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Abstract

We give some results concerning determinants and characteristic polynomials modulop of the
symmetric Pascal matrix with coefficients

(i+ j
i

)
(mod p), 0 ≤ i , j < n.
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1. Introduction

This paper presents results and conjecturesconcerning symmetric matrices associated
to Pascal’s triangle. We first give a formula for the determinant overZ of the reduction
modulo 2 with values in{0,1} and of the reduction modulo 3 with values in{−1,0,1}
for such a matrix. We then study the reduction modulo a primep of the characteristic
polynomials of these matrices. Our main results imply a recursive formula for the prime
p = 2 and a conjectural recursive formula forp = 3.

Consider the symmetric matrixP(n) with coefficients

pi, j =
(

i + j

i

)
, 0 ≤ i , j < n.

We call P(n) the symmetric Pascal matrixof order n. The entries of P(n) satisfy the
recurrence

pi, j = pi−1, j + pi, j −1.

In [2] the first author studied the determinant of the general matrix with entries satisfying
this recurrence.
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An easy computation yieldsP(∞) = T Tt whereT is the infiniteunipotent lower
triangular matrix

T =




1
1 1
1 2 1
1 3 3 1
...

. . .


 = exp




0
1 0
0 2 0

0 3 0
. . .




with coefficientsti, j = ( i
j

)
. This shows that det(P(n)) = 1 and thatP(n) is positive

definite for all n ∈ N. Hence all zeros of the characteristic polynomialχn(t) = det(t I (n)−
P(n)) (where I (n) denotes the identity matrix of sizen) of P(n) are positive reals. The
inverseP(n)−1 of P(n) is given by

P(n)−1 = (T(n)t )−1T(n)−1

and T(n)−1 has coefficients(−1)i+ j
( i

j

)
, 0 ≤ i , j < n. Hence T(n) and T(n)−1 are

conjugate by an orthogonal matrix, and thus alsoP(n) and P(n)−1 are conjugate. The
characteristic polynomialχn(t) therefore satisfiesχn(t) = (−t)nχ(1/t) and 1 is always
an eigenvalue ofP(2n + 1), cf. [4]. The polynomialsχn(t), especially their behaviour
modulo primes, will be our main object of study. For convenience, we writeI for I (n)
whenever the size of the identity matrix is unambiguous.

Define P(n)2 with coefficients(P(n)2)i, j ∈ {0,1} as the reduction modulo 2 ofP(n)
by setting

(P(n)2)i, j =
((

i + j

i

)
(mod 2)

)
∈ {0,1}.

The Thue–Morse sequences(n) = ∑
νi (mod 2) records the parity of the sum of the

binary digits ofn = ∑
νi 2i . It can also be defined recursively bys(0) = 0, s(2k) = s(k)

ands(2k + 1) = 1 − s(k) (cf. for instance [1]).
Similarly, we defineP(n)3 with coefficients(P(n)3)i, j ∈ {−1,0,1} as the reduction

modulo 3 ofP(n) by setting

(P(n)3)i, j =
((

i + j

i

)
(mod 3)

)
∈ {−1,0,1}.

Weintroduce furthermore the sequencet (n) defined recursively byt (0) = 0, t (3n) = t (n),
t (3n + 1) = t (n) + 1, t (3n + 2) = t (n) − 1. One hast (n) = α(n) − β(n) where
α(n) = #{ j | ν j = 1} (respectivelyβ(n) = #{ j | ν j = 2}) count the number of
occurrences of digits equal to 1 (respectively to 2) when writingn = ∑

ν j 3 j (with
ν j ∈ {0,1,2}) in base 3.

Theorem 1.1. (i) The determinant overZ of P(n)2 is given by

det(P(n)2) =
n−1∏
k=0

(−1)s(k).
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(ii) The determinant overZ of P(n)3 is given by

det(P(n)3) =
n−1∏
k=0

(−2)t (k).

In the sequel, we will be interested in the characteristic polynomial det(t I − P(n))
(modp) for p a primenumber. The next result yields a formula forn = pl and is of
crucial importance in the sequel.

