measured values pt ∼ 4 GeV. This behavior was
found to be independent of the specific values of

√
s and atomic

number A. For larger pt values one expects the asymmetry to fall
off as 1/pt , but this has not been observed yet. None of the mea-
surements performed thus far are in a kinematic region where the
target could be considered dense, i.e. in the saturation region. In
Ref. [3] it was pointed out that the characteristic flat behavior ob-
served for pt values of a few GeV, would in that case no longer
be present, but rather an extremum should be visible, located at
pt ∼ Q s . In other words, the observed plateau should turn into a
peak as saturation effects set in and Q s becomes a relevant scale.
Since Q s grows with 1/x and A, one expects this to happen when√

s and/or A are increased significantly. In addition, it also helps
to consider large rapidities, i.e. forward Λ production, in order to
decrease the x values probed. At RHIC forward Λ’s with rapidities
of around 4 would begin to probe the small-x region according
to a dipole scattering description [11]. The possibilities to probe
small x-values are of course greater at LHC, where due to the much
higher

√
s much less forward Λ’s are required. For completeness,

we recall that at RHIC d–Au collisions have been studied at ener-
gies of ∼ 200 GeV/A in the nucleon–nucleon center of mass frame.
At LHC p–Pb collisions will be performed at

√
sNN = 8.8 TeV, but

these do not take place in the nucleon–nucleon center of mass
frame which leads to a rapidity shift from lab frame to center of
rapidity frame of about half a unit. In principle also the p–p col-
lisions at LHC are of interest here, due to the very large energy:√

s = 14 TeV.
Experimentally the measurement of forward Λ’s and their po-

larization may be hampered by the often restricted particle identi-
fication capabilities in the forward region. Two-thirds of the time
Λ’s decay into protons and negatively charged pions: Λ → pπ− .
The angular distribution of the decay in the Λ rest frame is used
to determine the polarization of the Λ. Unfortunately, protons are
usually hard to identify in the forward region. In that case the only
alternative may be to use that the Λ’s decay one third of the time
into neutrons and neutral pions (and subsequently, two photons):
Λ → nπ0 → nγ γ . Neutrons, π0’s and photons have been iden-
tified in the forward region at RHIC, hence this alternative may
be feasible [12] and may in fact be the only way of measuring Λ

polarization in the forward region at RHIC, LHC or EIC. We will
proceed with our investigation under the assumption that forward
Λ polarization measurements will be possible in the future.

The outline of this Letter is as follows. In Section 2 we dis-
cuss the Λ polarization asymmetry in terms of the relevant
polarization-dependent fragmentation function and the dipole
scattering amplitude. This discussion repeats the essentials from
Ref. [3] in order to set the notation and to explain why an ex-
tremum is expected at pt ∝ Q s , but also it includes the details
of various phenomenological models for the dipole scattering am-
plitude that were considered in the literature. As mentioned, in
Ref. [3] only the McLerran–Venugopalan model was considered,
but here we will focus on more recent models that employ an x-
dependent saturation scale. In Section 3 we discuss model results
for the Λ polarization observable for LHC kinematics mainly and
point out the generic qualitative features. Achieving realistic quan-
titative predictions for the degree of Λ polarization will not be our
aim, due to the large uncertainty in the polarization-dependent
fragmentation function. Nevertheless, an estimate can be given
of the range of xF values required to observe the x-dependence
of the saturation scale, as the pt -dependence of the Λ polariza-
tion is found to be less model-dependent than its absolute value.
Prospects for RHIC are also briefly discussed, but no results will be
shown. The reason for this is that at RHIC the peak is likely situ-
ated at a pt below 1 GeV, where the considered framework would
not be appropriate. We end with conclusions.

