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Abstract

We introduce the variational calculus onq-nonuniform lattices. In particular, we discuss the ba
concepts such as the Euler–Lagrange equation and its applications to the isoperimetric, the L
and the optimal control problems onq-nonuniform lattices.
 2005 Elsevier Inc. All rights reserved.

1. Introduction

Following [10,11], letx(s) be a real valued discrete variable (s ∈ 1
2Z) function such tha

F

(
x(s), x

(
s − 1

2

))
= F

(
x(s), x

(
s + 1

2

))
= 0, (1)

where

F(x, y) = ax2 + 2bxy + cy2 + 2dx + 2cy + 2f = 0. (2)

This means that

x

(
s + 1

2

)
= P(x) + √

Q(x), x

(
s − 1

2

)
= P(x) − √

Q(x), (3)

whereP(x) andQ(x) are polynomials of degree maximum 1 and 2, respectively.
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key–
Next, from (3), one derives the following most important canonical forms forx(s) in
order of increasing complexity:

x(s) = x(0), (4)

x(s) = s, (5)

x(s) = qs, (6)

x(s) = qs + q−s

2
, q ∈ C. (7)

Here for concreteness, we take 0< |q| < 1. The forms (4)–(7) correspond to

Q(x) = 0, P (x) = x,

Q(x) = 1

4
, P (x) = x,

Q(x) = (q − 1)2

4q
x2, P (x) = (q + 1)

2
√

q
x,

Q(x) = (q − 1)2

4q
(x2 − 1), P (x) = (q + 1)

2
√

q
x, (8)

respectively. As seen from (1), the set of points{(x(s), x(s+ 1
2)), (x(s), x(s− 1

2)), s ∈ 1
2Z}

forms a lattice on the corresponding conic. For this reason, one refers to the fun
(4)–(7) as “continuous” (constant), “uniform” (linear), “q-uniform” and “q-nonuniform”
lattices, respectively.

Next, define the following divided difference derivative [10,11]:

Df
(
x(s)

) = f (x(s + 1
2)) − f (x(s − 1

2))

x(s + 1
2) − x(s − 1

2)
. (9)

The point here is that iff (x) is a polynomial of degreen in x(s), thenDf (x(s)) is a
polynomial inx(s) of degreen − 1. As far as we are aware of, (9) is the most gen
(divided difference) derivative having this propriety. Note that whenx(s) is given by (4)–
(6), the corresponding divided difference derivatives give respectively:

Df (x) = d

dx
f (x), (10)

∆ 1
2
f (x) = ∆f (t) = f (t + 1) − f (t) = (

e
d
dt − 1

)
f (t), t = x − 1

2
, (11)

D
q

1
2
f (x) = Dqf (t) = f (qt) − f (t)

qt − t
= q

d
dt − 1

qt − t
f (t), t = q− 1

2 x. (12)

Whenx(s) is given by (7), the corresponding derivative is usually referred to as the As
Wilson first order divided difference operator [1] that one can write:

Df (x(z)) = f (x(q
1
2 z)) − f (x(q− 1

2 z))

x(q
1
2 z) − x(q− 1

2 z)
, (13)

−1

wherex(z) = z+z

2 , having in mind thatz = qs .
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have
To deal with the inverse of the differentiation operation that is the integration, we
to solve forf from the equation

Df
(
x(s)

) = f (x(s + 1
2)) − f (x(s − 1

2))

x(s + 1
2) − x(s − 1

2)
= g

(
x(s)

)
. (14)

One gets

f

(
x

(
s − 1

2

))
− f

(
x

(
N + 1

2

))

=
t=N∑
t=s

[
x

(
t − 1

2

)
− x

(
t + 1

2

)]
g
(
x(t)

)
, N � s. (15)

Hence the definition of the integral on lattices:

x(s)∫
x(N)

g
(
x(t)

)
dqx(t)

def=
N− 1

2∑
t=s+ 1

2

[
x

(
t − 1

2

)
− x

(
t + 1

2

)]
g
(
x(t)

)
(16)

=
x(N− 1

2 )∑
x(t)=x(s+ 1

2 )

[
x

(
t − 1

2

)
− x

(
t + 1

2

)]
g
(
x(t)

)
. (17)

Varying t in the opposite sense, one gets from (14)

f

(
x

(
s + 1

2

))
− f

(
x

(
N − 1

2

))

=
t=N∑
t=s

[
x

(
t + 1

2

)
− x

(
t − 1

2

)]
g
(
x(t)

)
, N � s, (18)

and the integral

x(s)∫
x(N)

g
(
x(t)

