

Available online at www.sciencedirect.com



Theoretical Computer Science

Theoretical Computer Science 381 (2007) 288-291

www.elsevier.com/locate/tcs

Note

# Approximating the selected-internal Steiner tree<sup>☆</sup>

Sun-Yuan Hsieh\*, Shih-Cheng Yang

Department of Computer Science and Information Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan

Received 24 March 2007; received in revised form 22 May 2007; accepted 27 May 2007

Communicated by D.-Z. Du

#### Abstract

In this paper, we consider a variant of the well-known Steiner tree problem. Given a complete graph G = (V, E) with a cost function  $c : E \to \mathbf{R}^+$  and two subsets R and R' satisfying  $R' \subset R \subseteq V$ , a *selected-internal Steiner tree* is a Steiner tree which contains (or spans) all the vertices in R such that each vertex in R' cannot be a leaf. The *selected-internal Steiner tree problem* is to find a selected-internal Steiner tree with the minimum cost. In this paper, we present a  $2\rho$ -approximation algorithm for the problem, where  $\rho$  is the best-known approximation ratio for the Steiner tree problem. (© 2007 Elsevier B.V. All rights reserved.

Keywords: Design and analysis of algorithms; Approximation algorithms; Steiner tree; The selected-internal Steiner tree problem; MAX SNP-hard

## 1. Introduction

In the past years, the Steiner tree problem (STP for short) and its variants have received a lot of focuses because they have many important applications such as VLSI design, network routing, telecommunications, wireless communications, transportation, and so on [2-7,10-12]. There are several well-known variants of the Steiner tree problem, such as the Steiner tree problem on special metric spaces (e.g., the Euclidean metric [8] and the rectilinear metric [9]), the terminal Steiner tree problem [13], and so on. All of the above problems were shown to be NP-complete [8,9,13].

In this paper, we study a variant of the Steiner tree problem. Given a complete graph G = (V, E) with a cost function  $c : E \to \mathbb{R}^+$  and two subsets R and R' satisfying  $R' \subset R \subseteq V$ , the *selected-internal Steiner tree problem* (SISTP for short) is to find a Steiner minimum tree which spans all the vertices in R such that each vertex in R' cannot be a leaf. For convenience, we call such a tree as *optimal selected-internal Steiner tree*, and call the vertices in R' the *demanded terminals*. Since the Steiner tree problem is a special case of SISTP, the NP-completeness and MAX SNP-

\* Corresponding author.

An extended abstract of this paper appeared in *Proceedings of 12th Annual International Computing and Combinatorics Conference (COCOON 2006), Lecture Notes in Computer Science 4112*, pp. 449–458, 2006. This work was supported in part by the National Science Council under grants NSC 94-2213-E-006-073 and NSC 95-2221-E-006-076.

E-mail address: hsiehsy@mail.ncku.edu.tw (S.-Y. Hsieh).

<sup>0304-3975/\$ -</sup> see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.tcs.2007.05.035

hardness of the problem<sup>1</sup> follows immediately from the hardness results of the Steiner tree problem. It is conceivable that this problem maybe of practical interest. For example, in a network resource allocation, some specified servers (terminals) must act as transmitters and the others need not have this restriction. Consequently, in a solution tree, some terminals are restricted to be internal vertices and the others can be leaves or internal vertices. Another example is in a sensor network, some nodes might be especially cheap devices that can receive but cannot transmit.

In this paper, we present a  $2\rho$ -approximation algorithm for the problem, where  $\rho$  is the best-known approximation ratio for SISTP. The rest of this paper is organized as follows: In the next Section 2, we present an approximation algorithm for the problem. Finally, some concluding remarks are provided in Section 3.

