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a b s t r a c t

This is a brief account on some results and methods of the asymptotic theory dealing with
the entropy of orthogonal polynomials for large degree. This study is motivated primarily
by quantum mechanics, where the wave functions and the densities of the states of
solvable quantum-mechanical systems are expressed bymeans of orthogonal polynomials.
Moreover, the uncertainty principle, lying in the ground of quantum mechanics, is best
formulated by means of position and momentum entropies. In this sense, the behavior for
large values of the degree is intimately connected with the information characteristics of
high energy states. But the entropy functionals and their behavior have an independent
interest for the theory of orthogonal polynomials. We describe some results obtained in
the last 15 years, as well as sketch the ideas behind their proofs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Given a probability density ρ, the expression− ln(ρ) is known as the surprise level function, whose mean value (average
lack of information or uncertainty) is identified with the Shannon entropy of ρ [1]. In particular, if {ρj}nj=1 is a discrete
probability distribution (ρj ≥ 0,

∑
ρj = 1), the information entropy functional

sn := −
n∑
j=1

ρj ln(ρj) (1)

measures, in common perception, the uncertainty associated with this probability distribution. Two extremal cases are

Uniform distribution: {ρj}nj=1 =
{
1
n
, . . . ,

1
n

}
⇒ sn = ln(n),

Dirac delta: {ρj}nj=1 = {0, . . . , 0, 1, 0, . . . , 0} ⇒ sn = 0.

Jensen’s inequality applied to (1) gives

0 ≤ sn ≤ ln(n),

showing that the uniform distribution, having the most uncertain outcome, has maximal entropy, while the deterministic
event has the minimal one.
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If ρ is a continuous probability distribution,

ρ(x) > 0, x ∈ R,
∫

R
ρ(x)dx = 1,

we can define by analogy the information entropy [1]

Sρ = −
∫
ρ(x) ln ρ(x)dx, (2)

known also as the Boltzmann, Boltzmann–Shannon or differential entropy, that characterizes the localization of the density of
the distribution. The measures of information (1) and (2), although formally similar, have different properties. In particular,
if ρ is a continuous probability distribution on [a, b] and we introduce a discrete distribution

ρj =

∫ a+jh

a+(j−1)h
ρ(x)dx, j = 1, . . . , n, h = (b− a)/n,

then Sρ ≈ sρ + ln(h), showing in particular that Sρ is unbounded. In this sense, it is more convenient to consider an entropy
functional for two (probability) measures, µ and ν,

K(µ, ν) =

−
∫
ln
(
dν
dµ

)
dν, if ν is µ-a.c.,

−∞, otherwise.
(3)

This is theKullback–Leibler information, also knownas the relative ormutual entropy,whichmeasures the ‘‘distance’’ between
ν and µ. Obviously, if ν is µ-a.c., we can also rewrite it as

K(µ, ν) = −

∫
dν
dµ
ln
(
dν
dµ

)
dµ.

There is no a priori preferred notion of information measure in physical applications, but a relevant role played by the
Boltzmann–Shannon entropy in quantum mechanics (and in particular, in the modern density functional theory [2]) is
motivated in part by the entropic formulation of the uncertainty principle. Consider for instance a single particle system inD
dimensions. For any quantummechanical state the distribution density is ρ(x) := |Ψ (x)|2, whereΨ (x) is the corresponding
wave function or physical solution of the associated Schrodinger equation. If γ is the distribution density in the momentum
space, then the Heisenberg’s uncertainty principle for the quantum mechanical system is a consequence of the following
inequality (see [3,4]):

Sρ + Sγ > D(1+ lnπ).

For the fundamental quantummechanical systems (harmonic oscillator, hydrogen atom) the relevant component of the
probability density of physical states are expressed by means of orthogonal polynomials (Gegenbauer, Laguerre, Hermite).
This brought up the study of the entropy functionals for orthogonal polynomials (see [5] as well as the survey [6]).
Let µ be a positive unit Borel measure on R and let

pn(x) = κn
n∏
j=1

(
x− ζ (n)j

)
, κn > 0, n ∈ N0 := N ∪ {0}, (4)

denote the corresponding sequence of orthonormal polynomials such that∫
pn(x)pm(x)dµ(x) = δmn, m, n ∈ N0.