Proposition 1.2. Given a power q= pl of a prime p, the matrix P(q) has order 3 over
Fp. Its characteristic polynomialχq(t) = det(t I (q)− P(q)) satisfies

χq(t) ≡ (t2 + t + 1)
q−ε(q)

3 (t − 1)
q+2ε(q)

3 (mod p)

whereε(q) ∈ {−1,0,1} satisfiesε(q) ≡ q (mod 3).

In particular,P(q) can be diagonalized overFp2 except whenp = 3. For instance,P(3)
has a unique Jordan block overF3.

This proposition (except for the diagonalization part) admits the following
generalization:

Theorem 1.3. When q= pl is a power of a prime p and0 ≤ k ≤ q/2 then

χq−k(t) ≡ (t2 + t + 1)(q−ε(q))/3−k(t − 1)(q+2ε(q))/3−k det(t2I + P(k)) (mod p)

whereε(q) ∈ {−1,0,1} satisfiesε(q) ≡ q (mod 3).

Theorem 1.3completely determines the reduction modulo 2 ofχn(t) as follows: Define
a sequenceγ (0) = 0, γ (1), . . . recursively by

γ (2l − k) = 2l + 2(−1)l

3
− k + 2γ (k), 0 ≤ k ≤ 2l−1.

Theorem 1.4. For all n ∈ N

χn(t) ≡ (t + 1)γ (n)(t2 + t + 1)γ2(n) (mod 2)

whereγ2(n) = (1/2)(n − γ (n)).

It follows immediately that the matrixI − P(n)3 is nilpotent overF2 for all n ∈ N. It
would be of interest to investigate the sizes of the Jordan blocks ofI − P(n)3 overF2.

The first termsγ (1), . . . , γ (32) andγ2(1), . . . , γ2(32) are given by

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
γ (n) 1 0 3 2 5 0 3 2 5 0 11 6 9 4 7 6
γ2(n) 0 1 0 1 0 3 2 3 2 5 0 3 2 5 4 5

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
γ (n) 9 4 15 10 21 0 11 6 9 4 15 10 13 8 11 10
γ2(n) 4 7 2 5 0 11 6 9 8 11 6 9 8 11 10 11

The sequenceγ (0), γ (1), . . . has many interesting arithmetic features. In order to
describe them, let us introduce the numberb(n) of “blocks” of consecutive ones in the
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binary expansion of a positive integern. For instance 667= (1010011011)2 and so
b(667) = 4. Notice thatb(2n) = b(n) andb(2n + 1) = b(n) + 1 − (n (mod 2)) (with
n (mod 2) ∈ {0,1}). This, together withb(0) = 0, defines the sequenceb(n) recursively.

Theorem 1.5. (i) Wehave

γ (2l + k) = 2l + 2(−1)l

3
− k + 4γ (k)

for all 0 ≤ k ≤ 2l−1.

(ii) Wehave for2l−2 ≤ k ≤ 2l−1

γ (2l − k) = γ (k)+ 2γ (2l−1 − k).

(iii) Wehave

γ (2l + k) = 1 + γ (2l + k − 1)+ 2γ (2l − k)− 2γ (2l + 1 − k)

for 1 ≤ k ≤ 2l .

(iv) Wehave, for all n ∈ N,

γ (2n) = n − γ (n),

γ (2n − 1) = γ (2n)+ (4b(2n−1) − 1)/3 = n − γ (n)+ (4b(2n−1) − 1)/3,

γ (2n + 1) = γ (2n)+ (21+2b(n) + 1)/3 = n − γ (n)+ (21+2b(n) + 1)/3.

Part (iv) of this theorem gives an alternative recursive definition of the sequence(γ (n)).
Theorem 1.3seems to have many variants. One is given by the following:

Conjecture 1.6. For each integer k≥ 0 there exists a monic polynomial ck(t) ∈ Z[t] of
degree4k such that ck(t) = t4kck(t−1) with the following property: if q is a power of a
prime p, and0 ≤ k ≤ q/2 then

χq+k(t) ≡ (t2 + t + 1)(q−ε(q))/3−k(t − 1)(q+2ε(q))/3−kck(t) (mod p)

whereε(q) ∈ {−1,0,1} satisfiesε(q) ≡ q (mod 3).

