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Abstract

In this paper, we consider a variant of the well-known Steiner tree problem. Given a complete graph G = (V, E) with a cost
function c : E → R+ and two subsets R and R′ satisfying R′

⊂ R ⊆ V , a selected-internal Steiner tree is a Steiner tree which
contains (or spans) all the vertices in R such that each vertex in R′ cannot be a leaf. The selected-internal Steiner tree problem
is to find a selected-internal Steiner tree with the minimum cost. In this paper, we present a 2ρ-approximation algorithm for the
problem, where ρ is the best-known approximation ratio for the Steiner tree problem.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the past years, the Steiner tree problem (STP for short) and its variants have received a lot of focuses
because they have many important applications such as VLSI design, network routing, telecommunications, wireless
communications, transportation, and so on [2–7,10–12]. There are several well-known variants of the Steiner tree
problem, such as the Steiner tree problem on special metric spaces (e.g., the Euclidean metric [8] and the rectilinear
metric [9]), the terminal Steiner tree problem [13], and so on. All of the above problems were shown to be NP-
complete [8,9,13].

In this paper, we study a variant of the Steiner tree problem. Given a complete graph G = (V, E) with a cost
function c : E → R+ and two subsets R and R′ satisfying R′

⊂ R ⊆ V , the selected-internal Steiner tree problem
(SISTP for short) is to find a Steiner minimum tree which spans all the vertices in R such that each vertex in R′ cannot
be a leaf. For convenience, we call such a tree as optimal selected-internal Steiner tree, and call the vertices in R′ the
demanded terminals. Since the Steiner tree problem is a special case of SISTP, the NP-completeness and MAX SNP-
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hardness of the problem1 follows immediately from the hardness results of the Steiner tree problem. It is conceivable
that this problem maybe of practical interest. For example, in a network resource allocation, some specified servers
(terminals) must act as transmitters and the others need not have this restriction. Consequently, in a solution tree, some
terminals are restricted to be internal vertices and the others can be leaves or internal vertices. Another example is in
a sensor network, some nodes might be especially cheap devices that can receive but cannot transmit.

In this paper, we present a 2ρ-approximation algorithm for the problem, where ρ is the best-known approximation
ratio for SISTP. The rest of this paper is organized as follows: In the next Section 2, we present an approximation
algorithm for the problem. Finally, some concluding remarks are provided in Section 3.

2. An approximation algorithm

In this section, we present an approximation Algorithm ASISTP for SISTP. Some useful definitions and notations
are first provided. For a graph G, the degree of v in G, denoted by degG(v), is the number of edges incident to v in G.
A path of length k from a vertex v0 to a vertex vk in a graph G = (V, E) is a sequence 〈v0, v1, v2, . . . , vk〉 of vertices
such that (vi−1, vi ) ∈ E for i = 1, 2, . . . , k. We use PG[u, u′

] to denote a path from u to u′ in G. A path is simple if
all vertices in the path are distinct. The cost function c used throughout this paper is metric. For an edge e in a tree T ,
c(e) is the cost of e, and c(T ) is the sum of all the edge costs of T .

Let ASTP denote the best-known approximation algorithm for STP with ratio ρ = 1 +
ln 3
2 ≈ 1.55 [14], and also

let SA = (VA, E A) be the Steiner tree returned by ASTP. For a Steiner tree T of the instance I = (G, R, R′, c) of the
problem SISTP, a vertex v ∈ V (T ) is said to be a demand-leaf if v is a leaf of T and v ∈ R′. Hereafter, we assume
that |R \ R′

| ≥ 2 if R′
6= ∅ (to make sure that the solution of SISTP exists).

Lemma 1. Let T be a Steiner tree of the instance I = (G, R, R′, c) of the problem SISTP such that |R \ R′
| ≥ 2. If v

is a demand-leaf of T , then there is an internal vertex mv ∈ V (T ) satisfying one of the following two conditions: (1)
degT (mv) = 2 and mv 6∈ R′, and (2) degT (mv) ≥ 3.