Then we can define the sequence of probability measures νn, absolutely continuous with respect to µ, given by

dνn(x) = p2n(x)dµ(x), n ∈ N0, (5)

(note that ν0 = µ). These measures are usually related with the quantum-mechanical probability distribution of physical
states, and are standard objects of study in the analytic theory of orthogonal polynomials. As it was shown in [7], νn is
associated with the behavior of the ratio pn+1/pn as n→∞.
The relative entropy

En := K(µ, νn) = −

∫
p2n(x) ln

(
p2n(x)

)
dµ(x) (6)

is called the (continuous) information entropy of orthogonal polynomials {pn}. Obviously, this is not the only way to define
an entropy associated with orthogonal polynomials (4). For instance, for j ∈ {1, . . . , n}, let

ψi = `n(ζ
(n)
j ) p2i−1(ζ

(n)
j ), i = 1, . . . , n,
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where `−1n (x) :=
∑n−1
k=0 p

2
k(x) is the Christoffel function. Then {ψ

2
1 , . . . , ψ

2
n } is a discrete probability distribution with the

associated Shannon entropy

Sn,j := −
n∑
i=1

ψ2i ln
(
ψ2i
)
.

An explicit formula for this entropy for Chebyshev polynomials of the first and second kind has been obtained recently
in [8]. Result of several numerical experiments have been presented therein, suggesting that after an appropriate rescaling
and normalization, entropies Sn,j have a limit as n→∞.
Here we focus on the continuous entropy En, and review some ideas appeared along the 15 years history of research on

orthogonal polynomials entropy. More precisely, we highlight some results and methods regarding the asymptotics of this
functional for large n:

En ∼ ? as n→∞.

From the quantum-mechanical point of view this problem is related to the information characteristics of the highly excited
states (i.e. Rydberg states). But the notion of entropy is intrinsically relevant for the theory of orthogonal polynomials. The
Szegő constant is an entropic quantity, and properties of the entropy allow to prove the well known Szegő asymptotics,
as shown in [9, Ch. 2]. As a consequence of the results exposed below, we may conclude that entropy and some other
information theoretic measures capture in fact some fine features of the sequence {pn}.
In the next Section 2 we discuss the basic asymptotic formula for entropy of polynomial sequences orthogonal on the

interval of the real axis and its connectionwith Bernstein–Szegő asymptotics of orthogonal polynomials. Section 3 is devoted
to the Lp-norms method of proof of the asymptotic results. Then in Section 4 we consider a logarithmic potential theory
approach to the asymptotic of orthogonal polynomials entropy. Here the mutual energy of the zero counting measure and
νn play an important role. Section 5 is devoted to the modern state of the asymptotics of orthogonal polynomials entropy in
the Szegő class.

2. Bernstein–Szegő asymptotic formula and entropy of polynomials orthogonal on the interval

Let us describe first a ‘‘straightforward’’ approach to the asymptotics of En, namely replacing pn by their asymptotic
expression directly in (6). We assume in this section that µ is a measure on [−1, 1], absolutely continuous with respect to
the Lebesgue measure, and dµ(x) = w(x)dx. A relevant character on the segment is the Chebyshev weight

ρ(x) =
1
π

1
√
1− x2

,

along with the equilibrium measure η, absolutely continuous with respect to the Lebesgue measure on [−1, 1], given by
dη(x) = ρ(x)dx. Also,w0(x) = w(x)/ρ(x) is called the trigonometric weight corresponding tow, and

γ (x) :=
1
2π

∫ 1

−1

lnw0(t)− lnw0(x)
t − x

√
1− x2

1− t2
dt

is the harmonic conjugate of the function lnw0(x). We may also define

Rn(x) :=

√
2

w0(x)
cos(n arccos x+ γ (x)). (7)

S. N. Bernstein and G. Szegő showed that under certain assumptions, pn and Rn are close on [−1, 1] (see [10,11]). Namely,
Bernstein’s condition is

