Symmetric Pascal matrices modulo p

Roland Bacher ${ }^{\text {a }}$, Robin Chapman ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut Fourier, UMR 5582, Laboratoire de Mathématiques, BP 74, 38402 St. Martin d’Hères Cedex, France
${ }^{\mathrm{b}}$ School of Mathematical Sciences, University of Exeter, North Park Road, Exeter EX4 4QE, UK

Received 16 December 2002; received in revised form 3 June 2003; accepted 4 June 2003

Abstract

We give some results concerning determinants and characteristic polynomials modulo p of the symmetric Pascal matrix with coefficients $\binom{i+j}{i}(\bmod p), 0 \leq i, j<n$.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents results and conjectures concerning symmetric matrices associated to Pascal's triangle. We first give a formula for the determinant over \mathbf{Z} of the reduction modulo 2 with values in $\{0,1\}$ and of the reduction modulo 3 with values in $\{-1,0,1\}$ for such a matrix. We then study the reduction modulo a prime p of the characteristic polynomials of these matrices. Our main results imply a recursive formula for the prime $p=2$ and a conjectural recursive formula for $p=3$.

Consider the symmetric matrix $P(n)$ with coefficients

$$
p_{i, j}=\binom{i+j}{i}, \quad 0 \leq i, j<n .
$$

We call $P(n)$ the symmetric Pascal matrix of order n. The entries of $P(n)$ satisfy the recurrence

$$
p_{i, j}=p_{i-1, j}+p_{i, j-1}
$$

In [2] the first author studied the determinant of the general matrix with entries satisfying this recurrence.

[^0]An easy computation yields $P(\infty)=T T^{t}$ where T is the infinite unipotent lower triangular matrix

$$
T=\left(\begin{array}{ccccc}
1 & & & & \\
1 & 1 & & & \\
1 & 2 & 1 & & \\
1 & 3 & 3 & 1 & \\
\vdots & & & & \ddots
\end{array}\right)=\exp \left(\begin{array}{ccccc}
0 & & & & \\
1 & 0 & & & \\
0 & 2 & 0 & & \\
& 0 & 3 & 0 & \\
& & & & \ddots .
\end{array}\right)
$$

with coefficients $t_{i, j}=\binom{i}{j}$. This shows that $\operatorname{det}(P(n))=1$ and that $P(n)$ is positive definite for all $n \in \mathbf{N}$. Hence all zeros of the characteristic polynomial $\chi_{n}(t)=\operatorname{det}(t I(n)-$ $P(n)$) (where $I(n)$ denotes the identity matrix of size n) of $P(n)$ are positive reals. The inverse $P(n)^{-1}$ of $P(n)$ is given by

$$
P(n)^{-1}=\left(T(n)^{t}\right)^{-1} T(n)^{-1}
$$

and $T(n)^{-1}$ has coefficients $(-1)^{i+j}\binom{i}{j}, 0 \leq i, j<n$. Hence $T(n)$ and $T(n)^{-1}$ are conjugate by an orthogonal matrix, and thus also $P(n)$ and $P(n)^{-1}$ are conjugate. The characteristic polynomial $\chi_{n}(t)$ therefore satisfies $\chi_{n}(t)=(-t)^{n} \chi(1 / t)$ and 1 is always an eigenvalue of $P(2 n+1)$, cf. [4]. The polynomials $\chi_{n}(t)$, especially their behaviour modulo primes, will be our main object of study. For convenience, we write I for $I(n)$ whenever the size of the identity matrix is unambiguous.

Define $\bar{P}(n)_{2}$ with coefficients $\left(\bar{P}(n)_{2}\right)_{i, j} \in\{0,1\}$ as the reduction modulo 2 of $P(n)$ by setting

$$
\left(\bar{P}(n)_{2}\right)_{i, j}=\left(\binom{i+j}{i}(\bmod 2)\right) \in\{0,1\} .
$$

The Thue-Morse sequence $s(n)=\sum v_{i}(\bmod 2)$ records the parity of the sum of the binary digits of $n=\sum v_{i} 2^{i}$. It can also be defined recursively by $s(0)=0, s(2 k)=s(k)$ and $s(2 k+1)=1-s(k)$ (cf. for instance [1]).

Similarly, we define $\bar{P}(n)_{3}$ with coefficients $\left(\bar{P}(n)_{3}\right)_{i, j} \in\{-1,0,1\}$ as the reduction modulo 3 of $P(n)$ by setting

$$
\left(\bar{P}(n)_{3}\right)_{i, j}=\left(\binom{i+j}{i}(\bmod 3)\right) \in\{-1,0,1\} .
$$

We introduce furthermore the sequence $t(n)$ defined recursively by $t(0)=0, t(3 n)=t(n)$, $t(3 n+1)=t(n)+1, t(3 n+2)=t(n)-1$. One has $t(n)=\alpha(n)-\beta(n)$ where $\alpha(n)=\#\left\{j \mid \nu_{j}=1\right\}$ (respectively $\beta(n)=\#\left\{j \mid \nu_{j}=2\right\}$) count the number of occurrences of digits equal to 1 (respectively to 2) when writing $n=\sum v_{j} 3^{j}$ (with $\left.v_{j} \in\{0,1,2\}\right)$ in base 3 .
Theorem 1.1. (i) The determinant over \mathbf{Z} of $\bar{P}(n)_{2}$ is given by

$$
\operatorname{det}\left(\bar{P}(n)_{2}\right)=\prod_{k=0}^{n-1}(-1)^{s(k)}
$$

(ii) The determinant over \mathbf{Z} of $\bar{P}(n)_{3}$ is given by

$$
\operatorname{det}\left(\bar{P}(n)_{3}\right)=\prod_{k=0}^{n-1}(-2)^{t(k)}
$$

In the sequel, we will be interested in the characteristic polynomial $\operatorname{det}(t I-P(n))$ $(\bmod p)$ for p a prime number. The next result yields a formula for $n=p^{l}$ and is of crucial importance in the sequel.
Proposition 1.2. Given a power $q=p^{l}$ of a prime p, the matrix $P(q)$ has order 3 over \mathbf{F}_{p}. Its characteristic polynomial $\chi_{q}(t)=\operatorname{det}(t I(q)-P(q))$ satisfies

$$
\chi_{q}(t) \equiv\left(t^{2}+t+1\right)^{\frac{q-\epsilon(q)}{3}}(t-1)^{\frac{q+2 \epsilon(q)}{3}}(\bmod p)
$$

where $\epsilon(q) \in\{-1,0,1\}$ satisfies $\epsilon(q) \equiv q(\bmod 3)$.
In particular, $P(q)$ can be diagonalized over $\mathbf{F}_{p^{2}}$ except when $p=3$. For instance, $P(3)$ has a unique Jordan block over \mathbf{F}_{3}.