Proof. If neither Condition (1) nor Condition (2) holds, then the resulting tree T is a path 〈v, v1, v2, . . . , vn−1〉 such
that v, v1, v2, . . . , vn−2 are all in R′. Then, |R\R′

| ≤ 1 < 2, which contradicts to the assumption that |R\R′
| ≥ 2. �

The skeleton of our algorithm is first to apply ASTP to obtain a Steiner tree SA = (VA, E A) spanning R, and then
transform it to a selected-internal Steiner tree based on Lemma 1 to make each demand-leaf of SA to be an internal
vertex. We next present our approximation algorithm, namely Algorithm ASISTP. We call the two vertices mv and tv
selected by Algorithm ASISTP for each demand-leaf v the medium vertex and the target vertex of v, respectively.

It is not difficult to show the following result, which is useful for analyzing the approximation ratio of our algorithm
in Theorem 5.

Lemma 2. Let v1, v2, . . . , vl be an order of the demand-leaves of SA handled by Algorithm ASISTP. Then, the paths
PSA [v1, mv1 ], PSA [v2, mv2 ], . . . , PSA [vl , mvl ] are pairwise edge-disjoint.

Lemma 3. Suppose that v is a demand-leaf of the current tree T , which is being handled by Algorithm ASISTP. Then,
the target vertex tv does not belong to PSA [v, mv].

Proof. According to Line 8 of the algorithm, it is clear that tv does not belong to PT [v, mv], i.e., tv is not a vertex in
PT [v, mv]. Assume that PT [v, mv] = 〈v0(=v), v1, v2, . . . , vk(=mv)〉. It can be shown by induction that the vertices
of PSA [v, mv] are contained in PT [v, mv] and the relative order of the vertices in PSA [v, mv] are retained in PT [v, mv],
i.e., PSA [v, mv] = 〈v0, vi1 , vi2 , . . . , vi j , vk〉, where 0 < i1 < i2 < · · · < i j < k. Therefore, tv is not a vertex in
PSA [v, mv]. �

Lemma 4. Let P = 〈v1, v2, . . . , vk−1, vk〉 be a path of a graph G = (V, E) with a metric cost function c : E → R+,
and let P ′

= 〈v1, v2, . . . , vk−2, vk−1〉. Then, c(v1, vk) − c(vk−1, vk) ≤ c(P ′), where c(P ′) =
∑k−2

j=1 c(v j , v j+1).

1 It was shown that if any MAX SNP-hard problem has a polynomial-time approximation scheme (PTAS), then P = NP [1]. In other words, it is
very unlikely that for a MAX SNP-hard problem to have a PTAS.
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Proof. Since c is metric, c(v1, vk) − c(vk−1, vk) ≤ c(v1, vk−1), c(v1, vk−1) − c(vk−2, vk−1) ≤ c(v1, vk−2),
c(v1, vk−2) − c(vk−3, vk−2) ≤ c(v1, vk−3), . . . , c(v1, v3) − c(v2, v3) ≤ c(v1, v2). By combining these inequalities,
we have that c(v1, vk) − c(vk−1, vk) ≤ c(v1, v2) + c(v2, v3) + · · · + c(vk−3, vk−2) + c(vk−2, vk−1) = c(P ′). �

Let L R = {v| v ∈ R is a leaf of SA} and L R′ = {v| v is a demand-leaf of SA}. Note that L R′ ⊆ L R . Define
φ = min{|L R \ L R′ |, |R \ R′

| − 2}. We now show our main result.

Theorem 5. Let e1, e2, . . . , ei denote the first i smallest-cost edges of SA = (VA, E A). Algorithm ASISTP is a
(2 −

σ
c(SA)

)ρ-approximation algorithm for SISTP, where ρ is the best-known approximation ratio of the Steiner tree
problem and σ is defined as follows:

σ =


c(SA) if R′

= ∅,
φ∑

i=1

c(ei ) otherwise.