(B):
0 < λ < w0(x) < L, x ∈ [−1, 1]
|w0(x+ δ)− w0(x)|| ln δ|1+ε < K , (ε > 0, K > 0) (8)

while the (weaker) condition assumed by Szegő is

(S):
∫ 1

−1
lnw(x)dη(x) > −∞. (9)

The following theorem holds:

Theorem 1 (Bernstein–Szegő). If w ∈ (S), then ‖pn − Rn‖L2w [−1,1] = o(1) as n → ∞. Moreover, if w ∈ (B), then
‖pn − Rn‖C[−1,1] = o(1) for n→∞.
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For the situation considered here the correct asymptotic formula for the entropy functional (6) was derived in the
paper [12]. Formally substituting (7) in (6) we have

En ' −
∫ 1

−1
ln
(
2 cos2(nθ + γ (x))ρ(x)

w(x)

)
2 cos2(nθ + γ (x))dη(x),

where x = cos θ . Neglecting (for the moment) the phase shift γ (x)we get

En ' −
∫ 1

−1
ln(2 cos2(nθ)) 2 cos2(nθ)dη(x)−

∫ 1

−1
ln
(
ρ(x)
w(x)

)
2 cos2(nθ)dη(x). (10)

The first integral on the r.h.s. does not depend on the weight of orthogonality w; actually, it is the entropy of Chebyshev
polynomials of the first kind. This functional has been explicitly evaluated in [13]:

E(0) := −
∫ 1

−1
ln(2 cos2(nθ)) 2 cos2(nθ)dη(x) = ln(2)− 1; (11)

observe that it does not depend on n; it is a long standing conjecture of L. Golinskii that this feature is actually another
characterization of Chebyshev polynomials of the first kind.
The second integral on the r.h.s. of (10) has a limit for n→∞:∫ 1

−1
ln
(
ρ0(x)
w(x)

)
2 cos2(nθ)dη(x) −→ −

∫ 1

−1
ln (w0(x)) dη(x) = −K(µ, η).

The existence of the limit and its value is a more or less evident fact, and it rigorously follows from a useful lemma proved
in [14]:

Lemma 2. Let g ∈ C(R), g(θ + π) = g(θ), f ∈ L1([0, π]) and γ (θ) be a measurable and almost everywhere finite on [0, π]
function. Then for n→∞,∫ π

0
g(nθ + γ (θ))f (θ)dθ −→

1
π

∫ π

0
g(θ)dθ

∫ π

0
f (θ)dθ.

Remark 3. For f (θ) ≡ 1, g(θ) = cosp(θ) and γ ∈ C([0, π]) this result was proved by Bernstein (see [10, p. 12]). For
γ (θ) ≡ 0 and g ∈ L∞[0, π] the statement is the well known Fejer’s Lemma which establishes convergence to zero of the
Fourier coefficients.

We note that this lemma justifies our omission of the phase shift γ above. Thus, taking into account that under Bernstein
condition (8) we can rigorously substitute asymptotics (7) in the entropy functional (6), we obtain our first result:

Theorem 4. Let {pn}∞n=0 be a system of orthonormal polynomials (4)with respect to an absolutely continuous measure dµ(x) =
w(x)dx on [−1, 1] satisfying the Bernstein condition (8). Then the entropy of orthogonal polynomials (6) convergeswhen n→∞:

lim
n
En = E∞ := E(0) −K(µ, η), (12)

whereK is the mutual entropy (3), η is the equilibrium measure of [−1, 1], and constant E(0) is defined in (11).

We see that the limit of the entropy of orthogonal polynomial sequences with respect to a general weight satisfying the
Bernstein condition (8) is equal to the entropy of Chebyshev polynomials of the first kind reduced by the mutual (relative)
entropy between the measure of orthogonality µ and the equilibrium (Chebyshev) measure η of the interval. Since the
mutual entropy (3) is always non-negative (Jensen’s inequality), Chebyshev polynomials exhibit the asymptoticallymaximal
entropy, in agreement with our intuition that these polynomials are the ‘‘most uniform’’ ones. Another observation is that
right-hand side in (12) exists under the Szegő condition (9), which is milder than what we assumed in Theorem 4, namely
the Bernstein condition (8). It is still a challenging open problem to prove (or present a counterexample) that formula (12)
for the entropy of orthogonal polynomials on the interval is valid in the whole Szegő class.