This proposition (except for the diagonalization part) admits the following generalization:
Theorem 1.3. When $q=p^{l}$ is a power of a prime p and $0 \leq k \leq q / 2$ then

$$
\chi_{q-k}(t) \equiv\left(t^{2}+t+1\right)^{(q-\epsilon(q)) / 3-k}(t-1)^{(q+2 \epsilon(q)) / 3-k} \operatorname{det}\left(t^{2} I+P(k)\right)(\bmod p)
$$

where $\epsilon(q) \in\{-1,0,1\}$ satisfies $\epsilon(q) \equiv q(\bmod 3)$.
Theorem 1.3 completely determines the reduction modulo 2 of $\chi_{n}(t)$ as follows: Define a sequence $\gamma(0)=0, \gamma(1), \ldots$ recursively by

$$
\gamma\left(2^{l}-k\right)=\frac{2^{l}+2(-1)^{l}}{3}-k+2 \gamma(k), \quad 0 \leq k \leq 2^{l-1} .
$$

Theorem 1.4. For all $n \in \mathbf{N}$

$$
\chi_{n}(t) \equiv(t+1)^{\gamma(n)}\left(t^{2}+t+1\right)^{\gamma_{2}(n)}(\bmod 2)
$$

where $\gamma_{2}(n)=(1 / 2)(n-\gamma(n))$.
It follows immediately that the matrix $I-P(n)^{3}$ is nilpotent over \mathbf{F}_{2} for all $n \in \mathbf{N}$. It would be of interest to investigate the sizes of the Jordan blocks of $I-P(n)^{3}$ over \mathbf{F}_{2}.

The first terms $\gamma(1), \ldots, \gamma(32)$ and $\gamma_{2}(1), \ldots, \gamma_{2}(32)$ are given by

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\gamma(n)$	1	0	3	2	5	0	3	2	5	0	11	6	9	4	7	6
$\gamma_{2}(n)$	0	1	0	1	0	3	2	3	2	5	0	3	2	5	4	5
n	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
$\gamma(n)$	9	4	15	10	21	0	11	6	9	4	15	10	13	8	11	10
$\gamma_{2}(n)$	4	7	2	5	0	11	6	9	8	11	6	9	8	11	10	11

The sequence $\gamma(0), \gamma(1), \ldots$ has many interesting arithmetic features. In order to describe them, let us introduce the number $b(n)$ of "blocks" of consecutive ones in the
binary expansion of a positive integer n. For instance $667=(1010011011)_{2}$ and so $b(667)=4$. Notice that $b(2 n)=b(n)$ and $b(2 n+1)=b(n)+1-(n(\bmod 2))$ (with $n(\bmod 2) \in\{0,1\})$. This, together with $b(0)=0$, defines the sequence $b(n)$ recursively.
Theorem 1.5. (i) We have

$$
\gamma\left(2^{l}+k\right)=\frac{2^{l}+2(-1)^{l}}{3}-k+4 \gamma(k)
$$

for all $0 \leq k \leq 2^{l-1}$.
(ii) We have for $2^{l-2} \leq k \leq 2^{l-1}$

$$
\gamma\left(2^{l}-k\right)=\gamma(k)+2 \gamma\left(2^{l-1}-k\right)
$$

(iii) We have

$$
\gamma\left(2^{l}+k\right)=1+\gamma\left(2^{l}+k-1\right)+2 \gamma\left(2^{l}-k\right)-2 \gamma\left(2^{l}+1-k\right)
$$

for $1 \leq k \leq 2^{l}$.
(iv) We have, for all $n \in \mathbf{N}$,

$$
\begin{aligned}
& \gamma(2 n)=n-\gamma(n) \\
& \gamma(2 n-1)=\gamma(2 n)+\left(4^{b(2 n-1)}-1\right) / 3=n-\gamma(n)+\left(4^{b(2 n-1)}-1\right) / 3 \\
& \gamma(2 n+1)=\gamma(2 n)+\left(2^{1+2 b(n)}+1\right) / 3=n-\gamma(n)+\left(2^{1+2 b(n)}+1\right) / 3
\end{aligned}
$$

Part (iv) of this theorem gives an alternative recursive definition of the sequence $(\gamma(n))$. Theorem 1.3 seems to have many variants. One is given by the following:

Conjecture 1.6. For each integer $k \geq 0$ there exists a monic polynomial $c_{k}(t) \in \mathbf{Z}[t]$ of degree $4 k$ such that $c_{k}(t)=t^{4 k} c_{k}\left(t^{-1}\right)$ with the following property: if q is a power of a prime p, and $0 \leq k \leq q / 2$ then

$$
\chi_{q+k}(t) \equiv\left(t^{2}+t+1\right)^{(q-\epsilon(q)) / 3-k}(t-1)^{(q+2 \epsilon(q)) / 3-k} c_{k}(t)(\bmod p)
$$

where $\epsilon(q) \in\{-1,0,1\}$ satisfies $\epsilon(q) \equiv q(\bmod 3)$.
The first few of these conjectural polynomials $c_{k}(t)$ are

$$
\begin{aligned}
c_{0}(t)= & 1 \\
c_{1}(t)= & t^{4}-2 t^{3}-2 t+1, \\
c_{2}(t)= & t^{8}-6 t^{7}+4 t^{6}-4 t^{5}+15 t^{4}-4 t^{3}+4 t^{2}-6 t+1, \\
c_{3}(t)= & \left(t^{4}-2 t^{3}-2 t+1\right)\left(t^{8}-16 t^{7}+4 t^{6}-4 t^{5}+40 t^{4}-4 t^{3}+4 t^{2}-16 t+1\right), \\
c_{4}(t)= & t^{16}-58 t^{15}+288 t^{14}-240 t^{13}+393 t^{12}-1440 t^{11}+836 t^{10}-902 t^{9} \\
& +2376 t^{8}-902 t^{7}+\cdots-58 t+1, \\
c_{5}(t)= & c_{1}(t)\left(t^{16}-196 t^{15}+2112 t^{14}-792 t^{13}+1290 t^{12}-10560 t^{11}\right. \\
& \left.+2768 t^{10}-2972 t^{9}+17424 t^{8}-2972 t^{7}+\cdots-196 t+1\right)
\end{aligned}
$$