## 2. An approximation algorithm

In this section, we present an approximation Algorithm  $A_{SISTP}$  for SISTP. Some useful definitions and notations are first provided. For a graph G, the *degree* of v in G, denoted by  $\deg_G(v)$ , is the number of edges incident to v in G. A *path* of *length* k from a vertex  $v_0$  to a vertex  $v_k$  in a graph G = (V, E) is a sequence  $\langle v_0, v_1, v_2, \ldots, v_k \rangle$  of vertices such that  $(v_{i-1}, v_i) \in E$  for  $i = 1, 2, \ldots, k$ . We use  $P_G[u, u']$  to denote a path from u to u' in G. A path is *simple* if all vertices in the path are distinct. The cost function c used throughout this paper is *metric*. For an edge e in a tree T, c(e) is the *cost* of e, and c(T) is the sum of all the edge costs of T.

Let  $A_{STP}$  denote the best-known approximation algorithm for STP with ratio  $\rho = 1 + \frac{\ln 3}{2} \approx 1.55$  [14], and also let  $S_A = (V_A, E_A)$  be the Steiner tree returned by  $A_{STP}$ . For a Steiner tree *T* of the instance I = (G, R, R', c) of the problem SISTP, a vertex  $v \in V(T)$  is said to be a *demand-leaf* if v is a leaf of *T* and  $v \in R'$ . Hereafter, we assume that  $|R \setminus R'| \ge 2$  if  $R' \neq \emptyset$  (to make sure that the solution of SISTP exists).

**Lemma 1.** Let T be a Steiner tree of the instance I = (G, R, R', c) of the problem SISTP such that  $|R \setminus R'| \ge 2$ . If v is a demand-leaf of T, then there is an internal vertex  $m_v \in V(T)$  satisfying one of the following two conditions: (1)  $\deg_T(m_v) = 2$  and  $m_v \notin R'$ , and (2)  $\deg_T(m_v) \ge 3$ .

**Proof.** If neither Condition (1) nor Condition (2) holds, then the resulting tree *T* is a path  $\langle v, v_1, v_2, ..., v_{n-1} \rangle$  such that  $v, v_1, v_2, ..., v_{n-2}$  are all in *R'*. Then,  $|R \setminus R'| \le 1 < 2$ , which contradicts to the assumption that  $|R \setminus R'| \ge 2$ .  $\Box$ 

The skeleton of our algorithm is first to apply  $A_{STP}$  to obtain a Steiner tree  $S_A = (V_A, E_A)$  spanning R, and then transform it to a selected-internal Steiner tree based on Lemma 1 to make each demand-leaf of  $S_A$  to be an internal vertex. We next present our approximation algorithm, namely Algorithm  $A_{SISTP}$ . We call the two vertices  $m_v$  and  $t_v$  selected by Algorithm  $A_{SISTP}$  for each demand-leaf v the *medium vertex* and the *target vertex* of v, respectively.

It is not difficult to show the following result, which is useful for analyzing the approximation ratio of our algorithm in Theorem 5.

**Lemma 2.** Let  $v_1, v_2, \ldots, v_l$  be an order of the demand-leaves of  $S_A$  handled by Algorithm  $A_{SISTP}$ . Then, the paths  $P_{S_A}[v_1, m_{v_1}], P_{S_A}[v_2, m_{v_2}], \ldots, P_{S_A}[v_l, m_{v_l}]$  are pairwise edge-disjoint.

**Lemma 3.** Suppose that v is a demand-leaf of the current tree T, which is being handled by Algorithm  $A_{SISTP}$ . Then, the target vertex  $t_v$  does not belong to  $P_{S_A}[v, m_v]$ .

**Proof.** According to Line 8 of the algorithm, it is clear that  $t_v$  does not belong to  $P_T[v, m_v]$ , i.e.,  $t_v$  is not a vertex in  $P_T[v, m_v]$ . Assume that  $P_T[v, m_v] = \langle v_0(=v), v_1, v_2, \dots, v_k(=m_v) \rangle$ . It can be shown by induction that the vertices of  $P_{S_A}[v, m_v]$  are contained in  $P_T[v, m_v]$  and the relative order of the vertices in  $P_{S_A}[v, m_v]$  are retained in  $P_T[v, m_v]$ , i.e.,  $P_{S_A}[v, m_v] = \langle v_0, v_{i_1}, v_{i_2}, \dots, v_{i_j}, v_k \rangle$ , where  $0 < i_1 < i_2 < \dots < i_j < k$ . Therefore,  $t_v$  is not a vertex in  $P_{S_A}[v, m_v]$ .