3. Lp norms method

If we want to prove (12) under milder conditions on the weight, we cannot simply substitute the asymptotics of pn into
the entropy functional. The logarithmic singularity present therein creates additional complications that we can overcome
using the Lp norms method. The idea is very simple. Consider the functional

Rpρ :=
1
1− p

ln
∫
|ρ(x)|pdx,
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called Renyi entropy. The identity

lim
p→1
Rpρ = Sρ

reduces the problem to the estimates of the Lp norms. In consequence, if we consider the Lpµ norm of our orthonormal
polynomials pn,

Nn(p) :=
∫
|pn(x)|pdµ(x), (13)

then

En = − lim
p→1

1
p− 1

ln
∫
|pn(x)|2pdµ(x) = −N ′n(2p)

∣∣
p=1.

Suppose that the sequence {Nn(2p)} is uniformly convergent on the interval p ∈ [0, t]; we denote its limit by N(2p).
Functions Nn(2p) are holomorphic in the half-plane Re(p) > 0, and uniformly bounded in 0 < Re(p) < t , being so on the
interval (0, t). Hence, it is a normal family, whose limit points coincide with function N(2p), holomorphic in 0 < Re(p) < t .
These considerations justify taking limits in the derivative:

lim
n
En = − lim

n
N ′n(2p)

∣∣
p=1 = −N

′(2p)|p=1 =: E∞. (14)

In [14] a detailed study of the Lp-norms asymptotics for the most important classes of orthogonal polynomials with
respect to an absolutely continuousmeasure has been carried out. Herewe review themain results of [14]. For an absolutely
continuous measure dµ(x) = w(x)dx on the interval [−1, 1] define

N(p) :=
2p/2

π2

0(1/2)0(p/2+ 1/2)
0(p/2+ 1)

∫ π

0
w
1−p/2
0 (cos θ)dθ, (15)

where 0(x) is the Euler gamma function. Then

Theorem 5. (1) Let w ∈ (B), then uniformly for p ∈ (0,∞),

Nn(p) = N(p)+ o(1), n→∞. (16)

(2) Let w ∈ (S), then the asymptotic formula (15)–(16) is valid uniformly for p ∈ [0, 2].

The fact that the asymptotic formula (16) for general Szegő weights is restricted to the interval [0, 2] is not accidental. The
following result holds:

Theorem 6. For any ε > 0 there exists an absolutely continuous measure dµ(x) = w(x)dx, w ∈ (S), such that the L2+εµ norm
of the orthonormal polynomials with respect to µ is unbounded.

This theorem is a corollary of the asymptotic behavior of the norms of Jacobi polynomials, orthogonal with respect to the
weight

wα,β(x) = (1− x)α(1+ x)β , α, β > −1.

Theorem 7. Let wα,β be a Jacobi weight, and α > β > −1. Then

(1) If −1 < α 6 −1/2, then the asymptotic formula (16) holds uniformly for p ∈ [0,∞).
(2) If α > −1/2 and p0 = 2+ 2/(2α + 1), then
(a) the asymptotic formula (16) is valid for p ∈ [0, p0);
(b) Nn(p0) = cα,β ln n(1+ o(1)), n→∞, where

cα,β = π−(p/2+1)
0(p/2+ 1/2)0(1/2)

0(p/2+ 1)

{
2
α−β+1
2α+1 , α > β,

21+
1

2α+1 , α = β.
(c) if p > p0 then for every n > n0 there exist constants c1 = c1(α, β, p) and c2 = c2(α, β, p) satisfying

c1 6
Nn(p)

n(2α+1)(p/2−1)−1
6 c2.