)
dqx(t) (19)

def=
N+ 1

2∑
t=s− 1

2

[
x

(
t + 1

2

)
− x

(
t − 1

2

)]
g
(
x(t)

)
(20)

=
x(N+ 1

2 )∑ [
x

(
t + 1

)
− x

(
t − 1

)]
g
(
x(t)

)
. (21)
x(t)=x(s− 1
2 )

2 2
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Remark that whenx(s) = (qs + q−s)/2, we havex(−s) = x(s) and Eq. (18) is obtaine
from (15) by replacing quite simplys, t and N by −s, −t and−N , respectively. It is
also understood that in the formulae (15)–(17) and (18)–(21), one can takeN → +∞ and
N → −∞, respectively. Let finally note that the differentiation or integration on any
of the lattices in (5)–(7) generalizes the differentiation or integration on the lattices o
complexity. Hence the calculus on a given lattice generalizes the calculus on a lat
low complexity.

This work is concerned in the generalization of the variational calculus. The varia
calculus on the uniform lattices was proposed in [3]. In the time to follow, most o
searches in the area were mainly directed to the study of the complete integrability
discrete Euler–Lagrange equation (see, e.g., [6–9,12,17]). That is to say that as fa
are aware of, the question of the generalization of the continuous (differential) varia
calculus, to the calculus of variation on lattices more general than the uniform one (t
in [3]), had never been considered until [2]. In [2], the variational calculus on theq-uniform
lattices was discussed. Here, we consider the variational calculus on theq-nonuniform lat-
tices. More precisely, we discussq-nonuniform lattices versions of the basic concepts
variational calculus such as the Euler–Lagrange equation, the isoperimetric, Lagran
optimal control problems. Also, some interconnections between the Euler–Lagrange
tion, the Hamilton and the Hamilton–Pontriaguine systems onq-nonuniform lattices are
discussed. In the following section, we first outline some basic formulae for differenti
and integration onq-nonuniform lattices, useful for the sequel.

Before closing this section, let us note that others motivation and derivation of th
tices (4)–(7) can be found in [13]. On the other side, a widely different generalizati
the derivative in (12) (the so-called Jackson derivative) can be found in [5] and refer
therein. Also, it is to be understood that others kinds of nonuniform lattices had al
been used in various discretization problems (see, e.g., [15,16]).

2. Differentiation and integration on q-nonuniform lattices

Here for clarity, we outline basic formulae of the differentiation and integration
q-nonuniform lattices. This means that settingz = qs in (7), the current variable is now

x(z) = z+z−1

2 .

Derivative of a product

D(fg)
(
x(z)

) = f
(
x
(
q

1
2 z

))
Dg

(
x(z)

) + g
(
x
(
q− 1

2 z
))
Df

(
x(z)

)
= g

(
x
(
q

1
2 z

))
Df

(
x(z)

) + f
(
x
(
q− 1

2 z
))
Dg

(
x(z)

)
. (22)

Derivative of a ratio

D(f/g)
(
x(z)

) = g(x(q− 1
2 z))Df (x(z)) − f (x(q− 1

2 z))Dg(x(z))
1 − 1 . (23)
g(x(q 2 z))g(x(q 2 z))
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Derivative of a composite function

D
(
f (g)

)(
x(z)

) = f (g(x(q
1
2 z))) − f (g(x(q− 1

2 z)))

g(x(q
1
2 z)) − g(x(q− 1

2 z))
.
g(x(q

1
2 z)) − g(x(q− 1

2 z))

x(q
1
2 z) − x(q− 1

2 z)

def= (Dgf ).Dxg. (24)

Derivative of the inverse function

Let y = f (x). Thenx = f −1(y), wheref −1 is the inverse tof function. Applying the
divided difference derivative on both sides of the preceding equation, one obtains

1 = f −1(y(x(q
1
2 z))) − f −1(y(x(q− 1

2 z)))

x(q
1
2 z) − x(q− 1

2 z)

= f −1(y(x(q− 1
2 z))) − f −1(y(x(q− 1

2 z)))

y(x(q
1
2 z)) − y(x(q− 1

2 z))
.
y(x(q

1
2 z)) − y(x(q

1
2 z))

x(q− 1
2 z) − x(q− 1

2 z)

def= Dyf
−1.Dxy.