The first few of these conjectural polynomialsck(t) are

c0(t) = 1,

c1(t) = t4 − 2t3 − 2t + 1,

c2(t) = t8 − 6t7 + 4t6 − 4t5 + 15t4 − 4t3 + 4t2 − 6t + 1,

c3(t) = (t4 − 2t3 − 2t + 1)(t8 − 16t7 + 4t6 − 4t5 + 40t4 − 4t3 + 4t2 − 16t + 1),

c4(t) = t16 − 58t15 + 288t14 − 240t13 + 393t12 − 1440t11 + 836t10 − 902t9

+ 2376t8 − 902t7 + · · · − 58t + 1,

c5(t) = c1(t)(t
16 − 196t15 + 2112t14 − 792t13 + 1290t12 − 10560t11

+ 2768t10 − 2972t9 + 17424t8 − 2972t7 + · · · − 196t + 1).

For p = 2, it follows from Theorem 1.4and assertion (i) inTheorem 1.5that if ck(t)
exists then

ck(t) ≡ (det(t I + P(k)))4 (mod 2).
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Computations suggest:

Conjecture 1.7. Wehave

ck(t) ≡ (t + 1)3k det(t I + P(k)) (mod 3).

This conjecture, together withTheorem 1.3yields conjectural recursive formulas for
the reduction modulo 3 ofχn(t) = det(t I (n) − P(n)) as follows: Setχ0(t) = 1 and
χ1(t) = 1 − t . For n = 3l ± k > 1 with 0 ≤ k < 3l /2 the characteristic polynomial
χn(t) (mod 3) is then conjecturally given by

(t − 1)3
l −3k det(t2I + P(k)) if n = 3l − k,

(t − 1)3
l −3k (t + 1)3k det(t I + P(k)) if n = 3l + k.

In particular, all roots ofχn(t) modulo 3 should be of multiplicative order a power of 2 in
the algebraic closure ofF3.

We conclude finally by mentioning a last conjectural observation:

Conjecture 1.8. Given a prime-power q= pl ≡ 2 (mod 3), wehave

χ(q+1)/3(t) ≡ (t + 1)(q+1)/3 (mod p)

and

χ(2q−1)/3(t) ≡ (t + 1)(q+1)/3 (t − 1)(q−2)/3 (mod p).

Remark 1.9. (i) The matrix C = P ((q + 1)/3) + I ((q + 1)/3) for q = pl ≡
2 (mod 3) a prime-power, appears to have a unique Jordan block of maximal length
overFp. If so, the rows ofC(q+1)/6 generate a self-dual code overFp.

(ii) Given a prime-powerq = pl ≡ 2 (mod 3) as above we setn = (2q + 2)/3 and
k = (2q − 1)/3. We conjecture that the characteristic polynomial of the matrix
P̃k(n) with coefficients

p̃i, j =
(

i + j + 2k

i + k

)
, 0 ≤ i , j < n

satisfies det(t I − P̃k(n)) ≡ (1 + t)n (mod p).

Remark 1.10. In [3, Theorems 32 and 35] Krattenthaler gives evaluations of determinants
related to ours, namely of det(ω I + Q(n)) whereω is a sixth root of unity, andQ(n) has
entries

(2µ+i+ j
j

)
(0 ≤ i , j < n).

The sequel of this paper is organized as follows:

Section 2is devoted to autosimilar matrices. Such matrices generalize the matrices
P(∞)2, P(∞)3 and their properties imply easilyTheorem 1.1.

Section 3contains proofs ofProposition 1.2andTheorem 1.3.

Section 4contains proofs ofTheorems 1.4and1.5.



464 R.Bacher, R. Chapman / European Journal of Combinatorics 25 (2004) 459–473

2. Autosimilar matrices

Let b > 1 be a natural integer. An infinite matrix M with coefficientsmi, j (i , j ≥ 0) in
an arbitrary commutative ring isb-autosimilarif m0,0 = 1 and if

ms,t =
∏

i

mσi ,τi

where theindicess = ∑
σi bi , t = ∑

τi bi are written in baseb, that is, σi , τi ∈
{0, . . . ,b − 1} for all i = 0,1,2, . . ..

We denote byM(n) the finite sub-matrix ofM with coefficientsmi, j , 0 ≤ i , j < n.
A b-autosimilar matrix M is non-degenerateif the determinants

det(M(n))

are invertible forn = 2, . . . ,b.