2. Transverse Λ polarization description at small x

According to Ref. [3], the transverse polarization of forward Λ’s
produced in unpolarized p–A collisions is approximately given by

PΛ(pt , xF )

=
{ 1∫
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, (1)

where yh and pt are the rapidity and the transverse momentum
of the produced Λ, xF = pt/

√
s exp[yh], and x and x2 = q2

t /(xs)
are respectively the momentum fractions of the parton in the pro-
ton and the heavy ion (referred to as the “target”). Note that
three different values of x2 enter in this polarization expression,
in conjunction with the three different transverse momenta qt =
x/xF (pt ± k0

t ) and qt = x/xF pt of the scattered parton. The expres-
sion (1) is based on the asymmetry expression of Ref. [1] combined
with the dipole picture description of the cross section of Ref. [11].
In the dipole formalism, N F describes the scattering of a quark off
a nucleus, while N A describes gluon–nucleus scattering. For details
of the derivation and justification of the approximations we refer
to Ref. [3], where the dipole scattering amplitude N F is denoted
by C .

The polarization-dependent fragmentation function �N DΛ↑/q is
parameterized in terms of the unpolarized one DΛ/q of Ref. [13],

�N DΛ↑/q

(
z,μ2) ≡ f �

q (z)DΛ/q
(
z,μ2), (2)

where

f �
q = 1

2
Nq zcq (1 − z)dq , Nu = Nd = −28.13,

Ns = 57.53, cq = 11.64, dq = 1.23, (3)

and the average transverse momentum is given by

k0
t (z) = 0.66z0.37(1 − z)0.5 GeV. (4)

We emphasize that there is a large uncertainty in this parameter-
ization extracted from fixed target data [1], so that the numerical
results presented below should only be viewed as qualitative, not
as quantitative predictions. Future collider data from LHC could be
used to obtain a more trustworthy parameterization, for instance
through the Λ + jet observable recently pointed out in Ref. [14],
which deals with Λ’s at midrapidity where particle identification
does not pose a problem.

Using the McLerran–Venugopalan (MV) model for the dipole
scattering amplitude it was shown in [3] that the pt distribution of
the transverse polarization displays a peak that is directly related
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to the saturation scale Q s . However, the MV model does not incor-
porate evolution in x; Q s is constant. Here we want to investigate
whether PΛ as a function of pt still possesses an observable peak
when described using a more realistic dipole scattering ampli-
tude including x-evolution. A phenomenologically successful model
with an x-dependent Q s is the Golec-Biernat and Wüsthoff (GBW)
model [15], which was able to describe small-x DIS data.2 Here
we will focus on two different modifications of the GBW model
that were introduced to describe RHIC d–Au data: the DHJ model
[17,18] and the geometric scaling (GS) model of Ref. [19]. Both are
of the form

N F (qt , x2)

≡
∫

d2rt ei	qt ·	rt

[
1 − exp

(
−1

4

(
4

9
r2

t Q 2
s (x2)

)γ (qt ,x2))]
, (5)

where N A is obtained from N F by replacing 4
9 r2

t Q 2
s (x2) by

r2
t Q 2

s (x2), and the saturation scale is given by [15]

Q s(x2) = (1 GeV)

(
x0

x2

)λ/2

, (6)

where the parameters x0 
 3 × 10−4 and λ 
 0.3 were fitted to
the small-x DIS data. In the GBW model the so-called anomalous
dimension γ is simply equal to 1. The DHJ model incorporates ex-
pectations on the behavior of γ from BFKL/BK evolution [17,18],
namely a logarithmic dependence on q2

t /Q 2
s (x), and violations of

geometric scaling that are proportional to 1/y (at large y)

γDHJ(qt , x2) = γs + (1 − γs)
| log(q2

t /Q 2
s (x2))|

λy + d
√

y + | log(q2
t /Q 2

s (x2))|
, (7)

where γs = 0.6275, y = log 1/x2 is minus the rapidity of the target
parton. The saturation scale Q s(x) and the parameter λ are taken
from the GBW model, as given in Eq. (6), and d = 1.2 was fitted to
data. Here Q s includes the additional factor A1/3, where for large
atomic numbers A usually a lower, effective number Aeff is used
to account for impact parameter-dependence.

The parameterization of γDHJ, which is based on the one given
in Ref. [20], is well motivated by expectations from small-x evo-
lution that are valid only for qt � Q s [6,21]. In contrast, the con-
tinuation to the saturation region qt � Q s is rather undetermined.
In the case of hadron production at RHIC [17,18] this is not crucial
since this region is hardly probed. But the polarization observable
discussed here is sensitive to γ around Q s , not only to qt � Q s .
Hence, the continuation of γ to the saturation region affects the
polarization around the peak.