Remark 8. (1) Observe the different rate of growth of the Lp norms of Jacobi polynomials for different values of p.
(2) In the case of Jacobi weightwα,β it is possible to compute N(p) in (15) explicitly (see [14]):

N(p) =
2(α+β)(1−p/2)+1

πp/2+1

0(p/2+ 1/2)0(1/2)
0(p/2+ 1)

0(ρ(2− p)+ 1/2)0(σ (2− p)+ 1/2)
0((ρ + σ)(2− p)+ 1)

,

where ρ = α
2 +

1
4 , σ =

β

2 +
1
4 .
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As a consequence of these results, using (14), we get the asymptotic formulas for the entropy of orthogonal polynomials.
Taking derivatives in (15) we obtain

−E∞ = ln 2+ ψ(3/2)− ψ(2)−
1
π

∫ π

0
lnw0(θ)dθ,

where ψ(z) is the digamma function. Making a change of variables in the integral in the r.h.s. and using the identity
ψ(3/2) − ψ(2) = 1 − ln 2 we obtain again the result (12) stated in Theorem 4, but now as a consequence of Theorem 5.
Moreover, from Theorem 7 we have for the Jacobi weights (which are from the Szegő class but do not satisfy Bernstein’s
condition) that (12) holds also for Jacobi polynomials with all admissible values of the parameters. In this case, using the
remark above, the relative entropy (3) can be evaluated explicitly in terms of the beta function B, showing that for theweight
wα,β ,

E∞ = ln 2π − 1− 2(α + β + 1) ln 2− ln B(α + 1, β + 1). (17)

The method of Lp norms works also in the case of an unbounded support of the orthogonality measure. For an absolutely
continuous measure dµ(x) = w(x)dx on R it is more convenient however to study the asymptotic behavior of theweighted
Lp norms,

N̂n(p) :=
∫

R

∣∣∣pn(x)√wλ(x)∣∣∣2p dx. (18)

In [14] the case of the Freud weights

wλ(x) = exp
{
−|x|λ

}
, x ∈ R, λ > 1, (19)

was studied, yielding the following theorem:

Theorem 9. Let wλ be a Freud weight, then as n→∞,

N̂n(p) =
(
2
π

)p
0(p+ 1/2)
0(p+ 1)

0(1− p/2)
0(3/2− p/2)

x1−pn (1+ o(1)) (20)

uniformly on p ∈ [0, 4/3), where

xn =
(
2n+ 1
2β

)1/λ
, β =

0(λ/2+ 1/2)
0(1/2)0(λ/2)

. (21)

If we differentiate the weighted norm N̂n(p)with respect to p at p = 1, we obtain

d
dp

∫
+∞

−∞

∣∣∣pn(x)√wλ(x)∣∣∣2p dx∣∣∣∣
p=1
=

∫
+∞

−∞

ln
∣∣p2n(x)wλ(x)∣∣ p2n(x)wλ(x)dx.

Hence,

En = −
d
dp

∫
+∞

−∞

∣∣pn√wλ∣∣2p dx∣∣∣∣
p=1
−

∫
+∞

−∞

p2nwλ lnwλdx = −I1 + I2.

Integrating the second integral by parts and taking into account the orthonormality of pn’s it is not difficult to show that

I2 = −
2n+ 1
λ

.

Function Gn(p) = x
p−1
n N̂n(p), with xn defined in (21), is holomorphic in the band 0 < Re(p) < 2, and

G′n(p) = N̂
′

n(p)x
p−1
n + N̂n(p)x

p−1
n ln xn.

Differentiating equation (20) at p = 1 (a procedure that can be formally justified in the same way as for a bounded interval
of orthogonality) we obtain

lim
n
G′n(1) = I2 + limn

ln xn = G′(1) =
d
dp

[(
2
π

)p
0(p+ 1/2)
0(p+ 1)

0(1− p/2)
0(3/2− p/2)

]∣∣∣∣
p=1
.

Using the well-known identities for the Euler’s gamma function and its logarithmic derivative it is easy to establish that
G′(1) = 1− lnπ. In this way, taking into account (21), we conclude that

I1 = −
1
λ
ln
n
β
+ 1− lnπ + o(1), n→∞.

Summarizing:
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Theorem 10. Let wλ be a Freud weight (19). Then for n→∞ we have

En = −
2n+ 1
λ
+
1
λ
ln 2n−

1
λ
ln
√
π

2
0(λ/2)

0(λ/2+ 1/2)
− 1+ lnπ + o(1).