Theorem 2.1. Let b ≥ 2 be an integer and let M be a b-autosimilar matrix which is
non-degenerate. One has then a factorization

M = L DU

where L, D,U are b-autosimilar and where L is unipotent lower-triangular, D is diagonal
and U is unipotent upper-triangular.

Corollary 2.2. Given a non-degenerate b-autosimilar matrix M one has

det(M(n)) =
n−1∏
m=0

dm

where d0 = 1,

dm = det(M(m + 1))/ det(M(m))

for m = 1, . . . ,b − 1 and

dm =
∏
j ≥0

dµ j , m =
∑

µ j b
j , µ j ∈ {0,1, . . . ,b − 1}

for m ≥ b.

Remark 2.3. In general, one can compute determinants of arbitraryb-autosimilar matrices
over a field K by applyingCorollary 2.2 to the b-autosimilar matrix obtained from a
generic perturbation of the form

Mt (b) = (1 − t)M(b)+ t P(b)

(whereP(b) is a matrix such thatMt (b) becomes non-degenerate) and working over the
rational function fieldK (t).

Proof of Theorem 2.1. The non-degeneracy ofM implies that

M(b) = L(b)D(b)U(b)
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whereL(b) andU(b) are unipotent lower and upper triangular matrices and the diagonal
matrix D(b) has entriesd0,0 = 1 and dk,k = det(M(k + 1))/ det(M(k)) for k =
1, . . . ,b − 1. ExtendingL(b), D(b) and U(b) in the unique possible way to infinite
b-autosimilar matricesL, D andU we have

(L DU)s,t =
∑

k

Ls,k Dk,kUk,t

=
∑

k=∑ κi bi

∏
i

Lσi ,κi Dκi ,κi Uκi ,τi

=
∏

i

b−1∑
κi =0

Lσi ,κi Dκi ,κi Uκi ,τi

=
∏

i

mσi ,τi = ms,t

for all s = ∑
σi bi , t = ∑

τi bi ∈ N. �

The identity

det(M(n)) = det(D(n))

implies immediatelyCorollary 2.2.

2.1. Binomial coefficients modulo a prime p

Let p bea primenumber. Writing p-adically n = ∑
i≥0 νi pi and using the existence of

the Frobenius automorphism for fields of characteristicp we get

(1 + x)n =
∏
i≥0

(1 + x)νi pi ≡
∏
i≥0

(1 + x pi
)νi (mod p).

This implies immediately the congruence(
n

k

)
≡
∏

i

(
νi

κi

)
(mod p)

wherek = ∑
i≥0 κi pi and allows (for small primes) an efficient computation of binomial

coefficients(mod p).
This equality shows that the infinite matricesP(∞)2 and P(∞)3 with coefficients

in {0,1} (respectively in{−1,0,1}) obtained by reducing the symmetric Pascal matrix
modulo 2 (respectively modulo 3) are 2− (respectively 3−) autosimilar.

For p = 2 we have(
1 1
1 0

)
=
(

1 0
1 1

)(
1 0
0 −1

)(
1 1
0 1

)

which yieldsd0 = 1,d1 = −1 andCorollary 2.2implies now assertion (i) ofTheorem 1.1.
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Remark 2.4. One can show that the inverse of the integral matrixP(n)2 considered in
Theorem 1.1has allits coefficients in{−1,0,1} for all n.

For p = 3 we have
1 1 1

1 −1 0
1 0 0


 =


1 0 0

1 1 0
1 1

2 1




1 0 0

0 −2 0
0 0 −1

2




1 1 1

0 1 1
2

0 0 1




This shows that det(P(n)3) (over Z) equals(−2)a−b wherea andb are the number of
digits 1 and 2 needed in order to write all natural integers< n in base 3. This is the
statement of assertion (ii) ofTheorem 1.1.

3. Proofs of Proposition 1.2 and Theorem 1.3

Proof of Proposition 1.2. Let R be a commutative ring, and let

A =
(

a b
c d

)
∈ GL(2, R).

Then A determines a (gradedR-algebra) automorphismφA of R[X,Y] via φA(X) =
aX + bY andφA(Y) = cX + dY, or alternatively(

φA(X)
φA(Y)

)
= A

(
X

Y

)
.