The DHJ model was found to describe well forward hadron pro-
duction in d–Au collisions at RHIC, but it fails at central rapidity
[19]. In particular, the logarithmic rise of γ proved to be too slow
to describe the larger x central rapidity data. Also the scaling viola-
tions of the DHJ model could not be resolved in the data. In order
to investigate to what extent the RHIC data establish the small-x
properties incorporated in the DHJ model, a new model was put
forward that is not only exactly geometrically scaling, but in addi-
tion features a stronger rise of γ [19]

γGS(w) = γs + (1 − γs)
(wa − 1)

(wa − 1) + b
. (8)

Here, a = 2.82 and b = 168 were fitted to the data. This GS model
turned out to be able to describe the d–Au data well at all ra-
pidities. It must be emphasized though that when restricted to the

2 Note that the GBW model was found to be inconsistent with newer, more accu-
rate data and requires some modification at larger Q 2, see, for example, Ref. [16].
forward data, or equivalently the smaller x data, both models de-
scribe the data equally well. From the comparison of the model
predictions to future LHC p–Pb and p–p data one should be able
to learn which rise is more appropriate at small x. Given this un-
certainty, here we will use both models to study the transverse Λ

polarization.
To shed light on the peak in the pt distribution, we will sep-

arate PΛ into a pt -dependent and an xF -dependent part in the
following way. To good approximation the integrals in (1) are dom-
inated by a value of xF /x ≡ z that is independent of pt and only
moderately dependent on xF . Due to the large power cq , which
suppresses small ratios z in the numerator, the z effectively probed
in the numerator and the denominator are different. We will de-
note the value that dominates the numerator with z and the
smaller one that dominates the denominator with z′ . Of course in
the kinematic limit xF → 1, both z and z′ must become equal to 1.
In the following analysis we will stay away from this limit and as-
sume that xF stays smaller than roughly 0.5. Ignoring the gluonic
contributions, which is a good approximation when xF is not too
small, we can approximate (1) in the following way:

PΛ(pt , xF )

≈
∑

q DΛ/q(z)(xF /z) fq/p(xF /z,μ2
f ) f �

q (z)∑
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× N F ( 1
z (pt − k0
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xF z
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t )2

s ) − N F ( 1
z (pt + k0

t ), 1
xF z

(pt+k0
t )2

s )

N F ( 1
z′ pt ,

1
xF z′

p2
t

s )

.

(9)

Since z and z′ are considered constant, Eq. (9) now depends on pt

through the function N F only. This is true assuming the factoriza-
tion scale μ f to be constant. Below we will mostly choose μ f = pt

though, but this will turn out not to make much difference. We
further note that since k0

t is only around 0.3 GeV or smaller for all
relevant values of z, we can expand N F ( 1

z (pt − k0
t )) − N F ( 1

z (pt +
k0

t )) in terms of k0
t /pt , requiring pt � 1 GeV throughout this Letter,

N F

(
1

z

(
pt − k0

t

)) − N F

(
1
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z
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Here we have suppressed the explicit dependence on x2 for con-
venience and we will do so frequently below. Writing the dipole
scattering amplitude in terms of a dimensionless function Ñ F ,

N F (qt , x2) ≡ 2π

q2
t

Ñ F
(

w = qt/Q s(x2), x2
)
, (11)

we can express Eq. (10) in the following way:
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Using this result, we can split off the pt -dependence of the trans-
verse polarization and write

PΛ(pt , xF ) ≈
∑

q DΛ/q(z)(xF /z) fq/p(xF /z,μ2
f ) f �

q (z)/z∑
q DΛ/q(z′)(xF /z′) fq/p(xF /z′,μ2

f )

× k0
t

Q s
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z′ 2
F
(

w, w ′), (13)

where we have defined the pt -dependent part of PΛ as a separate
function F (w, w ′),

F
(

w, w ′) = 2

w

2Ñ F (w) − wÑ ′
F (w)

˜ ′ . (14)

