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Abstract

In this paper we shall consider the following nonlinear impulsive delay population model:

{
x′(t) = −�(t)x(t) + p(t)x(t − m�)e−�(t)x(t−m�) a.e. t > 0, t �= tk,

x(t+
k

) = (1 + bk)x(tk), k = 1, 2, . . . ,
(0.1)

where m is a positive integer, �(t), �(t) and p(t) are positive periodic continuous functions with period � > 0. In the nondelay case
(m=0), we show that (0.1) has a unique positive periodic solution x∗(t) which is globally asymptotically stable. In the delay case, we
present sufficient conditions for the global attractivity of x∗(t). Our results imply that under the appropriate linear periodic impulsive
perturbations, the impulsive delay equation (0.1) preserves the original periodic property of the nonimpulsive delay equation. In
particular, our work extends and improves some known results.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of impulsive differential equations has attracted the interest of many researchers in the past twenty
years [1,2,11,13,12,14,16,17,26] since they provide a natural description of several real processes subject to certain
perturbations whose duration is negligible in comparison with the duration of the process. Such processes are often
investigated in various fields of science and technology such as physics, population dynamics, ecology, biological
systems, optimal control, etc. For details, see [1,11] and references therein. Recently, the corresponding theory for
impulsive functional differential equations has been studied by several authors [2,5,12–14,24].
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Recently, Saker and Agarwal studied the following periodic red blood cells model [23]:

N ′(t) = −�(t)N(t) + p(t)e−aN(t−m�),

and the delay periodic Hematopoiesis model [18]

p′(t) = −�(t)p(t) + �(t)

1 + pn(t − m�)
.

If we take into account the effect of linear impulsion, then the corresponding impulsive systems of the above two
models take the forms{

N ′(t) = −�(t)N(t) + p(t)e−aN(t−m�) a.e. t > 0, t �= tk,

N(t+k ) = (1 + bk)N(tk), k = 1, 2, . . . ,
(1.1)

and {
p′(t) = −�(t)p(t) + �(t)

1+pn(t−m�)
a.e. t > 0, t �= tk,

p(t+k ) = (1 + bk)p(tk), k = 1, 2, . . . .
(1.2)

The general form of the former is the impulsive Lasota–Wazewska model{
x′(t) = −�(t)x(t) + ∑m

i=1�i (t)e
−�i (t)x(t−mi�) a.e. t > 0, t �= tk,

x(t+k ) = (1 + bk)x(tk), k = 1, 2, . . . ,
(1.3)

which was investigated by Yan [26], and he obtained sufficient conditions for the existence and global attractivity of
the positive periodic solution.

It is easy to see that the nonlinear terms of (1.1) and (1.2) satisfy

lim
N→0

e−aN

N
= ∞ and lim

N→∞
e−aN

N
= 0,

and

lim
p→0

1/(1 + pn)

p
= ∞ and lim

p→∞
1/(1 + pn)

p
= 0,

respectively. In view of this property, Huo et al. [7] considered a more general system{
x′(t) + �(t)x(t) = p(t)f (x(t − �(t))) a.e. t > 0, t �= tk,

x(t+k ) = (1 + bk)x(tk), k = 1, 2, . . . ,
(1.4)

under the superlinear condition

lim
x→0

f (x)

x
= 0, lim

x→∞
f (x)

x
= ∞, (1.5)

or the sublinear condition

lim
x→0

f (x)

x
= ∞, lim

x→∞
f (x)

x
= 0, (1.6)

and obtained sufficient conditions for the existence and global attractivity of the positive periodic solution of Eq. (1.4).
In 1980, Gurney et al. [6] proposed a mathematical model

N ′(t) = −�N(t) + PN(t − �)e−aN(t−�), (1.7)

to describe the dynamics of Nicholson’s blowflies. Here, N(t) is the size of the population at time t, P is the maximum
per capita daily egg production, 1/a is the size at which the population reproduces at its maximum rate, � is the
pair capita daily adult death rate, and � is the generation time. For more details of (1.7) and its discrete analog, see
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[8–10,15]. We also note that several other similar interesting models occurring in population dynamics have been
studied in [7,19–22,28,29].