Moreover, 0 ≤
σ

c(SA)
≤ 1.

Proof. It is clear that Algorithm ASISTP correctly constructs a selected-internal Steiner tree. We now analyze the
approximation ratio. Let Ts , T ∗, and S∗ be the output of ASISTP, the optimal solution of SISTP and the optimal
solution of STP, respectively. Since SA is the output of Algorithm ASTP, we have that c(SA) ≤ ρc(S∗). Since T ∗ is a
feasible solution of STP, c(S∗) ≤ c(T ∗). Therefore, c(SA) ≤ ρc(T ∗).

Next, we consider the following two cases according to the demanded-terminal set R′.

CASE 1: R′
= ∅. Then, c(Ts) = c(SA) ≤ ρc(T ∗) = (2 −

c(SA)
c(SA)

)ρc(T ∗). The theorem holds.
CASE 2: R′

6= ∅ and |R \ R′
| ≥ 2. According to Algorithm ASISTP, c(Ts) = c(SA) +

∑
v∈L R′

(c(v, tv) − c(mv, tv)).
According Lemmas 3 and 4, we know that

∑
v∈L R′

(c(v, tv) − c(mv, tv)) ≤
∑

v∈L R′
c(PSA [v, mv]). Define

Q to be the set obtained by selecting arbitrary φ (=min{|L R \ L R′ |, |R \ R′
| − 2}) elements from L R \ L R′ .

Note that

Q =


∅ if φ = 0,

L R \ L R′ if φ = |L R \ L R′ |,

a proper subset of L R \ L R′ otherwise.

If we transform L R′ ∪ Q into internal vertices using Algorithm ASISTP(G, R, Q ∪ R′, c), then the
resulting tree remains a selected-internal Steiner tree. (Note that the algorithm actually transform only L R′

into internal vertices.) By above observation together with Lemma 2, we have
∑

v∈L R′
c(PSA [v, mv]) +∑

v∈Q c(PSA [v, mv]) ≤ c(SA).
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Therefore, we have that c(Ts) = c(SA) +
∑

v∈L R′
(c(v, tv) − c(mv, tv)) (by the algorithm) ≤

c(SA) +
∑

v∈L R′
c(PSA [v, mv]) (by Lemmas 3 and 4) ≤ c(SA) + (c(SA) −

∑
v∈Q c(PSA [v, mv])) ≤

2c(SA) −
∑|Q|

i=1 c(ei ) (by the fact that e1, e2, . . . , e|Q| is the first |Q| smallest-cost edges in SA) = 2c(SA) −∑φ

i=1 c(ei ) = (2 −

∑φ
i=1 c(ei )

c(SA)
)c(SA) ≤ (2 −

∑φ
i=1 c(ei )

c(SA)
)ρc(T ∗) (by c(SA) ≤ ρc(T ∗)). Therefore, c(Ts )

c(T ∗)
≤

(2 −

∑φ
i=1 c(ei )

c(SA)
)ρ. It is clear that 0 ≤

σ
c(SA)

≤ 1. �

We next analyze the time complexity of Algorithm ASISTP. Let f (n, m) be the time complexity of an approximation
algorithm ASTP for the Steiner tree problem, where n and m are the numbers of vertices and edges of the input graph
G, respectively. Hence, constructing SA in Step 1 takes f (n, m) time. Based on the linear-time depth-first-search to
find the medium vertex mv for each demand-leaf v, the overall for-loop (lines 4–10) can be implemented to run in
O(|R′

|(|VA| + |E A|)) = O(|R′
||VA|) = O(n2) time. Therefore, we have the following result.

Theorem 6. Algorithm ASISTP can be implemented to run in time O(n2) + f (n, m).

3. Concluding remarks

In this paper, we develop an approximation algorithm for the selected-internal Steiner tree problem. A future work
is to extend our result to obtain a better approximation algorithm or study the case where the cost function is not
metric.
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