**Lemma 4.** Let  $P = \langle v_1, v_2, \dots, v_{k-1}, v_k \rangle$  be a path of a graph G = (V, E) with a metric cost function  $c : E \to \mathbf{R}^+$ , and let  $P' = \langle v_1, v_2, \dots, v_{k-2}, v_{k-1} \rangle$ . Then,  $c(v_1, v_k) - c(v_{k-1}, v_k) \leq c(P')$ , where  $c(P') = \sum_{j=1}^{k-2} c(v_j, v_{j+1})$ .

<sup>&</sup>lt;sup>1</sup> It was shown that if any MAX SNP-hard problem has a polynomial-time approximation scheme (PTAS), then P = NP [1]. In other words, it is very unlikely that for a MAX SNP-hard problem to have a PTAS.

Algorithm  $A_{SISTP}(G, R, R', c)$ 

A complete graph G = (V, E) with a metric cost function  $c : E \to \mathbf{R}^+$ , and two subsets R and R' satisfying Input:  $R' \subset R \subset V$  and  $|R \setminus R'| > 2$  if  $R' \neq \emptyset$ .

**Output:** A selected-internal Steiner tree  $T_s$ .

- 1: Use  $A_{STP}$  to find a Steiner tree  $S_A = (V_A, E_A)$  spanning R in G.
- $2: S'_A \leftarrow S_A.$
- 3: if there is a demand-leaf in  $S'_A$  then
- for each demand-leaf v in the current tree  $S'_{A}$  do 4:
- 5: Select the nearest vertex  $m_v \in V(S'_A)$  satisfying one of the following condition:
- (1)  $\deg_{S'_A}(m_v) = 2$  and  $m_v \notin R'$ 6:
- $\triangleright$  The existence of  $m_v$  is ensured by Lemma 1 7:  $(2) \deg_{S'_{A}}(m_{v}) \geq 3.$
- Choose a vertex  $t_v \in V(S'_A)$  which is adjacent to  $m_v$  but does not belong to the path  $P_{S'_A}[v, m_v]$ . 8:
- $$\begin{split} & E(S'_A) \leftarrow E(S'_A) \cup \{(v, t_v)\}. \\ & E(S'_A) \leftarrow E(S'_A) \setminus \{(m_v, t_v)\}. \end{split}$$
  9:
- 10:
- 11: **Return**  $T_s \leftarrow S'_A$ .

**Proof.** Since c is metric,  $c(v_1, v_k) - c(v_{k-1}, v_k) \leq c(v_1, v_{k-1}), c(v_1, v_{k-1}) - c(v_{k-2}, v_{k-1}) \leq c(v_1, v_{k-2}),$  $c(v_1, v_{k-2}) - c(v_{k-3}, v_{k-2}) \le c(v_1, v_{k-3}), \ldots, c(v_1, v_3) - c(v_2, v_3) \le c(v_1, v_2)$ . By combining these inequalities, we have that  $c(v_1, v_k) - c(v_{k-1}, v_k) \le c(v_1, v_2) + c(v_2, v_3) + \dots + c(v_{k-3}, v_{k-2}) + c(v_{k-2}, v_{k-1}) = c(P')$ . 

Let  $L_R = \{v \mid v \in R \text{ is a leaf of } S_A\}$  and  $L_{R'} = \{v \mid v \text{ is a demand-leaf of } S_A\}$ . Note that  $L_{R'} \subseteq L_R$ . Define  $\phi = \min\{|L_R \setminus L_{R'}|, |R \setminus R'| - 2\}$ . We now show our main result.