Recently, taking into account the effect of a periodically varying environment, Saker and Agarwal [21] considered
the following delay periodic Nicholson’s Blowflies model:

x′(t) = −�(t)x(t) + p(t)x(t − m�)e−�(t)x(t−m�), t �0, (1.8)

and obtained sufficient conditions for existence and global attractivity of positive periodic solution of Eq. (1.8). Obvi-
ously,

lim
x→0

xe−�(t)x

x
= 1 and lim

x→∞
xe−�(t)x

x
= 0,

which does not satisfy the condition (1.5) or (1.6).
Motivated by the above question, in the present paper, we study the existence and global attractivity of positive

periodic solutions of the following impulsive delay differential equation{
x′(t) = −�(t)x(t) + p(t)x(t − m�)e−�(t)x(t−m�) a.e. t > 0, t �= tk,

x(t+k ) = (1 + bk)x(tk), k = 1, 2, . . . ,
(1.9)

where m is a positive integer, �(t), �(t) and p(t) are positive periodic continuous functions with period � > 0. In
the nondelay case (m = 0), we shall show that (1.9) has a unique positive periodic solution x∗(t), which is global
asymptotically stable. In the delay case, we shall present sufficient conditions for persistence of Eq. (1.9), and establish
sufficient conditions for the global attractivity of x∗(t). Our results imply that under the appropriate linear periodic
impulsive perturbations, the impulsive delay (1.9) preserves the original periodic property of the nonimpulsive delay
equation. In particular, our work extends and improves the results of Kulenovic et al. [10] and Saker and Agarwal [22]
for the nonimpulsive delay population models.

For system (1.9), we make the following further assumptions:

(A1) 0 < t1 < t2 < · · · are fixed impulsive points with tk → +∞ as k → ∞;
(A2) {bk} is a real sequence and bk > − 1, k = 1, 2, . . . ;
(A3)

∏
0<tk<t (1 + bk) is a periodic function with period � > 0, m�0 is an integer.

Throughout this paper we always assume that a product equals unit if the number of factors is zero. And let

f = 1

�

∫ �

0
f (s) ds, fm = min

t∈[0,�] f (t) and fM = max
t∈[0,�] f (t), (1.10)

where f is a continuous periodic positive function with period �. We shall consider Eq. (1.9) with the initial condition

x(t) = 	(t) for t ∈ [−m�, 0]; 	(t) ∈ C([−m�, 0], [0, ∞)), 	(0) > 0. (1.11)

Definition 1.1. A function x ∈ ([−m�, +∞), (0, +∞)) is said to be a solution of equation(1.9) on [−m�, +∞) if:

(i) x(t) is absolutely continuous on each interval (0, t1] and (tk, tk+1], k = 1, 2, . . .;
(ii) for any tk , k = 1, 2, . . . , x(t+k ) and x(t−k ) exist and x(t−k ) = x(tk);

(iii) x(t) satisfies the former equation of (1.9) for almost everywhere in [0, +∞)\{tk} and satisfies the latter equation
for every t = tk, k = 1, 2, . . . .

Under the hypotheses (A1)–(A3), we consider the nonimpulsive delay differential equation

z′(t) = −�(t)z(t) + p(t)z(t − m�)e−�(t)z(t−m�), t �0, (1.12)

with initial condition

z(t) = 	(t) for t ∈ [−m�, 0], 	(t) ∈ C([−m�, 0], [0, ∞)), 	(0) > 0, (1.13)
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where

�(t) =
∏

0<tk<t

(1 + bk)�(t) for t > 0. (1.14)

By a solution of (1.12) and (1.13) we mean an absolutely continuous function z(t) defined on [−m�, +∞) satisfying
(1.12) a.e. for t �0 and z(t) = 	(t) on [−m�, 0].

The following lemma will be useful to prove our results. The proof is similar to that of Theorem 1 in [27]. For the
sake of completeness, we list it here.

Lemma 1.2. Assume that (A1)–(A3) hold. Then

(i) if z(t) is a solution of (1.12) on [−m�, +∞), then x(t)=∏
0<tk<t (1+bk)z(t) is a solution of (1.9) on [−m�, +∞);

(ii) if x(t) is a solution of (1.9) on [−m�, +∞), then z(t) = ∏
0<tk<t (1 + bk)

−1x(t) is a solution of (1.12) on
[−m�, +∞).

Proof. We only prove the case (i), the second case can be proved similarly.
Suppose that z(t) is a solution of (1.12) on [−m�, +∞), then we have

x′(t) =
∏

0<tk<t

(1 + bk)z
′(t)

=
∏

0<tk<t

(1 + bk)(−�(t)z(t) + p(t)z(t − m�)e−�(t)z(t−m�))

= − �(t)x(t) +
∏

0<tk<t

(1 + bk)p(t)z(t − m�)e−�(t)z(t−m�).

By (A3), we have∏
0<tk<t−m�

(1 + bk) =
∏

0<tk<t

(1 + bk),

and hence

x(t − m�) =
∏

0<tk<t−m�

(1 + bk)z(t − m�) =
∏

0<tk<t

(1 + bk)z(t − m�).