N F (w )
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Fig. 1. The function F (w, w ′) for γ = 0.6275 and various ratios w/w ′ .
From the asymptotic behavior of F it can be seen that it
must have an extremum. From Eqs. (5) and (11), it follows that
Ñ F ∝ 1/w2γ for large w , and hence that F (w, w ′) will approach
2(1 + γ )/w . On the other hand, in the deep saturation regime the
function (11) is proportional to w2, so that F (w, w ′) vanishes as
w → 0. Therefore, the function F (w, w ′), and consequently PΛ ,
must have a peak as it connects these two asymptotic behaviors.
Without saturation there could also be a peak in PΛ , but one
would in that case not expect the extremum to be rather sharply
peaked at a perturbative scale of a few GeV. Such a peak would be
a sign of saturation, especially if it increases towards larger trans-
verse momenta with increasing energy. Of course, there could be
a plateau-like extremum, as it appears to be the case at low ener-
gies. However, the MV model calculation of Ref. [3] clearly shows
there to be a pronounced peak, with a position proportional to the
(constant) saturation scale Q s . If this proportionality holds when
Q s evolves with x, the location of the peak in pt would be a direct
probe of the running of Q s through its dependence on xF . If how-
ever the peak position depends also explicitly on xF , the running
of Q s cannot be reconstructed from the peak position. Because the
probed values of z′/z = w/w ′ depend on xF , this means that we
have to check that they do not influence the position of the peak.
Fig. 1 shows F (w, w ′) for various values of w/w ′ = z′/z ranging
from 0.25 to 1, using a dipole scattering amplitude with a con-
stant γ = 0.6275. The curves indeed have a clear maximum3 as a
function of w . The position of the peak hardly depends on w ′/w
if w ′/w is not too close to 1, i.e. away from the kinematic limit
xF → 1. Hence, we conclude that the peak of F is located at an
approximately constant value of w . As mentioned, this means that
the minimum of PΛ does not explicitly depend on xF , but only
through the saturation scale Q s .

We find that all this remains true not only for different constant
γ ’s, but also for the DHJ and GS models. The GS model actually

3 Since the polarized part of the fragmentation function f �
q is negative for the u

and d quarks that lead to the dominating contributions, PΛ will have a negative
valued minimum, which for convenience will sometimes also simply be referred to
as a peak.
leads to the same peak position as constant γ = γs , because it
differs only little from γGS(w = 1) = γs in the saturation region
w � 1, where the peak of F is located. The DHJ model gives a
slightly different peak, one that depends on the continuation into
the saturation region qt < Q s , as will be discussed further below.

One can estimate the xF dependence of the peak of the result-
ing pt -distribution as follows. Since the peak of F is at a constant
value of w = zpt/Q s , where z is roughly constant as well, the peak
in pt is directly proportional to Q s(x). Because the dominant value
of x that is probed depends on both pt and xF , the peak position
ppeak

t will depend on xF . As the probed value of z = xF /x in the
integrals in Eq. (1) is to good approximation constant, the target
momentum fraction x2, which sets the saturation scale Q s(x2), is
given by

x2 = x exp(−2yh) = x

x2
F

p2
t

s
∝ 1

xF

p2
t

s
. (15)

Using this relation, we can estimate the xF -dependence of the peak
position ppeak

t of PΛ . Assuming that the saturation scale is given
by a power law in 1/x, Eq. (6), we see that

ppeak
t ∝ Q s

(
xF , ppeak

t

) ∝ Q 0

(
xF x0s

(ppeak
t )2

)λ/2

(16)

⇒ ppeak
t (xF ) ∝ Q 0xλ′/2

F

(
x0s

Q 2
0

)λ′/2

, λ′ = λ

1 + λ
. (17)

Hence, we conclude that the running of the peak position with xF

is a clear indication of the running of the saturation scale Q s(x2).
Moreover, the power λ can be reconstructed from the behavior of
the peak position as a function of xF .