For $p=2$, it follows from Theorem 1.4 and assertion (i) in Theorem 1.5 that if $c_{k}(t)$ exists then

$$
c_{k}(t) \equiv(\operatorname{det}(t I+P(k)))^{4}(\bmod 2)
$$

Computations suggest:
Conjecture 1.7. We have

$$
c_{k}(t) \equiv(t+1)^{3 k} \operatorname{det}(t I+P(k))(\bmod 3) .
$$

This conjecture, together with Theorem 1.3 yields conjectural recursive formulas for the reduction modulo 3 of $\chi_{n}(t)=\operatorname{det}(t I(n)-P(n))$ as follows: Set $\chi_{0}(t)=1$ and $\chi_{1}(t)=1-t$. For $n=3^{l} \pm k>1$ with $0 \leq k<3^{l} / 2$ the characteristic polynomial $\chi_{n}(t)(\bmod 3)$ is then conjecturally given by

$$
\begin{array}{ll}
(t-1)^{3^{l}-3 k} \operatorname{det}\left(t^{2} I+P(k)\right) & \text { if } n=3^{l}-k \\
(t-1)^{3^{l}-3 k}(t+1)^{3 k} \operatorname{det}(t I+P(k)) & \text { if } n=3^{l}+k
\end{array}
$$

In particular, all roots of $\chi_{n}(t)$ modulo 3 should be of multiplicative order a power of 2 in the algebraic closure of \mathbf{F}_{3}.

We conclude finally by mentioning a last conjectural observation:
Conjecture 1.8. Given a prime-power $q=p^{l} \equiv 2(\bmod 3)$, we have

$$
\chi(q+1) / 3(t) \equiv(t+1)^{(q+1) / 3}(\bmod p)
$$

and

$$
\chi_{(2 q-1) / 3}(t) \equiv(t+1)^{(q+1) / 3}(t-1)^{(q-2) / 3}(\bmod p)
$$

Remark 1.9. (i) The matrix $C=P((q+1) / 3)+I((q+1) / 3)$ for $q=p^{l} \equiv$ $2(\bmod 3)$ a prime-power, appears to have a unique Jordan block of maximal length over \mathbf{F}_{p}. If so, the rows of $C^{(q+1) / 6}$ generate a self-dual code over \mathbf{F}_{p}.
(ii) Given a prime-power $q=p^{l} \equiv 2(\bmod 3)$ as above we set $n=(2 q+2) / 3$ and $k=(2 q-1) / 3$. We conjecture that the characteristic polynomial of the matrix $\tilde{P}_{k}(n)$ with coefficients

$$
\tilde{p}_{i, j}=\binom{i+j+2 k}{i+k}, \quad 0 \leq i, j<n
$$

satisfies $\operatorname{det}\left(t I-\tilde{P}_{k}(n)\right) \equiv(1+t)^{n}(\bmod p)$.
Remark 1.10. In [3, Theorems 32 and 35] Krattenthaler gives evaluations of determinants related to ours, namely of $\operatorname{det}(\omega I+Q(n))$ where ω is a sixth root of unity, and $Q(n)$ has entries $\binom{2 \mu+i+j}{j}(0 \leq i, j<n)$.

The sequel of this paper is organized as follows:
Section 2 is devoted to autosimilar matrices. Such matrices generalize the matrices $\bar{P}(\infty)_{2}, \bar{P}(\infty)_{3}$ and their properties imply easily Theorem 1.1.

Section 3 contains proofs of Proposition 1.2 and Theorem 1.3.
Section 4 contains proofs of Theorems 1.4 and 1.5.

2. Autosimilar matrices

Let $b>1$ be a natural integer. An infinite matrix M with coefficients $m_{i, j}(i, j \geq 0)$ in an arbitrary commutative ring is b-autosimilar if $m_{0,0}=1$ and if

$$
m_{s, t}=\prod_{i} m_{\sigma_{i}, \tau_{i}}
$$

where the indices $s=\sum \sigma_{i} b^{i}, t=\sum \tau_{i} b^{i}$ are written in base b, that is, $\sigma_{i}, \tau_{i} \in$ $\{0, \ldots, b-1\}$ for all $i=0,1,2, \ldots$.

We denote by $M(n)$ the finite sub-matrix of M with coefficients $m_{i, j}, 0 \leq i, j<n$. A b-autosimilar matrix M is non-degenerate if the determinants

$$
\operatorname{det}(M(n))
$$

are invertible for $n=2, \ldots, b$.
Theorem 2.1. Let $b \geq 2$ be an integer and let M be a b-autosimilar matrix which is non-degenerate. One has then a factorization

$$
M=L D U
$$

where L, D, U are b-autosimilar and where L is unipotent lower-triangular, D is diagonal and U is unipotent upper-triangular.

Corollary 2.2. Given a non-degenerate b-autosimilar matrix M one has

$$
\operatorname{det}(M(n))=\prod_{m=0}^{n-1} d_{m}
$$

where $d_{0}=1$,

$$
d_{m}=\operatorname{det}(M(m+1)) / \operatorname{det}(M(m))
$$

for $m=1, \ldots, b-1$ and

$$
d_{m}=\prod_{j \geq 0} d_{\mu_{j}}, \quad m=\sum \mu_{j} b^{j}, \mu_{j} \in\{0,1, \ldots, b-1\}
$$

for $m \geq b$.
Remark 2.3. In general, one can compute determinants of arbitrary b-autosimilar matrices over a field K by applying Corollary 2.2 to the b-autosimilar matrix obtained from a generic perturbation of the form

$$
M_{t}(b)=(1-t) M(b)+t P(b)
$$

(where $P(b)$ is a matrix such that $M_{t}(b)$ becomes non-degenerate) and working over the rational function field $K(t)$.