Therefore,

x′(t) = −�(t)x(t) + p(t)x(t − m�)e−�(t)x(t−m�),

which implies that x(t)=∏
0<tk<t (1+bk)z(t) satisfies the first equation of (1.9) for almost everywhere in [0, +∞)\{tk}.

On the other hand, for every t = tk, k = 1, 2, . . . ,

x(t+k ) = lim
t→t+k

∏
0<tj <t

(1 + bj )z(t) =
∏

0<tj � tk

(1 + bj )z(tk),

and

x(tk) =
∏

0<tj <tk

(1 + bj )z(tk).

This means that, for every k = 1, 2, . . . ,

x(t+k ) = (1 + bk)x(tk).

From the above analysis, we know that the conclusion of Lemma 1.2 is true. The proof is complete. �
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Lemma 1.3. Assume that (A1)–(A3) hold. Then the solutions of (1.9) are defined on [−m�, +∞) and are positive
on [0, ∞).

Proof. By Lemma 1.2, we only need to prove that the solutions of (1.12) and (1.13) are defined on [−m�, +∞) and
are positive on [0, +∞). From (1.12) and (1.13) we have that for any 	(t) ∈ C([−m�, 0], [0, ∞)) and t > 0,

z(t) = 	(0)e− ∫ t
0 �(t) dt +

∫ t

0
p(s)z(s − m�)e− ∫ t

s �(r) dre−�(s)z(s−m�) ds.

Hence, z(t) is defined on [−m�, ∞) and is positive on [0, ∞). The proof is complete. �

2. Results in the Nondelay case

In this section, we study the periodic and asymptotic behavior of all positive solutions of (1.12) without delay. We
shall prove that there exists a unique positive periodic solution z∗(t) which is globally asymptotically stable.

Now, we consider (1.12) without delay, i.e.,

z′(t) = −�(t)z(t) + p(t)z(t)e−�(t)z(t), t �0. (2.1)

Lemma 2.1. Assume that (A1)–(A3) hold and p(t)��(t) for t ∈ [0, �]. Then Eq. (2.1) has no positive periodic
solutions.

Proof. By Lemma 1.3, we know that any solution of Eq. (2.1) with initial condition (1.13) remains positive, then from
(2.1) we have

z′(t) = −�(t)z(t) + p(t)z(t)e−�(t)z(t) < − �(t)z(t) + p(t)z(t)�0, (2.2)

which implies that system (2.1) has no positive periodic solutions. The proof is complete. �

Lemma 2.2. Assume that (A1)–(A3) hold and p(t)��(t) for t ∈ [0, �]. Then the zero solution of Eq. (2.1) is globally
asymptotically stable.

Proof. Let z(t) be a positive solution of Eq. (2.1). From the proof of Lemma 2.1, it is easy to see that if p(t)��(t)

for t ∈ [0, �], then z(t) is decreasing, therefore, limt→∞z(t) = 
 ∈ [0, +∞). We only need to show that 
 = 0.
Otherwise, if 
 > 0, then there exists a T > m� such that z(t) > 
/2 for t �T . Now we consider two cases: p(t) ≡ �(t)

for t ∈ [0, �] and p(t)�( /≡)�(t) for t ∈ [0, �].
If the former case holds, then from (2.2) we have

z′(t) = − �(t)z(t) + �(t)z(t)e−�(t)z(t) = −�(t)z(t)(1 − e−�(t)z(t))

� − �(t)z(t)(1 − e−�(t)
/2)� − �mz(t)(1 − e−�m
/2),

and so

z(t)�z(0) exp

{
−

∫ t

0
�m[1 − e−�m
/2] ds

}
.

Let t → ∞, then z(t) → 0, which contradicts the fact 
 > 0.
Either if the latter case holds, then from (2.2) we have

z′(t) < − �(t)z(t) + p(t)z(t) < (p(t) − �(t))



2
,
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and so

z(t)�z(T ) − 


2

∫ t

T

(�(s) − p(s)) ds

�z(T ) − 


2

[(t−T )/�]∑
k=1

∫ T +k�

T +(k−1)�
(�(s) − p(s)) ds

= z(T ) − 


2

[
t − T

�

]
(� − p)�,

where [(t − T )/�] is the greatest integer parts of (t − T )/�. Let t → ∞, then z(t) → −∞. This contradiction shows
that 
 = 0, i.e., limt→∞z(t) = 0. The proof is complete. �

In the sequel, we shall consider the case

p(t) > �(t) for t ∈ [0, �]. (2.3)

In order to establish the uniqueness and global attractivity of the positive periodic solution of (2.1), we need to obtain
certain upper and lower bounds.