**Theorem 5.** Let  $e_1, e_2, \ldots, e_i$  denote the first i smallest-cost edges of  $S_A = (V_A, E_A)$ . Algorithm A<sub>SISTP</sub> is a  $(2 - \frac{\sigma}{c(S_A)})\rho$ -approximation algorithm for SISTP, where  $\rho$  is the best-known approximation ratio of the Steiner tree problem and  $\sigma$  is defined as follows:

$$\sigma = \begin{cases} c(S_A) & \text{if } R' = \emptyset, \\ \sum_{i=1}^{\phi} c(e_i) & \text{otherwise.} \end{cases}$$

*Moreover*,  $0 \leq \frac{\sigma}{c(S_A)} \leq 1$ .

**Proof.** It is clear that Algorithm A<sub>SISTP</sub> correctly constructs a selected-internal Steiner tree. We now analyze the approximation ratio. Let  $T_s$ ,  $T^*$ , and  $S^*$  be the output of  $A_{SISTP}$ , the optimal solution of SISTP and the optimal solution of STP, respectively. Since  $S_A$  is the output of Algorithm  $A_{STP}$ , we have that  $c(S_A) \leq \rho c(S^*)$ . Since  $T^*$  is a feasible solution of STP,  $c(S^*) \le c(T^*)$ . Therefore,  $c(S_A) \le \rho c(T^*)$ .

Next, we consider the following two cases according to the demanded-terminal set R'.

CASE 1:  $R' = \emptyset$ . Then,  $c(T_s) = c(S_A) \le \rho c(T^*) = (2 - \frac{c(S_A)}{c(S_A)})\rho c(T^*)$ . The theorem holds. CASE 2:  $R' \ne \emptyset$  and  $|R \setminus R'| \ge 2$ . According to Algorithm  $A_{SISTP}$ ,  $c(T_s) = c(S_A) + \sum_{v \in L_{R'}} (c(v, t_v) - c(m_v, t_v))$ . According Lemmas 3 and 4, we know that  $\sum_{v \in L_{R'}} (c(v, t_v) - c(m_v, t_v)) \leq \sum_{v \in L_{R'}} c(P_{S_A}[v, m_v])$ . Define Q to be the set obtained by selecting arbitrary  $\phi$  (=min{ $|L_R \setminus L_{R'}|, |R \setminus R'| - 2$ }) elements from  $L_R \setminus L_{R'}$ . Note that

$$Q = \begin{cases} \emptyset & \text{if } \phi = 0, \\ L_R \setminus L_{R'} & \text{if } \phi = |L_R \setminus L_{R'}|, \\ \text{a proper subset of } L_R \setminus L_{R'} & \text{otherwise.} \end{cases}$$

If we transform  $L_{R'} \cup Q$  into internal vertices using Algorithm  $A_{SISTP}(G, R, Q \cup R', c)$ , then the resulting tree remains a selected-internal Steiner tree. (Note that the algorithm actually transform only  $L_{R'}$ into internal vertices.) By above observation together with Lemma 2, we have  $\sum_{v \in L, v'} c(P_{S_A}[v, m_v]) +$  $\sum_{v \in O} c(P_{S_A}[v, m_v]) \le c(S_A).$ 