The parameterization of Q s in Eq. (6) is not just based on the
GBW model fit to DIS data. The specific power law dependence
on 1/x stems from theoretical arguments. Small-x evolution equa-
tions, such as the GLR [22], BFKL [23] and BK [24] equations in
the fixed coupling constant case, result in such a behavior and de-
termine the power λ (typically they yield λ ≈ 0.9). In the running
coupling case the functional form of Q s is different. But over the
limited range of experimentally accessible values of x, Q s can still
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Fig. 2. PΛ for various constant γ for p–Pb collisions at
√

s = 8.8 TeV. Curves for smaller γ have their minimum at smaller pt .
be approximated by a power law like behavior. In this way the
specific value of λ = 0.3 that best describes the DIS data, can be
effectively accommodated. This implies that λ may be different in
p–A collision where a different kinematic range is probed.

In the discussion above we have expanded N F in terms of k0
t /pt

requiring pt � 1 GeV, so that pt is in the perturbative regime. This
should be considered a minimal requirement for the present dipole
description to be applicable and also from the perspective of the
scale choice μ f = pt it is a sensible lower bound. Therefore, below

we will only discuss results for which ppeak
t is in the perturbative

regime.

3. Transverse Λ polarization results

Here we will present our numerical estimates of the transverse
polarization (1). For the fragmentation functions we have chosen
the leading order (LO) functions given in [13] and for the par-
ton distributions the CTEQ5 LO ones [25]. In [18] it was shown
that certain effects of higher order can be taken into account by
the DGLAP evolution of fragmentation functions and parton dis-
tributions at the scale set by pt . Unless stated otherwise, we will
therefore set the factorization scale to μ f = pt . We will return to
the μ f dependence of the results later on.

We first discuss the pt distribution of PΛ for constant values
of xF . Here we will first give the result for p–Pb collisions at
LHC at

√
s = 8.8 TeV explicitly and later point out how they com-

pare to p–p collisions at LHC and d–Au collisions at RHIC. For the
saturation scale we will use the GBW parameterization (6) with
Q 2

0 = 2.7 GeV2 instead of 1 GeV2 by taking Aeff = 20. Fig. 2 shows
the resulting PΛ . It has been calculated for dipole scattering am-
plitudes with various constant values of γ from 0.5 to 0.9. The
increasing magnitude of the polarization with increasing xF is due
to the polarized part of the fragmentation f �

q (for larger xF larger
values of z are probed). The anticipated rise of the peak position
with xF can be clearly observed. Furthermore, the peak position
rises approximately linearly with γ for all considered values of xF .

Fig. 3 shows the polarization for various xF as a function of
pt , but now for three γ ’s that are all equal at the saturation
scale: a constant γs , γDHJ and γGS. As expected, the difference
between the polarization for γs and γGS is very small because
in the saturation region γGS differs only mildly from the value
γGS(qt = Q s) = γs . Because of the uncertainty in the continuation
of the DHJ parameterization in the saturation region, the estimate
of PΛ around the peak is ambiguous. If we would, for instance,
continue γDHJ by keeping it constant for qt < Q s , we would ob-
tain roughly the same result as for γGS. The fact that the DHJ
and GS models yield similar results for the observed behavior of
the peak indicates our findings are rather robust and to a certain
extent model-independent. In contrast, the magnitude of the po-
larization is subject to considerable uncertainty, mostly due to the
parameterization of �N D , but also somewhat due to the choice of
the factorization scale.

Thus far we have used a factorization scale μ f = pt . However,
in Ref. [3] μ f = Q s was considered, which may also be a natu-
ral choice. In the present case that would lead to an x-dependent
factorization scale. Fig. 4 shows PΛ with γGS for three differ-
ent factorization scales, μ f = pt , μ f = Q s , and a constant scale
μ f = 1 GeV. As can be seen, for constant xF the shape of the
pt distributions is rather independent of the factorization scale.
The normalization does depend on the choice of μ f , but still only
moderately. Therefore, choosing μ f = pt does not noticeably affect
our claim that the xF -dependence of the peak momentum directly
probes the x-dependence of the saturation scale.

Fig. 5 shows the xF -dependence of the peak position of the pt

distribution for various choices of γ . The lines for constant γ con-
firm that the peak position scales linearly with γ . Moreover, for
not too large xF , the power law rise of ppeak

t with xF is consistent
with the result we obtained in Eq. (17), including the fact that the
power is independent of γ . As expected, the results for γGS(w) (8)
and the constant γ = γs are very close to each other. The curve
for γDHJ (7) is similar to that of a constant γ that is slightly larger
than γs . This is because γDHJ rises rather quickly in the saturation
region as qt decreases.