It is easy to see thatφA ◦ φB = φB A. EachφA restricts to anR-module automorphism of
the homogeneous polynomialsR[X,Y]n−1 of degreen − 1. Let A(n) denote the matrix of
this endomorphism with respect to the basisXn−1, Xn−2Y, Xn−3Y2, . . . ,Yn−1, that is



φA(Xn−1)

φA(Xn−2Y)
φA(Xn−3Y2)

...

φA(Yn−1)


 = A(n)




Xn−1

Xn−2Y
Xn−3Y2

...

Yn−1


 .

ThenA(n) ∈ GL(n, R) and(AB)(n) = A(n)B(n). (Another way of expressing this is to say
that A(n) is the(n − 1)-th symmetric power ofA.)

Let us specialize to the caseR = Fp = Z/pZ andn = pl . In this caseA(n) = I if and
only if A is a scalar matrix. The matrix

A =
(

1 −1
1 0

)

yields A(n) ≡ P(pl ) (mod p). SinceA3 = −I , the matrix A(n) has order 3.
Let us first compute the multiplicities of the three eigenvalues ofP = P(p) (modp)

overFp.
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The easy congruence
(2k

k

) ≡ (
(p−1)/2

k

)
(−4)k (mod p) for p an odd prime and 0≤ k ≤

(p − 1)/2 shows

(p−1)/2∑
k=0

(
2k

k

)(−x

4

)k

≡ (1 + x)(p−1)/2 (mod p)

and yields tr(P) ≡ (−3)(p−1)/2 ≡ ε(p) (modp) (whereε(p) ∈ {−1,0,1} satisfies
ε(p) ≡ p (mod 3)) by quadratic reciprocity.

Since the characteristic polynomial forP has antisymmetric coefficients(αk = −αp−k)

the two eigenvalues�= 1 of P haveequal multiplicityr . Lif ting into non-negative integers
≤(p − 1)/2 the solution of the linear system−r + (p − 2r ) ≡ tr(P) (mod p) now yields
the result.

The casep = 2 iseasily solved by direct inspection.
The formula for P(pl ) is now a straightforward consequence of the fact theP(pl )

is the l -fold Kronecker productP ⊗ P ⊗ · · · ⊗ P of P = P(p) with itself. All
eigenvalues ofP(pl ) (modp) are third roots of 1 overFp2. Their multiplicities in the
characteristic polynomialχpl (t) (modp) can be computed as above by remarking that
tr(P(pl )) = (tr(P(p)))l . �

Remark 3.1. Recall that we have (with the notations of the above proof)P = P(n) =
A(n) (modp) for n = pl and introduceL = L(n) = B(n) (modp) and L̃ = L̃(n) =
C(n) (mod p) where

A =
(

1 −1
1 0

)
, B =

(
1 0

−1 −1

)
, C =

(
1 0
1 −1

)
.

It is straightforward to check thatL andL̃ have coefficients

l i, j = (−1)i
(

i

j

)
(mod p) and l̃ i, j = (−1) j

(
i

j

)
(mod p)

for 0 ≤ i , j < n.
Then A3 = −I , but (−I )(n) is the identity. HenceP3 = I . Also C2 = I and

C AC = A−1. It follows thatA andC generate a dihedral group of order 12, containing−I .
HenceA(n) = P andC(n) = L̃ generate a dihedral group of order 6.

Proof of Theorem 1.3. Using Proposition 1.2, we can rewrite the equation to be proved
as

(t3 − 1)k det(t I − P(q − k)) ≡ det(t I − P(q)) det(t2 I + P(k)) (mod p).

Here, and in the sequel, we writeI for I (n) whenever this notation is unambiguous; also
we denote the zero matrix of any size byO.

We now work over the fieldFp. Unless otherwise stated vectors will be row vectors.
It is convenient to define a categoryE = EFp as follows. Its objects will be pairs(V, α)

whereV is a finite-dimensional vector space overFp andα isa vector space endomorphism
of V . A morphismφ : (V, α) → (W, β) in E will be a linear mapφ : V → W with
φ ◦ α = β ◦ φ. (In factE is equivalent to the category of finitely generated torsion modules
over the polynomial ringFp[X].) If (V, α) is an object ofE we defineχ(V, α, t) as the
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characteristic polynomial ofα acting onV , that is,χ(V, α, t) = det(t I − A) whereA is
a matrix representingα with respect to some basis ofV . An r by r matrix A defines an
object((Fp)

r , α), denoted by((Fp)
r , A), whereα is the endomorphism defined byA.