Lemma 2.3. Assume that (A1)–(A3) and (2.3) hold. Let z(t) be a positive solution of (2.1). Then

(
p(t) − �(t)

p(t)�(t)

)
m

�z(t)�
(

p(t)

�(t)�(t)

)
M

.

Proof. By the inequality e−au �1 − au(a > 0, u�0), and also in view of (2.1), we have

z′(t) = − �(t)z(t) + p(t)z(t)e−�(t)z(t) � − �(t)z(t) + p(t)z(t)[1 − �(t)z(t)]
= z(t)[(p(t) − �(t)) − p(t)�(t)z(t)],

then from comparison theorem [4, Lemma 2.2, 25], we have

z(t)�
(

p(t) − �(t)

p(t)�(t)

)
m

.

On the other hand, from (2.1) and the inequality ue−au �1/ae (a > 0, u�0), we have

z′(t) = −�(t)z(t) + p(t)z(t)e−�(t)z(t) � − �(t)z(t) + p(t)

�(t)e
,

and so

z(t)�z(0)e− ∫ t
0 �(s) ds + e− ∫ t

0 �(s) ds

∫ t

0

p(s)

�(s)e
e
∫ s

0 �(v) dv ds.
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Thus

z(t)�z(0)e− ∫ t
0 �(s) ds + e− ∫ t

0 �(s) ds

∫ t

0

p(s)

�(s)e
e
∫ s

0 �(v) dv ds

= z(0)e− ∫ t
0 �(s) ds + e− ∫ t

0 �(s) ds

∫ t

0

p(s)

�(s)�(s)e
�(s)e

∫ s
0 �(v) dv ds

�z(0)e− ∫ t
0 �(s) ds + e− ∫ t

0 �(s) ds

(
p(s)

�(s)�(s)e

)
M

∫ t

0
�(s)e

∫ s
0 �(v) dv ds

= z(0)e− ∫ t
0 �(s) ds + e− ∫ t

0 �(s) ds

(
p(s)

�(s)�(s)e

)
M

∫ t

0
(e

∫ s
0 �(v) dv)′ ds

= z(0)e− ∫ t
0 �(s) ds + e− ∫ t

0 �(s) ds

(
p(s)

�(s)�(s)e

)
M

(e
∫ t

0 �(s) ds − 1)

= z(0)e− ∫ t
0 �(s) ds +

(
p(s)

�(s)�(s)e

)
M

(1 − e− ∫ t
0 �(s) ds)

t→∞→
(

p(s)

�(s)�(s)e

)
M

<

(
p(t)

�(t)�(t)

)
M

.

Hence for t sufficiently large,

z(t)�
(

p(t)

�(t)�(t)

)
M

.

The proof is complete. �

Theorem 2.4. Assume that (A1)–(A3) and (2.3) hold. Then

(a) there exists a unique �-periodic positive solution z∗(t) of (2.1), and
(b) for every other positive solution z(t) of (2.1),

lim
t→∞(z(t) − z∗(t)) = 0. (2.4)

Proof. First, we prove (a), set

z1 =
(

p(t) − �(t)

p(t)�(t)

)
m

and z2 =
(

p(t)

�(t)�(t)

)
M

.

Suppose that z(t) = z(t, 0, z0) where z0 > 0 is the unique solution of (2.1) which passes through (0, z0). We claim that
if z0 ∈ [z1, z2], then z(t) ∈ [z1, z2] for all t �0. Otherwise, let t∗ = inf{t > 0 : z(t) > z2}, then there exists a t∗ � t∗
such that z(t∗) > z2 and z′(t∗)�0. However,

z′(t∗) = − �(t∗)z(t∗) + p(t)z(t∗)e−�(t∗)z(t∗)

� − �(t∗)z(t∗) + p(t∗)
�(t∗)e

< − �(t∗)z2 + p(t∗)
�(t∗)

< 0,

which is a contradiction. By a similar argument, we can show that z(t)�z1 for all t �0. Hence, we have in particular
that z� = z(�, 0, z0) ∈ [z1, z2] for z0 ∈ [z1, z2]. Define a mapping F : [z1, z2] → [z1, z2] as follows: for each
z0 ∈ [z1, z2], F (z0) = z�. Since the solution z(t, 0, z0) depends continuously on the initial value z0, it follows that F
is continuous and maps the interval [z1, z2] into itself. Therefore, F has a fixed point z∗

0. Then z(t, 0, z∗
0) : =z∗(t) is an

�-periodic positive solution of (2.1). The proof of (a) is complete. �
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Now we prove (b). Assume that z(t)�z∗(t) for t sufficiently large (the proof when z(t) < z∗(t) is similar and will
be omitted). Set

z(t) = z∗(t) exp{x(t)}. (2.5)

Then, x(t)�0 for t sufficiently large,

z′(t) = −�(t)z∗(t) exp{x(t)} + p(t)z∗(t) exp{x(t)}e−�(t)z∗(t) exp{x(t)},

and

z′(t) = z∗′(t) exp{x(t)} + z∗(t) exp{x(t)}x′(t)
= − �(t)z∗(t) exp{x(t)} + p(t)z∗(t) exp{x(t)}e−�(t)z∗(t) + z∗(t) exp{x(t)}x′(t).