Hence

Dyf
−1 = 1

Dxf
. (25)

“Fundamental principles” of analysis

(i) D
[ x(z)∫

x(qN )

g
(
x(z)

)
dqx(z)

]

= D
[

x(q
N− 1

2 )∑
x(zq

1
2 )

[
x
(
zq− 1

2
) − x

(
zq

1
2
)]

g
(
x(z)

)]

=
[∑x(q

N− 1
2 )

x(z) −∑x(q
N− 1

2 )

x(qz)

][x(zq− 1
2 ) − x(zq

1
2 )]g(x(z))

x(zq− 1
2 ) − x(zq

1
2 )

(26)

= g
(
x(z)

); (27)

(ii)

x(z)∫
(Df )

(
x(z)

)
dqx(z) =

x(q
N− 1

2 )∑ [
x
(
zq− 1

2
) − x

(
zq

1
2
)]

(Df )
(
x(z)

)

x(qN ) x(zq

1
2 )
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of the
=
x(q

N− 1
2 )∑

x(zq
1
2 )

[
f

(
x
(
zq− 1

2
)) − f

(
x
(
zq

1
2
))] = f

(
x(z)

) − f
(
x(qN)

)
. (28)

Integration by parts

Equation (22) can be written as

f
(
x
(
q

1
2 z

))
Dg

(
x(z)

) = D(fg)
(
x(z)

) − g
(
x
(
q− 1

2 z
))
Df

(
x(z)

)
. (29)

Multiplying the both sides of the equation by

γ (z) = x
(
q− 1

2 z
) − x

(
q

1
2 z

)
(30)

and integrating on thex(z) lattice fromx(qN) to x(z), one obtains

x(z)∫
x(qN )

f
(
x
(
q

1
2 z

))
Dg

(
x(z)

)
dqx(z)

= [fg]x(z)

x(qN )
−

x(z)∫
x(qN )

g
(
x
(
q− 1

2 z
))
Df

(
x(z)

)
dqx(z). (31)

Convergence of integrals

Using the relation,

dq

(
x(z)

) def= x
(
q− 1

2 z
) − x

(
q

1
2 z

) = 1

2
√

q
(1− z−2)(1− q)z

= 1

2
√

q
(1− z−2)dq(z),

dq(z)
def= (1− q)z, (32)

one makes the change of integration variables from theq-nonuniform to the uniform one
x(z)∫

x(qN )

f
(
x(z)

)
dq

(
x(z)

) = 1

2
√

q

z∫
qN

(1− z−2)f
(
x(z)

)
dq(z). (33)

Hence, the existence of the integral in the lhs of (33) is conditioned by the existence
one in the rhs. In particular, whenN → +∞, we have

x(z)∫
x(0)

f
(
x(z)

)
dq

(
x(z)

) = 1

2
√

q

z∫
0

(1− z−2)f
(
x(z)

)
dq(z)

= 1
(1− q)z

+∞∑
qig

(
qi+ 1

2 z
)
, (34)
2
0



G. Bangerezako / J. Math. Anal. Appl. 306 (2005) 161–179 167

nn

n

e

e

ial

in
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whereg(z) = (1 − z−2)f (x(z)). But what stands in the rhs of (34) is clearly a Riema

integral sum of the function12g(q
1
2 z) on [0, z]. That is why the integrability of the functio

f (x(z)) on[x(0), x(z)] can be deduced from that ofg(q
1
2 z) on[0, z]. Moreover, in the cas

of Riemann integrability ofg(q
1
2 z) on [0, z], we have the limit

x(z)∫
x(0)

f
(
x(z)

)
dq

(
x(z)

) → 1

2

z∫
0

(1− z−2)f
(
x(z)

)
d(z), q → 1. (35)

Example 1 (Derivative of a polynomial). Let Pn(x(z)) be a polynomial in the variabl

x(z) = z+z−1

2 . We calculate its derivative to make sure that it is a polynomial inx(z) with
moreover a degree equal ton−1. Using the fact that any polynomial of degreek in x(z) =
z+z−1

2 can be written as

Pk

(
x(z)

) =
k∑

i=0

ai

(
z + z−1

2

)i

=
k∑

j=0

bj (z
j + z−j ), (36)

we obtain

DPn

(
x(z)

) =
∑n

j=0 bj (q
j
2 zj + q− j

2 z−j ) − ∑n
j=0 bj (q

− j
2 zj + q

j
2 z−j )

q
− 1

2 −q
1
2

2 (z − z−1)

=
n∑

j=1

2bj

q
j
2 − q− j

2

q− 1
2 − q

1
2

zj − z−j

z − z−1
=

n∑
j=1

2bj

q
j
2 − q− j

2

q− 1
2 − q

1
2

j−1∑
k=0

ck(z
k + z−k)