It is easy to see thatE is an abelian category, and that if

0 → (V, α) → (X, γ ) → (W, β) → 0

is a short exact sequence, thenχ(X, γ , t) = χ(V, α, t)χ(W, β, t). This is because there is
a basis forX with respect to which the matrix ofγ (acting on row vectors from the right)
is (

A O
C B

)

whereA andB are matrices representingα andβ respectively.
Setk′ = q − k. We can partition the Pascal matricesP(k′) andP(q) as follows:

P(k′) =
(

A B
Bt C

)
and P(q) =


 A B D

Bt C O
Dt O O




whereA = P(k).
Let A denote the matrix obtained by rotatingA through 180◦ (more formally,A = J AJ

where J is the matrix with entries 1 on the reverse diagonal and 0 elsewhere). Then
P(q)2 = P(q) andP(q)3 = I . Hence

P(q)2 =

 O O Dt

O C Bt

D B A


 .

Thus

A2 + B Bt + DDt = O

and so

P(k′)2 =
(−DDt O

O C

)
.

From P(q)2 = P(q) it follows that AD = Dt and fromP(q)P(q) = I it follows that
Dt Dt = I . Hence ADDt = I and so

P(k′)2 =
(−A−1 O

O C

)
.

Let

Q1 =

 O I (k) O

O O I(k)
I (k) O O


 .
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Let φ : (Fp)
3k → (Fp)

q be the map defined by the matrix
 I O O

A B D
O O Dt


 .

Then

Q1


 I O O

A B D
O O Dt


 =


 A B D

O O Dt

I O O




and 
 I O O

A B D
O O Dt


 P(q) =


 I O O

A B D
O O Dt




 A B D

Bt C O
Dt O O


 =


 A B D

O O Dt

I O O




where we have used theformulas P(q)2 = P(q) and P(q)P(q) = I . Hence φ is a
morphism from((Fp)

3k, Q1) to ((Fp)
q, P(q)) in E .

Let

Q2 =
(

O I (k)
−A−1 O

)
.

Letψ : (Fp)
2k → (Fp)

k′
be the map defined by the matrix(

I O
A B

)
.

Then

Q2

(
I O
A B

)
=
(

A B
−A−1 O

)

and (
I O
A B

)
P(k′) =

(
I O
A B

)(
A B
Bt C

)
=
(

A B
−A−1 O

)

where we have used the formula

P(k′)2 =
(−A−1 O

O C

)
.

Henceψ is a morphism from((Fp)
2k, Q2) to ((Fp)

k′
, P(k′)) in E .

We need to divide into the casesk ≤ q/3 andk ≥ q/3. In the former casesφ andψ
are injective and in the latter case they are surjective. In the former case we consider their
cokernels, in the latter case their kernels.

The matrixB has sizek by q − 2k. If B has rankk (which is only possible ifk ≤ q/3)
thenφ andψ are injective. IfB has rankq − 2k (which is only possible ifk ≥ q/3) then
φ andψ are surjective.
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The matrixB contains a submatrix((
i + j + k

i

))r−1

i, j =0

wherer = min(k,q − 2k). This submatrix has determinant 1 (consider it as a matrix over
Z and reduce it to a Vandermonde matrix or see for instance [2]). Thus B has rankr and
indeedφ andψ are injective fork ≤ q/3 and surjective fork ≥ q/3.

Consider first the case wherek ≤ q/3. Let (X1, θ1) and(X2, θ2) denote the cokernels
of φ : ((Fp)

3k, Q1) → ((Fp)
q, P(q)) andψ : ((Fp)

2k, Q2) → ((Fp)
k′
, P(k′)) in E . Then

χ((Fp)
q, P(q), t) = χ((Fp)

3k, Q1, t)χ(X1, θ1, t)

and

χ((Fp)
k′
, P(k′), t) = χ((Fp)

2k, Q2, t)χ(X2, θ2, t).