Proof of Theorem 2.1. The non-degeneracy of M implies that

$$
M(b)=L(b) D(b) U(b)
$$

where $L(b)$ and $U(b)$ are unipotent lower and upper triangular matrices and the diagonal matrix $D(b)$ has entries $d_{0,0}=1$ and $d_{k, k}=\operatorname{det}(M(k+1)) / \operatorname{det}(M(k))$ for $k=$ $1, \ldots, b-1$. Extending $L(b), D(b)$ and $U(b)$ in the unique possible way to infinite b-autosimilar matrices L, D and U we have

$$
\begin{aligned}
(L D U)_{s, t} & =\sum_{k} L_{s, k} D_{k, k} U_{k, t} \\
& =\sum_{k=\sum \kappa_{i} b^{i}} \prod_{i} L_{\sigma_{i}, \kappa_{i}} D_{\kappa_{i}, \kappa_{i}} U_{\kappa_{i}, \tau_{i}} \\
& =\prod_{i} \sum_{\kappa_{i}=0}^{b-1} L_{\sigma_{i}, k_{i}} D_{\kappa_{i}, \kappa_{i}} U_{\kappa_{i}, \tau_{i}} \\
& =\prod_{i} m_{\sigma_{i}, \tau_{i}}=m_{s, t}
\end{aligned}
$$

for all $s=\sum \sigma_{i} b^{i}, t=\sum \tau_{i} b^{i} \in \mathbf{N}$.
The identity

$$
\operatorname{det}(M(n))=\operatorname{det}(D(n))
$$

implies immediately Corollary 2.2.

2.1. Binomial coefficients modulo a prime p

Let p be a prime number. Writing p-adically $n=\sum_{i \geq 0} v_{i} p^{i}$ and using the existence of the Frobenius automorphism for fields of characteristic p we get

$$
(1+x)^{n}=\prod_{i \geq 0}(1+x)^{v_{i} p^{i}} \equiv \prod_{i \geq 0}\left(1+x^{p^{i}}\right)^{v_{i}}(\bmod p)
$$

This implies immediately the congruence

$$
\binom{n}{k} \equiv \prod_{i}\binom{v_{i}}{\kappa_{i}}(\bmod p)
$$

where $k=\sum_{i \geq 0} \kappa_{i} p^{i}$ and allows (for small primes) an efficient computation of binomial coefficients $(\bmod p)$.

This equality shows that the infinite matrices $\bar{P}(\infty)_{2}$ and $\bar{P}(\infty)_{3}$ with coefficients in $\{0,1\}$ (respectively in $\{-1,0,1\}$) obtained by reducing the symmetric Pascal matrix modulo 2 (respectively modulo 3) are 2 - (respectively $3-$) autosimilar.

For $p=2$ we have

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

which yields $d_{0}=1, d_{1}=-1$ and Corollary 2.2 implies now assertion (i) of Theorem 1.1.

Remark 2.4. One can show that the inverse of the integral matrix $\bar{P}(n)_{2}$ considered in Theorem 1.1 has all its coefficients in $\{-1,0,1\}$ for all n.

For $p=3$ we have

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & \frac{1}{2} & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right)
$$

This shows that $\operatorname{det}\left(\bar{P}(n)_{3}\right)$ (over \mathbf{Z}) equals $(-2)^{a-b}$ where a and b are the number of digits 1 and 2 needed in order to write all natural integers $<n$ in base 3. This is the statement of assertion (ii) of Theorem 1.1.

3. Proofs of Proposition 1.2 and Theorem 1.3

Proof of Proposition 1.2. Let R be a commutative ring, and let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}(2, R)
$$

Then A determines a (graded R-algebra) automorphism ϕ_{A} of $R[X, Y]$ via $\phi_{A}(X)=$ $a X+b Y$ and $\phi_{A}(Y)=c X+d Y$, or alternatively

$$
\binom{\phi_{A}(X)}{\phi_{A}(Y)}=A\binom{X}{Y} .
$$

It is easy to see that $\phi_{A} \circ \phi_{B}=\phi_{B A}$. Each ϕ_{A} restricts to an R-module automorphism of the homogeneous polynomials $R[X, Y]_{n-1}$ of degree $n-1$. Let $A^{(n)}$ denote the matrix of this endomorphism with respect to the basis $X^{n-1}, X^{n-2} Y, X^{n-3} Y^{2}, \ldots, Y^{n-1}$, that is

$$
\left(\begin{array}{c}
\phi_{A}\left(X^{n-1}\right) \\
\phi_{A}\left(X^{n-2} Y\right) \\
\phi_{A}\left(X^{n-3} Y^{2}\right) \\
\vdots \\
\phi_{A}\left(Y^{n-1}\right)
\end{array}\right)=A^{(n)}\left(\begin{array}{c}
X^{n-1} \\
X^{n-2} Y \\
X^{n-3} Y^{2} \\
\vdots \\
Y^{n-1}
\end{array}\right)
$$

Then $A^{(n)} \in \mathrm{GL}(n, R)$ and $(A B)^{(n)}=A^{(n)} B^{(n)}$. (Another way of expressing this is to say that $A^{(n)}$ is the $(n-1)$-th symmetric power of A.)

Let us specialize to the case $R=\mathbf{F}_{p}=\mathbf{Z} / p \mathbf{Z}$ and $n=p^{l}$. In this case $A^{(n)}=I$ if and only if A is a scalar matrix. The matrix

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)
$$

yields $A^{(n)} \equiv P\left(p^{l}\right)(\bmod p)$. Since $A^{3}=-I$, the matrix $A^{(n)}$ has order 3 .
Let us first compute the multiplicities of the three eigenvalues of $P=P(p)(\bmod p)$ over $\overline{\mathbf{F}}_{p}$.