A particular case of this result is the asymptotic formula for the entropy of Hermite polynomials, orthonormal on R with
respect to the weightw(x) = w2(x) = e−x

2
:

En = −n+ ln
√
2n− 3/2+ lnπ + o(1), n→∞.

A similar asymptotic formula for the entropy of Laguerre polynomials, orthonormal on R+ with respect to the weight
w(α)(x) = xαe−x, α > −1, was previously obtained in [15]:

En = −2n+ (α + 1) ln n− α − 2+ ln 2π + o(1), n→∞.

We conclude this section with some remarks. The study of the Lp norms of orthogonal polynomials is of independent
interest in the theory of general orthogonal and extremal polynomials. On one hand, this problem is connected with
the classical research of S.N. Bernstein on the asymptotics of the Lp extremal polynomials in [10], that received further
development in recent papers [16,17]. On the other hand, it is a generalization of the widely known problem of Steklov on
the estimation of the L∞ norms of polynomials orthonormalwith respect to a positiveweight (see [18]). Indeed, for p = 1 the
norms are bounded (they are just equal to 1), but for p = ∞ (as it has been shown in [19]) they may grow to infinity. What
happens with the boundedness of the Lp-norms of the orthonormal polynomials for the intermediate values of 1 < p <∞?

4. Logarithmic potential theory approach

The entropic functional (6) can be restated in terms of the logarithmic potential theory, which gives an additional
interesting perspective of the problem. If µ and ν are Borel (generally speaking, real signed) measures on C, we denote
by

V (z;µ) = −
∫
ln |z − t|dµ(t)

the logarithmic potential of µ, and by

I[ν, µ] =
∫
V (z; ν)dµ(z) = −

∫∫
ln |z − t|dν(t)dµ(z)

the mutual energy of µ and ν. Observe that I(µ) = I[µ,µ] is the standard logarithmic energy of µ.
It is well-known that the asymptotic behavior of the n-th root of the orthonormal polynomials (4) is closely related with

the sequence of discrete probability measures, called the normalized zero counting measures for pn,

λn :=
1
n

n∑
j=1

δ
ζ
(n)
j
,

via the formula

log |pn(z)| = ln κn − nV (z; λn). (22)

Recall that another important sequence of probability measures νn associated to {pn} was introduced in (5). A remarkable
identity connecting the entropy (6) with these two sequences of measures is [20,21]

En = −2 ln κn + 2n I[λn, νn]. (23)

The behavior of leading coefficients κn (or equivalently, of the L2 norms of the monic orthogonal polynomials) is well
understood for a wide class of measures. Hence, this identity shifts the attention to the determination of the mutual energy
of two basic sequences of measures of the theory of orthogonal polynomials, that are in a certain sense complementary.
The zero-counting measure λn is concentrated at the zeros of pn, and under very general assumptions weakly converges
(as n→∞) to the equilibrium measure of the support of the orthogonality measure. By (22), the potential of this limiting
measure describes the n-th root asymptotics of the orthogonal polynomials. Measure νn, on the contrary, has zero density at
the zeros of pn. This measure plays an important role in the investigation of the ratio asymptotics of orthogonal polynomials
and of the limiting behavior of the corresponding recurrence coefficients. Actually, convergence of this measure to the
equilibrium measure of an interval is equivalent to the existence of the limits of the recurrent coefficients. A class of
orthogonality measuresM for which the corresponding recurrence coefficients have limits is called the Nevai class. Thus,
if µ is supported on the interval [−1, 1], then µ ∈ M if and only if νn weakly converge to η. A celebrated theorem of
Rakhmanov [7] states that Erdös condition (µ′(x) > 0, x ∈ [−1, 1] a.e.) is sufficient for µ to belong to the class M. A
straightforward application of the representation (23) is the weak asymptotics of the entropy En:
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Proposition 11. If µ ∈M, then En = o(n) as n→∞.

Indeed, this follows from the fact that for µ ∈ M both measures νn, λn weakly converge to the equilibrium measure η, and
by lower semi-continuity of the energy,

lim inf
n
I[λn, νn] = γ ,

the Robin constant of the support ofµ (γ = ln(2) if the support ofµ is [−1, 1]). On the other hand,µ ∈M is also sufficient
for ln κ1/nn to converge to the same Robin constant. Finally, by Jensen’s inequality, En 6 0, which yields the assertion above.