Combination of the above two equalities leads to

x′(t) = p(t)[e−�(t)z∗(t) exp{x(t)} − e−�(t)z∗(t)]
= p(t)e−�(t)z∗(t)[e−�(t)z∗(t)[exp{x(t)}−1] − 1].

Thus, to prove (2.4), it is sufficient to show that

lim
t→+∞ x(t) = 0. (2.6)

Now we define a Lyapunov function V for Eq. (2.1) in the form

V (t) = V (x(t)) = (ex(t) − 1)2, t �0.

The derivative of V (t) along a solution of Eq. (2.1) can be written as

V ′(t) = 2(ex(t) − 1)ex(t)p(t)e−�(t)z∗(t)[e−�(t)z∗(t)[exp{x(t)}−1] − 1]� − f (t). (2.7)

Obviously, f (t)�0. Integrating (2.7) from 0 to t yields

V (t) +
∫ t

0
f (s) ds�V (0) < ∞,

which implies that f ∈ L1[0, ∞). Since z(t) and z∗(t) are both absolutely continuous functions, x(t) is also absolutely
continuous on [0, ∞). By Barbalat’s lemma [3], we can obtain (2.6), which follows that limt→∞(z(t) − z∗(t)) = 0.
This complete the proof of (b). �

Remark 2.5. If �(t) = a (a > 0 is a constant), then Eq. (2.1) reduces to the equation

z′(t) = −�(t)z(t) + p(t)z(t)e−az(t), t �0, (2.8)

which has been studied by Saker and Agarwal [22]. Clearly, our Theorem 2.4 improves Theorem 2.1 of Saker and
Agarwal [22] by the weaker condition p(t) > �(t) for t ∈ [0, �] than pm > �M in [22].

Remark 2.6. For Eq. (2.8), Saker and Agarwal [22] proved that (2.4) holds under the further condition a(z∗(t))m > 1.
However, our Theorem 2.4 means that this condition is not necessary.

Remark 2.7. From the proof of Theorem 2.4, it follows that the unique �-periodic solution z∗(t) of (2.1) satisfies
z1 �z∗(t)�z2. Thus, an interval for the location of z∗(t) is readily available.

By Lemmas 1.2, 2.1, 2.2 and Theorem 2.4, we can easily obtain the following result.

Theorem 2.8. Assume that m = 0 and (A1)–(A3) hold.

(i) If p(t)��(t) for t ∈ [0, �], then Eq. (1.9) has no positive periodic solutions, and for every other positive solution
x(t) of (1.9), limt→∞x(t) = 0.



W.-T. Li, Y.-H. Fan / Journal of Computational and Applied Mathematics 201 (2007) 55–68 63

(ii) If p(t) > �(t) for t ∈ [0, �], then Eq. (1.9) has a unique positive �-periodic solution x∗(t), and for every other
positive solution x(t) of (1.9), limt→∞(x(t) − x∗(t)) = 0.

3. Results in the delay case

In this section, we shall derive sufficient conditions for x∗(t) to be a global attractor of all the other positive solutions
of Eq. (1.9).

It is clear that if z∗(t) is an �-periodic positive solution of (2.1), then it is also an �-periodic positive solution of
(1.12). Conversely, if (1.12) and (1.13) has an �-periodic positive solution z∗(t), then z∗(t) is an �-periodic positive
solution of (2.1). Hence, Eq. (1.12) has a unique �-periodic positive solution z∗(t) under the assumptions of Theorem
2.4. By Lemma 1.2, Eq. (1.9) has a unique �-periodic positive solution x∗(t) : =∏

0<tk<t (1 + bk)z
∗(t) under the

assumptions of Theorem 2.4. In the nondelay case, we have seen in Theorem 2.4 (b) that every positive solution of Eq.
(1.12) converges to the unique �-periodic positive solution z∗(t). In the delay case, by a similar process as that in the
proof of Theorem 2.4 (b), it is easy to see that the following result holds.