The easy congruence $\binom{2 k}{k} \equiv\binom{(p-1) / 2}{k}(-4)^{k}(\bmod p)$ for p an odd prime and $0 \leq k \leq$ ($p-1$)/2 shows

$$
\sum_{k=0}^{(p-1) / 2}\binom{2 k}{k}\left(\frac{-x}{4}\right)^{k} \equiv(1+x)^{(p-1) / 2}(\bmod p)
$$

and yields $\operatorname{tr}(P) \equiv(-3)^{(p-1) / 2} \equiv \epsilon(p)(\bmod p)($ where $\epsilon(p) \in\{-1,0,1\}$ satisfies $\epsilon(p) \equiv p(\bmod 3))$ by quadratic reciprocity.

Since the characteristic polynomial for P has antisymmetric coefficients ($\alpha_{k}=-\alpha_{p-k}$) the two eigenvalues $\neq 1$ of P have equal multiplicity r. Lifting into non-negative integers $\leq(p-1) / 2$ the solution of the linear system $-r+(p-2 r) \equiv \operatorname{tr}(P)(\bmod p)$ now yields the result.

The case $p=2$ is easily solved by direct inspection.
The formula for $P\left(p^{l}\right)$ is now a straightforward consequence of the fact the $P\left(p^{l}\right)$ is the l-fold Kronecker product $P \otimes P \otimes \cdots \otimes P$ of $P=P(p)$ with itself. All eigenvalues of $P\left(p^{l}\right)(\bmod p)$ are third roots of 1 over $\mathbf{F}_{p^{2}}$. Their multiplicities in the characteristic polynomial $\chi_{p^{l}}(t)(\bmod p)$ can be computed as above by remarking that $\operatorname{tr}\left(P\left(p^{l}\right)\right)=(\operatorname{tr}(P(p)))^{l}$.

Remark 3.1. Recall that we have (with the notations of the above proof) $P=P(n)=$ $A^{(n)}(\bmod p)$ for $n=p^{l}$ and introduce $L=L(n)=B^{(n)}(\bmod p)$ and $\tilde{L}=\tilde{L}(n)=$ $C^{(n)}(\bmod p)$ where

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right), \quad C=\left(\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right)
$$

It is straightforward to check that L and \tilde{L} have coefficients

$$
l_{i, j}=(-1)^{i}\binom{i}{j}(\bmod p) \quad \text { and } \quad \tilde{l}_{i, j}=(-1)^{j}\binom{i}{j}(\bmod p)
$$

for $0 \leq i, j<n$.
Then $A^{3}=-I$, but $(-I)^{(n)}$ is the identity. Hence $P^{3}=I$. Also $C^{2}=I$ and $C A C=A^{-1}$. It follows that A and C generate a dihedral group of order 12, containing $-I$. Hence $A^{(n)}=P$ and $C^{(n)}=\tilde{L}$ generate a dihedral group of order 6.

Proof of Theorem 1.3. Using Proposition 1.2, we can rewrite the equation to be proved as

$$
\left(t^{3}-1\right)^{k} \operatorname{det}(t I-P(q-k)) \equiv \operatorname{det}(t I-P(q)) \operatorname{det}\left(t^{2} I+P(k)\right)(\bmod p)
$$

Here, and in the sequel, we write I for $I(n)$ whenever this notation is unambiguous; also we denote the zero matrix of any size by O.

We now work over the field \mathbf{F}_{p}. Unless otherwise stated vectors will be row vectors.
It is convenient to define a category $\mathcal{E}=\mathcal{E}_{\mathbf{F}_{p}}$ as follows. Its objects will be pairs (V, α) where V is a finite-dimensional vector space over \mathbf{F}_{p} and α is a vector space endomorphism of V. A morphism $\phi:(V, \alpha) \rightarrow(W, \beta)$ in \mathcal{E} will be a linear map $\phi: V \rightarrow W$ with $\phi \circ \alpha=\beta \circ \phi$. (In fact \mathcal{E} is equivalent to the category of finitely generated torsion modules over the polynomial ring $\mathbf{F}_{p}[X]$.) If (V, α) is an object of \mathcal{E} we define $\chi(V, \alpha, t)$ as the
characteristic polynomial of α acting on V, that is, $\chi(V, \alpha, t)=\operatorname{det}(t I-A)$ where A is a matrix representing α with respect to some basis of V. An r by r matrix A defines an object $\left(\left(\mathbf{F}_{p}\right)^{r}, \alpha\right)$, denoted by $\left(\left(\mathbf{F}_{p}\right)^{r}, A\right)$, where α is the endomorphism defined by A.

It is easy to see that \mathcal{E} is an abelian category, and that if

$$
0 \rightarrow(V, \alpha) \rightarrow(X, \gamma) \rightarrow(W, \beta) \rightarrow 0
$$

is a short exact sequence, then $\chi(X, \gamma, t)=\chi(V, \alpha, t) \chi(W, \beta, t)$. This is because there is a basis for X with respect to which the matrix of γ (acting on row vectors from the right) is

$$
\left(\begin{array}{ll}
A & O \\
C & B
\end{array}\right)
$$

where A and B are matrices representing α and β respectively.
Set $k^{\prime}=q-k$. We can partition the Pascal matrices $P\left(k^{\prime}\right)$ and $P(q)$ as follows:

$$
P\left(k^{\prime}\right)=\left(\begin{array}{cc}
A & B \\
B^{t} & C
\end{array}\right) \quad \text { and } \quad P(q)=\left(\begin{array}{ccc}
A & B & D \\
B^{t} & C & O \\
D^{t} & O & O
\end{array}\right)
$$

where $A=P(k)$.
Let \bar{A} denote the matrix obtained by rotating A through 180° (more formally, $\bar{A}=J A J$ where J is the matrix with entries 1 on the reverse diagonal and 0 elsewhere). Then $P(q)^{2}=\overline{P(q)}$ and $P(q)^{3}=I$. Hence

$$
P(q)^{2}=\left(\begin{array}{ccc}
O & O & \overline{D^{t}} \\
O & \bar{C} & \overline{B^{t}} \\
\bar{D} & \bar{B} & \bar{A}
\end{array}\right)
$$

Thus

$$
A^{2}+B B^{t}+D D^{t}=O
$$

and so

$$
P\left(k^{\prime}\right)^{2}=\left(\begin{array}{cc}
-D D^{t} & O \\
O & \bar{C}
\end{array}\right)
$$