=
n∑

j=1

2bj

q
j
2 − q− j

2

q− 1
2 − q

1
2

P̃j−1

(
z + z−1

2

)
= ˜̃

P n−1

(
z + z−1

2

)
. (37)

Example 2 (Integral of a polynomial). We now calculate the integral of a polynom

Pn(x(z)) of degreen in the variablex(z) = z+z−1

2 and make sure that it is a polynomial
x(z) with moreover a degree equal ton + 1. The relation (36) will also be used. So, fo
given polynomialPn(x(z)), we search a functionf (x(z)) such that

Df
(
x(z)

) = f (x(zq
1
2 )) − f (x(zq− 1

2 ))

x(zq
1
2 ) − x(zq− 1

2 )
= Pn

(
x(z)

)
. (38)

Hence

f
(
x
(
zq− 1

2
)) − f

(
x
(
zq

1
2
)) = (

x
(
zq− 1

2
) − x

(
zq

1
2
))

Pn

(
x(z)

)
= q− 1

2 − q
1
2

2
(z − z−1)Pn

(
z + z−1

2

)
=

n+1∑
j=1

aj (z
j − z−j )
= P 1
n+1(z) + P 2

n+2(z), (39)
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t
tion
where

P 1
n+1(z) =

n+1∑
j=1

aj z
j , P 2

n+1(z) = −
n+1∑
j=1

aj z
−j . (40)

Now, let us consider two functionsf1(x(z)) andf2(x(z)) such thatf (x(z)) = f1(x(z)) +
f2(x(z)) and

f1
(
x
(
q− 1

2 z
)) − f1

(
x
(
q

1
2 z

)) = P 1
n+1(z), (41)

f2
(
x
(
q− 1

2 z
)) − f2

(
x
(
q

1
2 z

)) = P 2
n+1(z). (42)

From (41) and (42) it follows, respectively, that

f1
(
x(z)

) =
∞∑
i=0

P 1
n+1

(
qi+ 1

2 z
) + c1 =

n+1∑
i=1

ajq
j
2

1− qj
zj + c1, (43)

f2
(
x(z)

) = −
∞∑
i=0

P 2
n+1

(
q−i− 1

2 z
) + c2 =

n+1∑
i=1

ajq
j
2

1− qj
z−j + c2. (44)

Hence

f
(
x(z)

) = f1
(
x(z)

) + f2
(
x(z)

) = c +
n+1∑
i=1

ajq
j
2

1− qj
[zj + z−j ]

= P̃n+1

(
z + z−1

2

)
. (45)

3. Euler–Lagrange equation on q-nonuniform lattices

We consider the following functional given as an integral on theq-nonuniform lattice

x(z) = z+z−1

2 :

J
(
y
(
x(z)

)) =
b∫

a

F
[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
dqx(z)

=
qβ∑

z=qα

γ (z)F
[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
, (46)

whereγ (z) is given in (30) anda = x(qβ+ 1
2 ), b = x(qα− 1

2 ) with the supposition tha
β � α. In (46),F is a differentiable function with respect to all its arguments. The func
y belongs to the varietyE′ of functions satisfying boundary constraints( 1 ) ( 1 )
y qα− 2 = y qβ+ 2 = c, (47)
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under
we
in the linear spaceE of functionsf (x(z)) defined and bounded together withDf (x(z)),
on the set

L = {
qα− 1

2+ i
2 , i = 0,1, . . . ,2(1+ β − α)

}
(48)

and equipped with the norm

‖f ‖ = max
(

sup
z∈L

∣∣f (
x(z)

)∣∣,sup
z∈L

∣∣Df
(
x(z)

)∣∣). (49)

The extremum problem consists then in finding the extremals for the functional (46)
the constraints (47). AsF is a differentiable function with respect to all its arguments,
can calculate the first variation of the functional:

δJ
(
y
(
x(z)

)
, h

(
x(z)

)) = d

dt
J
(
y(x) + th(x)

)∣∣∣∣
t=0

= d

dt
u(t)

∣∣∣∣
t=0

,

u(t) =
b∫

a

F
[
x(z), y

(
x
(
q− 1

2 z
)) + th

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

) + tDh
(
x(z)

)]
dqx(z).

Hence

δJ
(
y
(
x(z)

)
, h

(
x(z)

))
=

qβ∑
z=qα

γ (z)
{
Fv0

[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
h
(
x
(
q− 1

2 z
))

+ Fv1

[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
Dh

(
x(z)

)}
, (50)

whereFvi
= ∂F

∂vi
means the derivative ofF with respect to its(i + 2)th argument,i = 0,1.