Theorem 3.1. Assume that (A1)–(A3) and (2.3) hold. Then any solution z(t) of (1.12) which does not oscillate about
z∗(t) satisfies

lim
t→∞(z(t) − z∗(t)) = 0. (3.1)

To show that x∗(t) is a global attractor of (1.9), by Lemma 1.2, we only need to prove that z∗(t) is a global attractor
of (1.12). In order to obtain the global attractivity of z∗(t) for Eq. (1.12), we need the following lemmas.

Lemma 3.2. Assume that c and d are positive constants. The following statements hold.

(i) If cd < 1, then the algebraic equation g(u) = (u + c)e−du − c has two real roots u1 = 0, u2 > 0 and g(u) > 0 for
u ∈ (0, u2), g(u) < 0 for u ∈ (−∞, 0) ∪ (u2, +∞).

(ii) If cd = 1, then the algebraic equation g(u) = (u + c)e−du − c has only one real root u1 = 0 and g(u)�0 for
u ∈ (−∞, +∞).

(iii) If cd > 1, then the algebraic equation g(u) = (u + c)e−du − c has two real roots u1 = 0, u2 < 0 and g(u) > 0 for
u ∈ (u2, 0), g(u) < 0 for u ∈ (−∞, u2) ∪ (0, +∞).

(iv) If cd < 1, then g(u)�(1 − cd)u for u�0.

The proof of Lemma 3.2 is trivial, we omit it here.

Lemma 3.3. Assume that (A1)–(A3) and (2.3) hold. If

p(t)e−�(t)z∗(t)(1 − �(t)z∗(t)) < �(t) for t ∈ [0, �]. (3.2)

Then

e
∫ t−�
t �(s) ds +

∫ t

t−�
p(s)e−�(s)z∗(s)(1 − �(s)z∗(s))e

∫ s
t �(�)d� ds < 1

for any t ∈ (0, +∞), � > 0 and �(s)z∗(s) < 1 for s ∈ [t − �, t].

Proof. By condition (3.2), it is easy to see that

e
∫ t−�
t �(s) ds +

∫ t

t−�
p(s)e−�(s)z∗(s)(1 − �(s)z∗(s))e

∫ s
t �(v) dv ds

< e
∫ t−�
t �(s) ds +

∫ t

t−�
�(s)e

∫ s
t �(v) dv ds = 1.

This completes the proof. �
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Theorem 3.4. Assume that (A1)–(A3), (2.3) and (3.2) hold. Suppose further that

lim sup
t→∞

∫ t

t−m�
p(s) exp

(∫ s

t

�(v) dv

)
ds = � < 1. (3.3)

Then any positive solution z(t) of (1.12) satisfies (3.1).

Proof. We have already established the asymptotic stability for the solution z(t) of (1.12) which does not oscillate
about z∗(t) in Theorem 3.1, so we only need to prove the solution z(t) of (1.12) strictly oscillating about z∗(t) also
satisfies (3.1).

Set

w(t) = z(t) − z∗(t), (3.4)

then we can obtain

w′(t) = −�(t)w(t) + p(t)e−�(t)z∗(t)[(w(t − m�) + z∗(t))e−�(t)w(t−m�) − z∗(t)]. (3.5)

From (3.4), we know that the solution z(t) of (1.12) oscillates about z∗(t) if and only if the solution w(t) of (3.5)
oscillates about zero. Let w(t) be an arbitrary solution of (3.5) and m��1 < 2 < · · · < n < · · · be a sequence of zero
points of w(t) with limn→∞n = ∞ such that w(t) has both positive and negative values in each interval (n, n+1).
Let tn and sn be the points in (n, n+1) such that w(tn) = maxn � t �n+1

w(t) and w(sn) = minn � t �n+1
w(t). Then

w(tn) > 0, w′(tn) = 0; w(sn) < 0, w′(sn) = 0, for all n�1. (3.6)

If we denote

� = lim sup
t→∞

w(t) and � = lim inf
t→∞ w(t),

then

� = lim sup
n→∞

w(tn) and � = lim inf
n→∞ w(sn).

We claim that for each n�1,

w(t) has a zero point Tn ∈ [tn − m�, tn), (3.7)

and

w(t) has a zero point Sn ∈ [sn − m�, sn). (3.8)

First, we show that (3.7) is true. We divide the proof into two cases.
Case 1: If tn − m��n, then the conclusion is obvious. In fact, we can choose Tn = n.
Case 2: If tn − m� > n, then according to the definition of tn, we have

w(tn)�w(tn − m�).

By (3.5) and (3.6), we have

0 = w′(tn) = −�(tn)w(tn) + p(tn)e
−�(tn)z∗(tn){[w(tn − m�) + z∗(tn)]e−�(tn)w(tn−m�) − z∗(tn)},

which implies that

[w(tn − m�) + z∗(tn)]e−�(tn)w(tn−m�) − z∗(tn) = �(tn)w(tn) > 0.