As can be seen from Fig. 5 all slopes are also numerically con-
sistent with the power λ′/2 in Eq. (17) for λ = 0.3. This implies
that an increase in xF by a factor 5 leads to a shift in the peak
position of approximately 20%. This can be seen directly in Fig. 4
too, when comparing the peak position at xF = 0.1 and 0.5. Un-
fortunately, this is not a large shift, but it does give an estimate
for the precision with which the peak position needs to be deter-
mined. It should be mentioned that, as discussed before, the value
of λ may be different in p–A collisions than the one taken from
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Fig. 3. PΛ in p–Pb collisions at
√

s = 8.8 TeV, for γDHJ , γGS and a constant γs . The top lines correspond to xF = 0.1, the lowest to xF = 0.5.

Fig. 4. PΛ in p–Pb collisions at LHC for the scaling γGS (8) and three different choices of the factorization scale μ f = pt , Q s and 1 GeV. The top lines correspond to xF = 0.1,
the lowest to xF = 0.5.
the analysis of the small-x DIS data. A larger value of λ would
of course result in a stronger x-dependence of Q s and therefore
in a larger xF -dependence of the peak position that would be
easier to observe. At small xF , where the position of the peak
is less pronounced, it will be harder to determine than at large
xF . The value of pt/Q s at which the peak is situated depends
– too good approximation linearly – on γ in the saturation re-
gion qt � Q s . As can be seen in Fig. 3, the peak is located for
γGS and γ = γs at almost the same position. We find empiri-
cally that in these cases the minimum in the pt distribution shows
up at w ≈ 0.55, i.e. pt ≈ 0.55zQ s , where z rises slightly with xF

from 0.7 to 1 in the limit xF → 1. Depending on the continua-
tion of the DHJ model to the saturation region the peak is situated
at a different w . For the continuation (7) the peak shows up at
pt ≈ 0.60zQ s , since it rises again towards smaller qt in the satura-
tion region.
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Fig. 5. The peak position of the pt distribution PΛ(pt , xF ) as a function of xF in double logarithmic representation for various choices of γ .
Similar results for PΛ are obtained for p–p collisions at LHC
and d–Au collisions at RHIC. Again an extremum is observed at
around one half times the saturation scale that shows the same
xF -dependence as for p–Pb scattering at LHC. However, due to
the different kinematics and targets, Q s and hence the position
of the peak ppeak

t is in both cases lower. Following the same line

of arguments leading to the xF -dependence of ppeak
t (17), one can

estimate its
√

s- and Q 0-dependence,

ppeak
t

(
xF ,

√
s′, Q ′

0

) = ppeak
t

(
xF ,

√
s, Q 0

)( Q ′
0(

√
s′ )λ

Q 0(
√

s )λ

)1/(1+λ)

. (18)

For p–p at LHC Q 0 is 1 GeV and
√

s = 14 TeV. Hence, the peak
position is expected to be reduced by a factor of 1.3 with re-
spect to p–Pb collisions at

√
s = 8.8 TeV. An explicit calculation

confirms that this estimate works very well, i.e. the xF -dependent
extremum is expected to show up approximately between 1.5 and
2.0 GeV for xF ∼ 0.1–0.5. For d–Au collisions at RHIC the probed
values of x2 are less small due to the smaller energy. Hence, the
probed values of Q s and hence ppeak are reduced even more,
namely by a factor of 2.4 compared with p–Pb collisions at LHC,
which may situate it below the perturbative regime pt � 1 GeV,
even for constant values of xF = 0.1–0.5. However, given the un-
certainties in e.g. the values of Q 0 and λ, a peak in the pertur-
bative region is not ruled out, especially for larger xF . From this
perspective it may still be worthwhile to investigate this observ-
able at RHIC.