Remark 12. Proposition 11 does not hold for measures with unbounded support. For instance, for the Freud weights (19),

lim
n

En
n
= −

2
λ
.

There are other equivalent representations of the mutual energy I(λn, νn), and by (23), for the entropy En, that are (at
least, potentially) useful. For instance, using Fubini’s theorem we can readily express this mutual energy in terms of the
logarithmic potential of the measure νn (see (4)):

I[λn, νn] =
1
n

n∑
j=1

V (ζ (n)j ; νn). (24)

It is a remarkable fact that the potential in the r.h.s. is actually evaluated at its local minima:

Proposition 13. For the logarithmic potential of the measure νn we have

d
dx
V (x, νn)

∣∣∣∣
x=ζ (n)j

= 0,
d2

dx2
V (x, νn)

∣∣∣∣
x=ζ (n)j

> 0.

Indeed, the first equality above follows from the identity∫
p2n(x)
t − x

dµ(x) = pn(t)
∫
pn(x)
t − x

dµ(x),

while the inequality holds because∫
p2n(x)
(t − x)2

dµ(x) > 0.

When µ is supported on [−1, 1], another curious representation for the mutual energy in terms of the generalized
moments of νn and λn was found in [21]. Let Tk(x) = cos(k arccos x) denote, as usual, the Chebyshev polynomials of the
first kind, and let

ck,n =
∫
Tk(x)dλn(x), mk,n =

∫
Tk(x)dνn(x), k, n ≥ 0. (25)

Obviously, |ck,n| ≤ 1 and |mk,n| ≤ 1 for all values of k and n.

Theorem 14. With the assumptions and notation explained above,

I[λn, νn] = ln 2+ 2
∞∑
k=1

ck,nmk,n
k

, (26)

where the series on the right-hand side is convergent.
Moreover, if we denote

Mn := sup
x∈[−1,1]

∫ 1

−1

∣∣∣∣p2n(x)− p2n(t)x− t

∣∣∣∣ dµ(x) < +∞, (27)

then for N ∈ N we have∣∣∣∣∣I[λn, νn] − ln 2− 2 N∑
k=1

ck,nmk,n
k

∣∣∣∣∣ ≤ 4Mn
N + 1

. (28)

Formula (26) was used successfully in [21] as the cornerstone of an efficient algorithm for the numerical evaluation of the
entropy on a finite interval. It would be interesting to explore its asymptotic implications, as well as to extend it to the case
of the unbounded support.
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5. Asymptotics in the Szegő class and beyond

As we mentioned, establishing the asymptotics (12) in the whole Szegő class is still an open problem. The most recent
result in this sense is a characterization of this behavior in terms of the growth of pn’s that has been obtained in [22]. Assume
again that dµ(x) = w(x)dx is an absolutely continuous measure on the interval [−1, 1]. ForM > 0 let us denote

∆n(M) := {x ∈ [−1, 1] : p2n(x)w0(x) ≥ M}, (29)
wherew0(x) = w(x)/ρ(x) is the trigonometric weight introduced in Section 2.

Theorem 15. Assume that the weight w belongs to the Szegő class (S). Then, for all M > 2, as n→∞,

En(w) = E(0) −K(µ, η)−

∫
∆n(M)

p2n(x) ln
+(p2n(x)) w(x)dx+ o(1), (30)

where ln+(x) = max{ln(x), 0}, x > 0.