Consider the function

g(u) = (u + c)e−du − c,
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where

c = z∗(tn) > 0 and d = �(tn) > 0.

In terms of Lemma 3.2, we divide the proof of Case 2 into three subcases.
Subcase 1: If cd > 1, then u2 < w(tn − m�) < 0. Notice that w(tn) > 0, thus (3.7) holds.
Subcase 2: If cd = 1, then this case is impossible.
Subcase 3: If cd < 1, then 0 < w(tn − m�) < u2. Assume that (3.7) does not hold true, then we can obtain w(t) > 0

for t ∈ [tn − m�, tn]. Notice that �(tn)z∗(tn) < 1, then there exists a sufficiently small positive real number � > 0 such
that

w(t)�w(t − m�), w(t) > 0, w(t − m�) > 0, �(t)z∗(t) < 1 for t ∈ [tn − �, tn].
Multiplying Eq. (3.5) by exp(

∫ t

0 �(s) ds) and then integrating it over [tn − �, tn], we get

w(tn) = w(tn − �) exp

(∫ tn−�

tn

�(s) ds

)

+
∫ tn

tn−�
p(s)e−�(s)z∗(s) exp

(∫ s

tn

�(s) ds

)
[(w(s − m�) + z∗(s))e−�(s)w(s−m�) − z∗(s)]. (3.9)

By Lemma 3.2 (iv), we have

(w(s − m�) + z∗(s))e−�(s)w(s−m�) − z∗(s)�(1 − �(s)z∗(s))w(s − m�) for s ∈ [tn − �, tn].
Then (3.9) implies

w(tn)�w(tn) exp

(∫ tn−�

tn

�(s) ds

)

+
∫ tn

tn−�
p(s)e−�(s)z∗(s) exp

(∫ s

tn

�(s) ds

)
(1 − �(s)z∗(s))w(s − m�) ds

�w(tn) exp

(∫ tn−�

tn

�(s) ds

)
+ w(tn)

∫ tn

tn−�
p(s)e−�(s)z∗(s) exp

(∫ s

tn

�(s) ds

)
(1 − �(s)z∗(s)) ds.

Thus

exp

(∫ tn−�

tn

�(s) ds

)
+

∫ tn

tn−�
p(s)e−�(s)z∗(s) exp

(∫ s

tn

�(s) ds

)
(1 − �(s)z∗(s)) ds�1

for �(s)z∗(s) < 1, s ∈ [tn − �, tn]. By Lemma 3.3, this is a contradiction. Hence we reach the conclusion (3.7).
Similarly, we can prove (3.8).
Now, let

G(t, u) = e−�(t)z∗(t){[u + z∗(t)]e−�(t) u − z∗(t)}.
Then

�G(t, u)

�u
= exp(−�(t)z∗(t))(1 − �(t)z∗(t) − �(t)u)e−�(t)u.

Clearly, Eq. (3.5) can be written as

w′(t) = −�(t)w(t) + p(t)F (t)w(t − m�), (3.10)

where

F(t) = �G(t, u)

�u

∣∣∣∣
u=(t)

= exp(−�(t)z∗(t))(1 − �(t)z∗(t) − �(t)(t))e−�(t)(t),
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and (t) lies between 0 and w(t − m�). Set

h(t, v) = e−�(t)v(1 − �(t)v),

where

v = z∗(t) + (t).

Since (t) lies between 0 and w(t − m�), v lies between z∗(t − m�) and z(t − m�), then

|h(t, v)| = e−�(t)v|1 − �(t)v|�1,

which implies

|F(t)|�1.

Multiplying Eq. (3.10) by exp(
∫ t

0 �(s) ds) and then integrating it over [Tn, tn] and [Sn, sn], respectively, we have

w(tn) =
∫ tn

Tn

p(s)F (s) exp

(∫ s

tn

�() d

)
w(s − m�) ds, (3.11)

and

−w(sn) =
∫ sn

Sn

−p(s)F (s) exp

(∫ s

tn

�() d

)
w(s − m�) ds. (3.12)

Now we can conclude that for any given � > 0, there exists a sufficiently large n0 such that for all t � tn0 ,

w(t − m�) < � + � and −w(t − m�) < − � + �. Hence, |w(t − m�)|�H + � for t � tn0 , where H = max{�, −�}.
Then from (3.11) and (3.12), we have

0�w(tn)�
[∫ tn

tn−m�
p(s) exp

(∫ s

tn

�(s) ds

)
ds

]
(H + �), (3.13)

and

0� − w(sn)�
[∫ sn

sn−m�
p(s) exp

(∫ s

tn

�(s) ds

)
ds

]
(H + �). (3.14)

In view of (3.3), for sufficiently large n, inequalities (3.13) and (3.14) imply

0�w(tn)��(H + �),

and

0� − w(sn)��(H + �).