From $P(q)^{2}=\overline{P(q)}$ it follows that $A D=\overline{D^{t}}$ and from $\overline{P(q)} P(q)=I$ it follows that $\overline{D^{t}} D^{t}=I$. Hence $A D D^{t}=I$ and so

$$
P\left(k^{\prime}\right)^{2}=\left(\begin{array}{cc}
-A^{-1} & O \\
O & \bar{C}
\end{array}\right)
$$

Let

$$
Q_{1}=\left(\begin{array}{ccc}
O & I(k) & O \\
O & O & I(k) \\
I(k) & O & O
\end{array}\right)
$$

Let $\phi:\left(\mathbf{F}_{p}\right)^{3 k} \rightarrow\left(\mathbf{F}_{p}\right)^{q}$ be the map defined by the matrix

$$
\left(\begin{array}{ccc}
I & O & O \\
A & B & D \\
O & O & \frac{D^{t}}{}
\end{array}\right)
$$

Then

$$
Q_{1}\left(\begin{array}{ccc}
I & O & O \\
A & B & D \\
O & O & \overline{D^{t}}
\end{array}\right)=\left(\begin{array}{ccc}
A & B & D \\
O & O & \overline{D^{t}} \\
I & O & O
\end{array}\right)
$$

and

$$
\left(\begin{array}{ccc}
I & O & O \\
A & B & D \\
O & O & \overline{D^{t}}
\end{array}\right) P(q)=\left(\begin{array}{ccc}
I & O & O \\
A & B & D \\
O & O & \overline{D^{t}}
\end{array}\right)\left(\begin{array}{ccc}
A & B & D \\
B^{t} & C & O \\
D^{t} & O & O
\end{array}\right)=\left(\begin{array}{ccc}
A & B & D \\
O & O & \frac{D^{t}}{} \\
I & O & O
\end{array}\right)
$$

where we have used the formulas $P(q)^{2}=\overline{P(q)}$ and $\overline{P(q)} P(q)=I$. Hence ϕ is a morphism from $\left(\left(\mathbf{F}_{p}\right)^{3 k}, Q_{1}\right)$ to $\left(\left(\mathbf{F}_{p}\right)^{q}, P(q)\right)$ in \mathcal{E}.

Let

$$
Q_{2}=\left(\begin{array}{cc}
O & I(k) \\
-A^{-1} & O
\end{array}\right)
$$

Let $\psi:\left(\mathbf{F}_{p}\right)^{2 k} \rightarrow\left(\mathbf{F}_{p}\right)^{k^{\prime}}$ be the map defined by the matrix

$$
\left(\begin{array}{ll}
I & O \\
A & B
\end{array}\right)
$$

Then

$$
Q_{2}\left(\begin{array}{ll}
I & O \\
A & B
\end{array}\right)=\left(\begin{array}{cc}
A & B \\
-A^{-1} & O
\end{array}\right)
$$

and

$$
\left(\begin{array}{ll}
I & O \\
A & B
\end{array}\right) P\left(k^{\prime}\right)=\left(\begin{array}{ll}
I & O \\
A & B
\end{array}\right)\left(\begin{array}{cc}
A & B \\
B^{t} & C
\end{array}\right)=\left(\begin{array}{cc}
A & B \\
-A^{-1} & O
\end{array}\right)
$$

where we have used the formula

$$
P\left(k^{\prime}\right)^{2}=\left(\begin{array}{cc}
-A^{-1} & O \\
O & \bar{C}
\end{array}\right) .
$$

Hence ψ is a morphism from $\left(\left(\mathbf{F}_{p}\right)^{2 k}, Q_{2}\right)$ to $\left(\left(\mathbf{F}_{p}\right)^{k^{\prime}}, P\left(k^{\prime}\right)\right)$ in \mathcal{E}.
We need to divide into the cases $k \leq q / 3$ and $k \geq q / 3$. In the former cases ϕ and ψ are injective and in the latter case they are surjective. In the former case we consider their cokernels, in the latter case their kernels.

The matrix B has size k by $q-2 k$. If B has rank k (which is only possible if $k \leq q / 3$) then ϕ and ψ are injective. If B has rank $q-2 k$ (which is only possible if $k \geq q / 3$) then ϕ and ψ are surjective.

The matrix B contains a submatrix

$$
\left(\binom{i+j+k}{i}\right)_{i, j=0}^{r-1}
$$

where $r=\min (k, q-2 k)$. This submatrix has determinant 1 (consider it as a matrix over \mathbf{Z} and reduce it to a Vandermonde matrix or see for instance [2]). Thus B has rank r and indeed ϕ and ψ are injective for $k \leq q / 3$ and surjective for $k \geq q / 3$.

Consider first the case where $k \leq q / 3$. Let $\left(X_{1}, \theta_{1}\right)$ and $\left(X_{2}, \theta_{2}\right)$ denote the cokernels of $\phi:\left(\left(\mathbf{F}_{p}\right)^{3 k}, Q_{1}\right) \rightarrow\left(\left(\mathbf{F}_{p}\right)^{q}, P(q)\right)$ and $\psi:\left(\left(\mathbf{F}_{p}\right)^{2 k}, Q_{2}\right) \rightarrow\left(\left(\mathbf{F}_{p}\right)^{k^{\prime}}, P\left(k^{\prime}\right)\right)$ in \mathcal{E}. Then

$$
\chi\left(\left(\mathbf{F}_{p}\right)^{q}, P(q), t\right)=\chi\left(\left(\mathbf{F}_{p}\right)^{3 k}, Q_{1}, t\right) \chi\left(X_{1}, \theta_{1}, t\right)
$$

and

$$
\chi\left(\left(\mathbf{F}_{p}\right)^{k^{\prime}}, P\left(k^{\prime}\right), t\right)=\chi\left(\left(\mathbf{F}_{p}\right)^{2 k}, Q_{2}, t\right) \chi\left(X_{2}, \theta_{2}, t\right)
$$

It is apparent that

$$
\chi\left(\left(\mathbf{F}_{p}\right)^{3 k}, Q_{1}, t\right)=\left(t^{3}-1\right)^{k}
$$

and

$$
\chi\left(\left(\mathbf{F}_{p}\right)^{2 k}, Q_{2}, t\right)=\operatorname{det}\left(t^{2} I+A^{-1}\right)=\operatorname{det}\left(t^{2} I+A\right)
$$

as A and A^{-1} are similar. Hence

$$
\operatorname{det}(t I-P(q))=\left(t^{3}-1\right)^{k} \chi\left(X_{1}, \theta_{1}, t\right)
$$

and

$$
\operatorname{det}\left(t I-P\left(k^{\prime}\right)\right)=\operatorname{det}\left(t^{2} I+A\right) \chi\left(X_{2}, \theta_{2}, t\right)
$$