Up to now we focused on the calculation of PΛ at constant xF ,
where the dependence on

√
s is not that large. However, from an

experimental point of view it might be more convenient to mea-
sure PΛ for constant rapidities yh . As demonstrated before, there
is a clear peak in the pt distribution at fixed xF , which is at differ-
ent locations for different xF . Therefore, since at fixed yh a range
of values of xF contributes, the peak will be smeared out to some
extent (this can also be observed for the DHJ model predictions
of single spin asymmetries in forward pion production in the col-
lisions of transversely polarized protons with unpolarized protons
[26]). Hence, it is not clear a priori whether the peak remains ob-
servable and whether the peak position is still a clear probe of the
saturation scale.

For LHC kinematics, we know from the previous analysis that
a peak at transverse momenta larger than 1 GeV requires xF =
pt/

√
s exp[yh] � 0.01. At LHC such a peak is thus only expected

in the forward region yh � 4. Fig. 6 shows PΛ for p–Pb scattering
at LHC at

√
sNN = 8.8 TeV, for values of yh = 4,5,6. Indeed, the

extremum is in these cases located at a pt larger than 1 GeV, but
it is much less pronounced than at fixed xF and for the GS model
less recognizable than for the DHJ model. We also note that the
magnitude of the asymmetry is considerably reduced compared to
the fixed xF case.

At RHIC the saturation scale becomes roughly of the order Q s �
1 GeV for forward Λ’s with rapidities of around 4. However, unlike
for the MV model, the peak position for the DHJ and GS models
is located considerably below Q s , that is, below pt = 1 GeV. An
explicit calculation of PΛ for RHIC confirms that even for yh = 4 a
peak is not expected to be above 1 GeV. In other words, Q s(x) can
presumably not be extracted in a trustworthy manner from a fixed
yh = 4 analysis at RHIC, unless Q 0 and/or λ turn out to be larger
than expected at present.

4. Conclusions

The transverse polarization of Λ particles displays a peak at
the saturation scale when described using the MV model for the
dipole scattering amplitude. We find that in the more realistic case
where the dipole amplitude depends on x, such a peak in the pt

distribution remains. The position of the peak, ppeak
t , is still pro-

portional to Q s , and therefore offers a direct experimental probe
of this scale. For fixed values of xF , the x-dependence of Q s can be
reconstructed from the xF -dependence of ppeak

t . It would be very
interesting to compare the function Q s(x) obtained in p–A colli-
sions in this way with the GBW model one that was obtained from
DIS data, in order to establish consistency among the descriptions
of all available data. The power λ in Q s ∼ x−λ/2 determines how
strongly the peak varies with xF . Using λ = 0.3 as obtained from
DIS, which according to a dipole scattering description is compat-



98 D. Boer et al. / Physics Letters B 671 (2009) 91–98
Fig. 6. PΛ in p–Pb collisions at
√

s = 8.8 TeV, for constant yh using γGS and γDHJ . The top lines correspond to yh = 4, the lowest to yh = 6.
ible with forward hadron production d–Au data of RHIC, we have
obtained the following results. In p–Pb collisions at LHC, for val-
ues of xF that are between 0.1 and 0.5, the position of the peak
is expected between pt = 1.5 and 2.5 GeV. This result is obtained
for a range of dipole models that includes the DHJ and GS models.
In p–p collisions, the position of the peak is reduced by a factor
of 1.3, but is still in the perturbative regime. In d–Au collisions at
RHIC, the position of the peak is smaller by a factor of 2.4 with
respect to p–Pb at LHC, due to the much smaller energy. Hence,
observing the peak in the perturbative regime at RHIC seems un-
likely, except perhaps at even larger xF values.

For fixed values of the rapidity instead of xF , the peak in the
pt distribution gets smeared out and is reduced in size. Moreover,
in this case the polarization peaks in the perturbative regime pt �
1 GeV only for Λ rapidities of 4 or larger in p–Pb collisions at
LHC. Therefore, Λ polarization LHC data at fixed xF are best suited
for the purpose of establishing the x-dependence of Q s in p–A
collisions.

Even though the presented quantitative estimates are to some
extent model-dependent, the qualitative features of the Λ polar-
ization, i.e. the position of the peak with respect to Q s and its
running with xF , are expected to be generic for the small-x re-
gion. This offers a unique possibility to probe Q s directly in p–A
collisions.
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