Notice that � > 0 is arbitrary, we have

0����H , (3.15)

and

0� − ���H . (3.16)

Since � < 1 and H = max{�, −�}, (3.15) and (3.16) hold if and only if � = � = 0. Therefore, limt→∞w(t) = 0. By the
medium of the transformation (3.4), we immediately reach the conclusion (3.1). The proof is complete. �

By the medium of Lemma 1.2, we state the stability result for system (1.9).



W.-T. Li, Y.-H. Fan / Journal of Computational and Applied Mathematics 201 (2007) 55–68 67

Theorem 3.5. Assume that (A1)–(A3), (2.3) and

p(t)e−�(t)x∗(t)(1 − �(t)x∗(t)) < �(t) for t ∈ [0, �]
hold. Suppose further that

lim sup
t→∞

∫ t

t−m�
p(s) exp

(∫ s

t

�() d

)
ds = � < 1.

Then any positive solution x(t) of (1.9) satisfies

lim
t→∞(x(t) − x∗(t)) = 0.

Remark 3.6. If �(t) = a, then Eq. (1.12) reduces to the equation

z′(t) = −�(t)z(t) + p(t)z(t − m�)e−az(t−m�), t �0, (3.17)

which has been studied by Saker and Agarwal [22]. Clearly, our Theorem 3.4 improves Theorem 3.6 of Saker and
Agarwal [22] under the weaker condition p(t) > �(t) for t ∈ [0, �]. In particular, our result drops the condition

a(z∗(t))m > 1

and replace the Saker and Agarwal’s condition p(t)e−az∗(t) ��(t), t ∈ [0, �] by the weaker condition p(t)e−az∗(t)

(1 − az∗(t)) < �(t) for t ∈ [0, �].

Remark 3.7. By Lemma 2.3, the unique �-periodic positive solution z∗(t) of Eq. (1.12) satisfies(
p(t) − �(t)

p(t)�(t)

)
m

�z∗(t)�
(

p(t)

�(t)�(t)

)
M

,

and so, we have

p(t) exp

{
−�(t)

(
p(t) − �(t)

p(t)�(t)

)
m

} (
1 − �(t)

(
p(t) − �(t)

p(t)�(t)

)
m

)

�p(t) exp{−�(t)z∗(t)}(1 − �(t)z∗(t)) for t ∈ [0, �].
Hence, the condition (3.2) can be replaced by the following condition:

p(t) exp

{
−�(t)

(
p(t) − �(t)

p(t)�(t)

)
m

} (
1 − �(t)

(
p(t) − �(t)

p(t)�(t)

)
m

)
< �(t) for t ∈ [0, �].

4. Discussion

In [10], Kulenovic et al. studied the equation

N ′(t) = −�N(t) + pN(t − �)e−aN(t−�), (4.1)

and showed that when p > �, every positive solution of (4.1) tends to N∗ = (1/a) ln(p/�) as t → ∞ provided that

(e�� − 1)
(p

�
− 1

)
< 1.

Recently, Saker and Agarwal [22, Theorem 3.6 or Remark 3.7] extends the above result of Kulenovic et al. [10] for
Eq. (4.1) under the condition a(z∗(t))m > 1. That is to say, their Theorem 3.6 extends the result in [10] only under the
condition p > e�. From Theorem 3.4, it is easy to see that our result improves the known result of Kulenovic et al. [10]
for Eq. (4.1) under the weaker condition p > �.
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On the other hand, we should point out the conditions for the global attractivity of Saker and Agarwal [22,
Theorem 3.6] is so strict that under these conditions the periodic solution of (3.17) may only be a constant solu-
tion of (3.17). We demonstrate it in the sequel.

The condition

p(t)e−az∗(t) ��(t) for t ∈ [0, �]
implies that

z∗(t)� 1

a
ln

(
p(t)

�(t)

)
for t ∈ [0, �].

Then from Eq. (3.17), we have

z∗′(t) = −�(t)z∗(t) + p(t)z∗(t)e−az∗(t) �z∗(t)(−�(t) + p(t)e−a·(1/a) ln(p(t)/�(t))) = 0,

which implies that if z∗(t) is a positive periodic solution of (3.17), then it is a decreasing function and so it must be a
constant. Therefore, our result improves Theorem 3.6 in [22].
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