It is apparent that

χ((Fp)
3k, Q1, t) = (t3 − 1)k

and

χ((Fp)
2k, Q2, t) = det(t2 I + A−1) = det(t2I + A)

asA andA−1 are similar. Hence

det(t I − P(q)) = (t3 − 1)kχ(X1, θ1, t)

and

det(t I − P(k′)) = det(t2I + A)χ(X2, θ2, t).

It suffices to prove that(X1, θ1) and(X2, θ2) are isomorphic inE .
As Dt is non-singular, it is apparent thatX1 is isomorphic to(Fp)

q−2k/Y whereY is the
row space ofB and that the action ofθ1 is inducedby that of the matrixC on (Fp)

q−2k.
It is even more apparent thatX2 is isomorphic to (Fp)

q−2k/Y and that the action ofθ2
is induced byC. Hence (X1, θ1) and (X2, θ2) are isomorphic inE . This completes the
argument in the casek ≤ q/3.

Now suppose thatk ≥ q/3. Let (K1, θ1) and (K2, θ2) denote the kernels ofφ :
((Fp)

3k, Q1) → ((Fp)
q, P(q)) andψ : ((Fp)

2k, Q2) → ((Fp)
k′
, P(k′)) in E . Then

χ((Fp)
q, P(q), t)χ(K1, θ1, t) = χ((Fp)

3k, Q1, t)

and

χ((Fp)
k′
, P(k′), t)χ(K2, θ2, t) = χ((Fp)

2k, Q2, t).

Hence

(t3 − 1)k

det(t I − P(q))
= χ(K1, θ1, t)
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and
det(t2 I + A)

det(t I − P(k′))
= χ(K2, θ2, t).

It suffices to prove that(K1, θ1) and(K2, θ2) are isomorphic inE .
As Dt is non-singular and has inverseDt , it is apparent that

K1 = {(−u A,u,−uDDt ) = (−u A,u,−u A−1) : u ∈ (Fp)
k,uB = 0}

and we have

(−u A,u,−u A−1)Q1 = (−u A−1,−u A,u).

Also

K2 = {(−u A,u) : u ∈ (Fp)
k,uB = 0}

and

(−u A,u)Q2 = (−u A−1,−u A).

Hence thelinear map

(−u A,u,−u A−1) (−u A,u)

induces an isomorphism between(K1, θ1) and(K2, θ2). �

4. Proofs for the prime p = 2

Proof of Theorem 1.4. Setn = 2l − k andq = 2l where 1≤ k ≤ 2l−1.
Theorem 1.3yields then overF2

χn(t) = χq−k(t) = (t2 + t + 1)(q−ε(q))/3−k(t + 1)(q+2ε(q))/3−k det(t I + P(k))2

sincex x2 is the Frobenius automorphism in characteristic 2.
By induction onl , theonly possible irreducible factors of det(t I (n) − P(n)) (mod 2)

are(1+ t) and(1+ t + t2). Themultiplicity γ (n) = γ (2l − k) of the factor(1+ t) in this
polynomial is recursively defined by

γ (n) = 2l + 2(−1)l

3
− k + 2γ (k)

and coincides with the sequenceγ of Theorem 1.4. The remaining factor of det(t I (n) −
P(n)) (mod 2) is given by(1+ t + t2)γ2(n) whereγ2(n) = (1/2)(n−γ (n)) and this proves
the result. �
Proof of Theorem 1.5. We have for 0≤ k ≤ 2l−1

γ (2l + k) = γ (2l+1 − (2l − k))

= 2l+1 − 2(−1)l

3
− 2l + k + 2γ (2l − k)

= 2l+1 − 2(−1)l

3
− 2l + k + 2

2l + 2(−1)l

3
− 2k + 4γ (k)

which is assertion (i).
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We have for all 2l−2 ≤ k ≤ 2l−1

γ (2l − k) = 2l + 2(−1)l

3
− k + γ (k)+ γ (2l−1 − (2l−1 − k))

= 2l + 2(−1)l

3
− k + γ (k)+ 2l−1 − 2(−1)l

3
− 2l−1

+ k + 2γ (2l−1 − k)

= γ (k)+ 2γ (2l−1 − k)

which proves assertion (ii).