Therefore, we have that  $c(T_s) = c(S_A) + \sum_{v \in L_{R'}} (c(v, t_v) - c(m_v, t_v))$  (by the algorithm)  $\leq c(S_A) + \sum_{v \in L_{R'}} c(P_{S_A}[v, m_v])$  (by Lemmas 3 and 4)  $\leq c(S_A) + (c(S_A) - \sum_{v \in Q} c(P_{S_A}[v, m_v])) \leq 2c(S_A) - \sum_{i=1}^{|Q|} c(e_i)$  (by the fact that  $e_1, e_2, \ldots, e_{|Q|}$  is the first |Q| smallest-cost edges in  $S_A$ )  $= 2c(S_A) - \sum_{i=1}^{\phi} c(e_i) = (2 - \frac{\sum_{i=1}^{\phi} c(e_i)}{c(S_A)})c(S_A) \leq (2 - \frac{\sum_{i=1}^{\phi} c(e_i)}{c(S_A)})\rho c(T^*)$  (by  $c(S_A) \leq \rho c(T^*)$ ). Therefore,  $\frac{c(T_s)}{c(T^*)} \leq (2 - \frac{\sum_{i=1}^{\phi} c(e_i)}{c(S_A)})\rho$ . It is clear that  $0 \leq \frac{\sigma}{c(S_A)} \leq 1$ .  $\Box$ 

We next analyze the time complexity of Algorithm  $A_{SISTP}$ . Let f(n, m) be the time complexity of an approximation algorithm  $A_{STP}$  for the Steiner tree problem, where n and m are the numbers of vertices and edges of the input graph G, respectively. Hence, constructing  $S_A$  in Step 1 takes f(n, m) time. Based on the linear-time depth-first-search to find the medium vertex  $m_v$  for each demand-leaf v, the overall for-loop (lines 4–10) can be implemented to run in  $O(|R'|(|V_A| + |E_A|)) = O(|R'||V_A|) = O(n^2)$  time. Therefore, we have the following result.

**Theorem 6.** Algorithm  $A_{SISTP}$  can be implemented to run in time  $O(n^2) + f(n, m)$ .

### 3. Concluding remarks

In this paper, we develop an approximation algorithm for the selected-internal Steiner tree problem. A future work is to extend our result to obtain a better approximation algorithm or study the case where the cost function is not metric.

#### References

- S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and the hardness of approximation problems, Journal of the Association for Computing Machinery 45 (1998) 501–555.
- [2] M. Bern, Faster exact algorithms for Steiner tree in planar networks, Networks 20 (1990) 109–120.
- [3] A. Borchers, D.Z. Du, The k-Steiner ratio in graphs, SIAM Journal on Computing 26 (3) (1997) 857–869.
- [4] X. Cheng, D.Z. Du, Steiner Trees in Industry, Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.
- [5] D.Z. Du, On component-size bounded Steiner trees, Discrete Applied Mathematics 60 (1995) 131–140.
- [6] D.Z. Du, J.M. Smith, J.H. Rubinstein, Advance in Steiner Tree, Kluwer Academic Publishers, Dordrecht, Netherlands, 2000.
- [7] L. Foulds, R. Graham, The Steiner problem in phylogeny is NP-complete, Advances in Applied Mathematics 3 (1982) 43-49.
- [8] M. Garey, R. Graham, D. Johnson, The complexity of computing Steiner minimal trees, SIAM Journal on Applied Mathematics 32 (1977) 835–859.
- [9] M. Garey, D. Johnson, The rectilinear Steiner problem is NP-complete, SIAM Journal on Applied Mathematics 32 (1977) 826-834.
- [10] D. Graur, W.H. Li, Fundamentals of Molecular Evolution, Second ed., Sinauer Publishers, Sunderland, Massachusetts, 2000.
- [11] S. Hougardy, H.J. Prömel, A 1.598 approximation algorithm for the Steiner tree problem in graphs, in: Proceedings of the 10th Annual ACM–SIAM Symposium on Discrete Algorithms, SODA, 1999, pp. 448–453.
- [12] A.B. Kahng, G. Robins, On Optimal Interconnections for VLSI, Kluwer Publishers, 1995.
- [13] C.L. Lu, C.Y. Tang, R.C.T. Lee, The full Steiner tree problem, Theoretical Computer Science 306 (2003) 55-67.
- [14] G. Robins, A. Zelikovsky, Improved Steiner tree approximation in graphs, in: Proceedings of the 11th Annual ACM–SIAM Symposium on Discrete Algorithms, SODA, 2000, pp. 770–779.