It suffices to prove that $\left(X_{1}, \theta_{1}\right)$ and $\left(X_{2}, \theta_{2}\right)$ are isomorphic in \mathcal{E}.
As $\overline{D^{t}}$ is non-singular, it is apparent that X_{1} is isomorphic to $\left(\mathbf{F}_{p}\right)^{q-2 k} / Y$ where Y is the row space of B and that the action of θ_{1} is induced by that of the matrix C on $\left(\mathbf{F}_{p}\right)^{q-2 k}$. It is even more apparent that X_{2} is isomorphic to $\left(\mathbf{F}_{p}\right)^{q-2 k} / Y$ and that the action of θ_{2} is induced by C. Hence $\left(X_{1}, \theta_{1}\right)$ and $\left(X_{2}, \theta_{2}\right)$ are isomorphic in \mathcal{E}. This completes the argument in the case $k \leq q / 3$.

Now suppose that $k \geq q / 3$. Let $\left(K_{1}, \theta_{1}\right)$ and $\left(K_{2}, \theta_{2}\right)$ denote the kernels of ϕ : $\left(\left(\mathbf{F}_{p}\right)^{3 k}, Q_{1}\right) \rightarrow\left(\left(\mathbf{F}_{p}\right)^{q}, P(q)\right)$ and $\psi:\left(\left(\mathbf{F}_{p}\right)^{2 k}, Q_{2}\right) \rightarrow\left(\left(\mathbf{F}_{p}\right)^{k^{\prime}}, P\left(k^{\prime}\right)\right)$ in \mathcal{E}. Then

$$
\chi\left(\left(\mathbf{F}_{p}\right)^{q}, P(q), t\right) \chi\left(K_{1}, \theta_{1}, t\right)=\chi\left(\left(\mathbf{F}_{p}\right)^{3 k}, Q_{1}, t\right)
$$

and

$$
\chi\left(\left(\mathbf{F}_{p}\right)^{k^{\prime}}, P\left(k^{\prime}\right), t\right) \chi\left(K_{2}, \theta_{2}, t\right)=\chi\left(\left(\mathbf{F}_{p}\right)^{2 k}, Q_{2}, t\right)
$$

Hence

$$
\frac{\left(t^{3}-1\right)^{k}}{\operatorname{det}(t I-P(q))}=\chi\left(K_{1}, \theta_{1}, t\right)
$$

and

$$
\frac{\operatorname{det}\left(t^{2} I+A\right)}{\operatorname{det}\left(t I-P\left(k^{\prime}\right)\right)}=\chi\left(K_{2}, \theta_{2}, t\right)
$$

It suffices to prove that $\left(K_{1}, \theta_{1}\right)$ and $\left(K_{2}, \theta_{2}\right)$ are isomorphic in \mathcal{E}.
As $\overline{D^{t}}$ is non-singular and has inverse D^{t}, it is apparent that

$$
K_{1}=\left\{\left(-u A, u,-u D D^{t}\right)=\left(-u A, u,-u A^{-1}\right): u \in\left(\mathbf{F}_{p}\right)^{k}, u B=0\right\}
$$

and we have

$$
\left(-u A, u,-u A^{-1}\right) Q_{1}=\left(-u A^{-1},-u A, u\right) .
$$

Also

$$
K_{2}=\left\{(-u A, u): u \in\left(\mathbf{F}_{p}\right)^{k}, u B=0\right\}
$$

and

$$
(-u A, u) Q_{2}=\left(-u A^{-1},-u A\right)
$$

Hence the linear map

$$
\left(-u A, u,-u A^{-1}\right) \longmapsto(-u A, u)
$$

induces an isomorphism between $\left(K_{1}, \theta_{1}\right)$ and $\left(K_{2}, \theta_{2}\right)$.

4. Proofs for the prime $\boldsymbol{p}=2$

Proof of Theorem 1.4. Set $n=2^{l}-k$ and $q=2^{l}$ where $1 \leq k \leq 2^{l-1}$.
Theorem 1.3 yields then over \mathbf{F}_{2}

$$
\chi_{n}(t)=\chi_{q-k}(t)=\left(t^{2}+t+1\right)^{(q-\epsilon(q)) / 3-k}(t+1)^{(q+2 \epsilon(q)) / 3-k} \operatorname{det}(t I+P(k))^{2}
$$

since $x \longmapsto x^{2}$ is the Frobenius automorphism in characteristic 2.
By induction on l, the only possible irreducible factors of $\operatorname{det}(t I(n)-P(n))(\bmod 2)$ are $(1+t)$ and $\left(1+t+t^{2}\right)$. The multiplicity $\gamma(n)=\gamma\left(2^{l}-k\right)$ of the factor $(1+t)$ in this polynomial is recursively defined by

$$
\gamma(n)=\frac{2^{l}+2(-1)^{l}}{3}-k+2 \gamma(k)
$$

and coincides with the sequence γ of Theorem 1.4. The remaining factor of $\operatorname{det}(t I(n)-$ $P(n))(\bmod 2)$ is given by $\left(1+t+t^{2}\right)^{\gamma_{2}(n)}$ where $\gamma_{2}(n)=(1 / 2)(n-\gamma(n))$ and this proves the result.

Proof of Theorem 1.5. We have for $0 \leq k \leq 2^{l-1}$

$$
\begin{aligned}
\gamma\left(2^{l}+k\right) & =\gamma\left(2^{l+1}-\left(2^{l}-k\right)\right) \\
& =\frac{2^{l+1}-2(-1)^{l}}{3}-2^{l}+k+2 \gamma\left(2^{l}-k\right) \\
& =\frac{2^{l+1}-2(-1)^{l}}{3}-2^{l}+k+2 \frac{2^{l}+2(-1)^{l}}{3}-2 k+4 \gamma(k)
\end{aligned}
$$

which is assertion (i).