Similarly, we have for 1≤ k ≤ 2l

γ (2l + k)− γ (2l + k − 1) = γ (2l+1 − (2l − k))− γ (2l+1 − (2l − k + 1))

= 1 + 2γ (2l − k)− 2γ (2l − k + 1)

which proves assertion (iii).

Writing 2n = 2l − 2k with 1 ≤ k ≤ 2l−2 wehave, using induction onn,

γ (2l − 2k) = 2l + 2(−1)l

3
− 2k + 2γ (2k)

= 2l + 2(−1)l

3
− 2k + 2(k − γ (k))

= (2l−1 − k)−
(

2l−1 + 2(−1)l−1

3
− k + 2γ (k)

)

= (2l−1 − k)− γ (2l−1 − k)

which proves the first equality of assertion (iv) (this equality follows also from the fact that

P(2n) is the Kronecker productP(n)⊗ P(2) of P(n) with P(2) overF2).
We prove the last two identities of assertion (iv) by simultaneous induction as follows:

denote the second formula byAn and the last formula byBn. We prove first thatthe truth
of Bm for all m < n implies the truth ofAn. In a second step we establish the truth ofBn

provided that the identitiesAm hold for allm< n.
First step: The second identity (referred to byAn) of assertion (iv) amounts to the

equality

γ (2n − 1)− γ (2n) = 4b(2n−1) − 1

3
.

Writing 2n = 2l − 2k with 0 ≤ k < 2l−2 and applying the recursive definition ofγ (2n)
andγ (2n − 1) together with identityBk (which holds by induction) we get

γ (2n − 1)− γ (2n) = 2l + 2(−1)l

3
− (2k + 1)+ 2γ (2k + 1)

− 2l + 2(−1)l

3
+ 2k − 2γ (2k)
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= −1 + 2(γ (2k + 1)− γ (2k))

= −1 + 2
21+2b(k) + 1

3
= 41+b(k) − 1

3
.

Since(2l − (2k + 1))+ 2k = 2l − 1 and since 2l − (2k + 1) is odd and greater than 2k the
number of blocks of consecutive 1s in the binary expansion of 2l − (2k + 1) exceeds by 1
thenumber of blocks of consecutive 1s in the binary expansion of 2k, andhence

b(2n − 1) = b(2l − (2k + 1)) = b(2k)+ 1 = b(k)+ 1

which establishes the truth ofAn.
Second step: IdentityBn, thelast identity of assertion (iv), is equivalent to

γ (2n + 1)− γ (2n) = 21+2b(n) + 1

3
.

Writing 2n + 1 = 2l + k with 1 ≤ k < 2l and applying assertion (iii) and identity
A(2l −k+1)/2 (which holds by induction) we have

γ (2n + 1)− γ (2n) = 1 + 2γ (2l − k)− 2γ (2l + 1 − k)

= 1 + 2
4b(2l−k) − 1

3

= 21+2b(2l−k) + 1

3
.

Since(2l + k − 1) + (2l − k) = 2l+1 − 1 and since 2l + k − 1 is even andgreater than
2l − k, they have the same number of blocks of consecutive 1s in their binary expansions.
This showsb(2l − k) = b(2n) = b(n) and establishes the truth ofBn. �

Acknowledgements

The first author wishes to thank J.-P. Allouche, F. Sigrist, U. Vishne and A. Wassermann
for interesting comments and remarks and support from the Swiss National Science
Foundation is gratefully acknowledged.

References

[1] J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue–Morse sequence, in: C. Ding, T. Helleseth,
H. Niederreiter (Eds.), Proceedings of SETA 98, Springer, 1999.

[2] R. Bacher, Determinants of matrices related to the Pascal triangle, J. Th´eor. des Nombres Bordeaux 14 (2002)
19–41.

[3] C. Krattenthaler, Advanced determinant calculus, S´em. Lothar. Combin. 42 B42q (1999) 67.
[4] W.F. Lunnon, The Pascal matrix, Fibonacci Quart. 15 (1977) 201–204.


	Symmetric Pascal matrices modulo p
	Introduction
	Autosimilar matrices
	Binomial coefficients modulo a prime p

	Proofs of Proposition 1.2 and Theorem 1.3
	Proofs for the prime p=2
	Acknowledgements
	References