As a simple consequence of the above formula, we conclude that if the weightw ∈ (S), then
lim sup
n→∞

En(w) ≤ E(0) −K(µ, η),

and (12) holds if and only if there exists a constantM > 2, such that

lim
n

∫
∆n(M)

p2n(x) ln
+(p2n(x)) w(x)dx = 0; (31)

in this case (31) is valid for for allM > 2.
Some sufficient conditions for (31) were specified in [22]. For instance, if there exists ε > 0 such that

sup
n

∫ 1

−1

(
ln+(p2n(x))

)1+ε
p2n(x)w(x)dx <∞, (32)

then we have (12). In particular, these results supersede and generalize those obtained earlier in [14].
Moreover, if we know that νn → η as n → ∞ in the weak-* topology (for instance, if w satisfies the Erdös condition,

w(x) > 0 a.e. on [−1, 1]), then it follows from the weak upper semicontinuity of the mutual entropy [23, Corollary 5.3] that
lim sup En ≤ K(µ, η). In particular, it shows that if such a weight is not in the Szegő class, then

lim
n→∞

En = −∞.

But how fast the entropy En diverges to−∞ ifw 6∈ (S)?
There is another motivation to extend these results beyond the Szegő class. Recall that the Erdös condition on the weight

is sufficient to assure that both λn and νn tend (as n→∞) to the equilibrium distribution η on [−1, 1]. In particular, from
the convexity properties of the mutual energy it follows that

lim
n→∞

I[λn, νn] = I(η) = ln(2).

What is more surprising is that in the Szegő class, the next term of the asymptotic expansion of I[λn, νn] also exhibits a
‘‘universal’’ behavior, in the sense that it does not depend on the choice of the weight w. Namely, from Theorem 15 it
follows

Corollary 16. Assume that w is a weight in the Szegő class (S) such that (12) holds. Then the mutual energy I(λn, νn) has the
following asymptotic expansion:

I[λn, νn] = ln(2)−
1
2n
+ o

(
1
n

)
, n→∞. (33)

It is easy to conjecture that the 1/2 coefficient of n−1 is the logarithmic capacity of [−1, 1]. Can we drop the assumption
w ∈ (S) in Corollary 16?
The Pollaczek polynomials constitute the first and the best known example of a family of orthogonal polynomials on

[−1, 1] with respect to a weight not satisfying the Szegő condition. The symmetric Pollaczek polynomials, pλn(x; a), depend
on two real parameters, λ > 0, a ≥ 0, and may be defined by the recurrence relation

xpλn(x; a) = an+1 p
λ
n+1(x; a)+ an p

λ
n−1(x; a), pλ

−1(x; a) = 0, pλ0(x; a) = 1,
with the coefficients

an =
1
2

√
n(n+ 2λ− 1)

(n+ λ+ a)(n+ λ+ a− 1)
.

Pollaczek polynomials pλn(x; 0) (that is, for a = 0) reduce to orthonormal Gegenbauer polynomials with parameter λ; for
a > 0 the orthogonality weightw = wλ(·; a) 6∈ (S).
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Theorem 17 ([24]). For the symmetric Pollaczek weight w = wλ(·; a), with a ≥ 0 and λ ≥ 1,

En = −2a ln(n)+ τ(λ; a)+ o(1), n→∞,

where

τ(λ; a) := 2a− 1+ ln
(
0(λ+ a)0(λ+ a+ 1)

0(2λ)

)
. (34)

Moreover,

I[λn, νn] = ln(2)−
1− 2a
2n
+ o

(
1
n

)
, n→∞. (35)

Remark 18. The value τ(λ; 0) = −1 + log (0(λ)0(λ+ 1)/0(2λ)) matches E∞ in (17) for orthonormal Gegenbauer
polynomials (α = β = λ− 1/2), found in [14].

Comparing (33) and (35)we see thatwe cannot omit the conjecturew ∈ (S) from Corollary 16. Observe however that the
second term of asymptotics is still independent of the main parameter λ, and coincides with (33) for a = 0. An interesting
open problem is to compute the n−1 term in the asymptotic expansion (33) for a general class of weights.
Finally, one more closing remark is appropriate. The limit in (12) contains two terms. The ‘‘universal’’ term, E(0), depends

only on the equilibrium measure, and according to [22], is present in the asymptotic expressions beyond the Szegő class.
The other term, given by the relative entropyK(µ, η), encodes the features of the orthogonality measure and its class; it
blows up as soon as we drop the (S) condition. Comparing (12) with the identity (23) we may conclude that peculiarities of
the asymptotic behavior of the leading coefficient κn are mirrored by the asymptotics of the entropy En.
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