We have for all $2^{l-2} \leq k \leq 2^{l-1}$

$$
\begin{aligned}
\gamma\left(2^{l}-k\right)= & \frac{2^{l}+2(-1)^{l}}{3}-k+\gamma(k)+\gamma\left(2^{l-1}-\left(2^{l-1}-k\right)\right) \\
= & \frac{2^{l}+2(-1)^{l}}{3}-k+\gamma(k)+\frac{2^{l-1}-2(-1)^{l}}{3}-2^{l-1} \\
& +k+2 \gamma\left(2^{l-1}-k\right) \\
= & \gamma(k)+2 \gamma\left(2^{l-1}-k\right)
\end{aligned}
$$

which proves assertion (ii).
Similarly, we have for $1 \leq k \leq 2^{l}$

$$
\begin{aligned}
\gamma\left(2^{l}+k\right)-\gamma\left(2^{l}+k-1\right) & =\gamma\left(2^{l+1}-\left(2^{l}-k\right)\right)-\gamma\left(2^{l+1}-\left(2^{l}-k+1\right)\right) \\
& =1+2 \gamma\left(2^{l}-k\right)-2 \gamma\left(2^{l}-k+1\right)
\end{aligned}
$$

which proves assertion (iii).
Writing $2 n=2^{l}-2 k$ with $1 \leq k \leq 2^{l-2}$ we have, using induction on n,

$$
\begin{aligned}
\gamma\left(2^{l}-2 k\right) & =\frac{2^{l}+2(-1)^{l}}{3}-2 k+2 \gamma(2 k) \\
& =\frac{2^{l}+2(-1)^{l}}{3}-2 k+2(k-\gamma(k)) \\
& =\left(2^{l-1}-k\right)-\left(\frac{2^{l-1}+2(-1)^{l-1}}{3}-k+2 \gamma(k)\right) \\
& =\left(2^{l-1}-k\right)-\gamma\left(2^{l-1}-k\right)
\end{aligned}
$$

which proves the first equality of assertion (iv) (this equality follows also from the fact that $P(2 n)$ is the Kronecker product $P(n) \otimes P(2)$ of $P(n)$ with $P(2)$ over $\left.\mathbf{F}_{2}\right)$.

We prove the last two identities of assertion (iv) by simultaneous induction as follows: denote the second formula by A_{n} and the last formula by B_{n}. We prove first that the truth of B_{m} for all $m<n$ implies the truth of A_{n}. In a second step we establish the truth of B_{n} provided that the identities A_{m} hold for all $m<n$.

First step: The second identity (referred to by A_{n}) of assertion (iv) amounts to the equality

$$
\gamma(2 n-1)-\gamma(2 n)=\frac{4^{b(2 n-1)}-1}{3}
$$

Writing $2 n=2^{l}-2 k$ with $0 \leq k<2^{l-2}$ and applying the recursive definition of $\gamma(2 n)$ and $\gamma(2 n-1)$ together with identity B_{k} (which holds by induction) we get

$$
\begin{aligned}
\gamma(2 n-1)-\gamma(2 n)= & \frac{2^{l}+2(-1)^{l}}{3}-(2 k+1)+2 \gamma(2 k+1) \\
& -\frac{2^{l}+2(-1)^{l}}{3}+2 k-2 \gamma(2 k)
\end{aligned}
$$

$$
\begin{aligned}
& =-1+2(\gamma(2 k+1)-\gamma(2 k)) \\
& =-1+2 \frac{2^{1+2 b(k)}+1}{3}=\frac{4^{1+b(k)}-1}{3} .
\end{aligned}
$$

Since $\left(2^{l}-(2 k+1)\right)+2 k=2^{l}-1$ and since $2^{l}-(2 k+1)$ is odd and greater than $2 k$ the number of blocks of consecutive 1 s in the binary expansion of $2^{l}-(2 k+1)$ exceeds by 1 the number of blocks of consecutive 1 s in the binary expansion of $2 k$, and hence

$$
b(2 n-1)=b\left(2^{l}-(2 k+1)\right)=b(2 k)+1=b(k)+1
$$

which establishes the truth of A_{n}.
Second step: Identity B_{n}, the last identity of assertion (iv), is equivalent to

$$
\gamma(2 n+1)-\gamma(2 n)=\frac{2^{1+2 b(n)}+1}{3} .
$$

Writing $2 n+1=2^{l}+k$ with $1 \leq k<2^{l}$ and applying assertion (iii) and identity $A_{\left(2^{l}-k+1\right) / 2}$ (which holds by induction) we have

$$
\begin{aligned}
\gamma(2 n+1)-\gamma(2 n) & =1+2 \gamma\left(2^{l}-k\right)-2 \gamma\left(2^{l}+1-k\right) \\
& =1+2 \frac{4^{b\left(2^{l}-k\right)}-1}{3} \\
& =\frac{2^{1+2 b\left(2^{l}-k\right)}+1}{3} .
\end{aligned}
$$

Since $\left(2^{l}+k-1\right)+\left(2^{l}-k\right)=2^{l+1}-1$ and since $2^{l}+k-1$ is even and greater than $2^{l}-k$, they have the same number of blocks of consecutive 1 s in their binary expansions. This shows $b\left(2^{l}-k\right)=b(2 n)=b(n)$ and establishes the truth of B_{n}.

Acknowledgements

The first author wishes to thank J.-P. Allouche, F. Sigrist, U. Vishne and A. Wassermann for interesting comments and remarks and support from the Swiss National Science Foundation is gratefully acknowledged.

References

[1] J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in: C. Ding, T. Helleseth, H. Niederreiter (Eds.), Proceedings of SETA 98, Springer, 1999.
[2] R. Bacher, Determinants of matrices related to the Pascal triangle, J. Théor. des Nombres Bordeaux 14 (2002) 19-41.
[3] C. Krattenthaler, Advanced determinant calculus, Sém. Lothar. Combin. 42 B42q (1999) 67.
[4] W.F. Lunnon, The Pascal matrix, Fibonacci Quart. 15 (1977) 201-204.

[^0]: E-mail addresses: Roland.Bacher@ujf-grenoble.fr (R. Bacher), rjc@maths.ex.ac.uk (R. Chapman).