As y + th belongs also toE′, it follows from (47) that

h
(
qα− 1

2
) = h

(
qβ+ 1

2
) = 0. (51)

Using (31) and (51), one transforms (50) in

δJ
(
y
(
x(z)

)
, h

(
x(z)

))
=

qβ∑
z=qα

γ (z)
{
Fv0

[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]

−D
[
Fv1

[
x
(
zq− 1

2
)
, y

(
x
(
q−1z

))
,Dy

(
x
(
q− 1

2 z
))]]}

h
(
x
(
q− 1

2 z
))

. (52)

To obtain the Euler–Lagrange equation from (52), we need the followingq-nonuniform
lattices version of the “fundamental lemma of variational calculus.”

Lemma 3.1. Suppose that for a given functionf (z), one has

qβ∑
qα

γ (z)f (z)p(z) = 0 (53)
for any functionp(z) belonging to the spaceE, thenf (z) ≡ 0.
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Proof. For various functionspi(z), Eq. (53) gives a system of equations that one can w
in matrix (may be infinite dimensional) form asAy = 0, whereAij = γ (qα+j )pi(q

α+j )

and yj = f (qα+j ), i, j = 0, . . . , β − α. To obtainf (z) ≡ 0, it suffices to choose th
pi(q

α+j ) so that the matrixA be invertible, which proves the lemma.�
Applying the lemma to Eq. (52), one obtains

Fv0

[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
−D

[
Fv1

[
x
(
zq− 1

2
)
, y

(
x(q−1z)

)
,Dy

(
x
(
q− 1

2 z
))]] = 0, (54)

which is theEuler–Lagrange equationgiving the necessary condition for the extremu
problem onq-nonuniform lattices. It is a second orderq-difference equation, which i
principle is solved uniquely under the boundary constraints (47).

Remark 1. If the function under the sign of integrationF is given byF = F(x, y1, . . . , yn,

Dy1, . . . ,Dyn), so the extremum necessary condition is given byn equations similar to
(54), one equation for each variable, the other variables being supposed fixed.

Remark 2. If the function under the sign of integrationF is given byF = F(x, y,Dy, . . . ,

Dny), so the change of variablesy1 = y, y2 = Dy, . . . , yn = Dn−1y leads to the case o
Remark 1, with additional constraints:Dy1 = y2, Dy2 = y3, . . . , Dyn−1 = yn. This gives
a particular case of the “Lagrange problem” which will be discussed in the next sect

4. Applications

4.1. The isoperimetric problem onq-nonuniform lattices

The problem Consider the integration functional onq-nonuniform lattices

J0
(
y
(
x(z)

)) =
b∫

a

F0
[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
dqx(z)

=
qβ∑

z=qα

γ (z)F0
[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
(55)

defined inE′. Let next be given a set of other functionals

Ji

(
y
(
x(z)

)) =
b∫

a

Fi

[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
dqx(z)

=
qβ∑

γ (z)Fi

[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
, (56)
z=qα



G. Bangerezako / J. Math. Anal. Appl. 306 (2005) 161–179 171

etting

ext

l

hat if
o
d the
range

first
in

l on

y ex-
defined also inE′ and consider the equations

Ji

(
y(x)

) = ci, i = 1, . . . ,m. (57)

The isoperimetric problem consists in finding extremals of the functionalJ0(y), among all
the functions belonging inE′ and satisfying (57).

The solution The settled isoperimetric problem can be solved in a more general s
by the following theorem (see, e.g., [4]).

Theorem 4.1. Suppose that is given a set of functionalsJi(y), i = 0,1, . . . ,m, defined
on a varietyE′ of a linear normed spaceE and admitting onE′ the first variation
δJi(y,h) with δJi(y,h), i = 1, . . . ,m, linearly independent functionals. Suppose n
that y0 is an extremal ofJ0(y) under the constraintsJi(y) = ci , i = 1, . . . ,m, and
δJi(y0, h) �≡ 0, i = 1, . . . ,m. In that case,y0 is an ordinary extremal for the functiona
J ∗(y) = J0(y) + ∑m

i=1 λiJi(y), where theλi are some constants.

Applied to our functionals (55), (56) and constraints (57), the theorem implies t
the functions under the signs of integrationF0 andFi are differentiable with respect t
all its arguments (this is sufficient for the functionals to have the first variation), an
variational derivatives (i.e. the function in the lhs of the corresponding Euler–Lag
equation) of the functionals (56) are linearly independent (this is sufficient for the
variations to be so), then the extremals ofJ0(y) under the constraints (57) are included
the union of the set of solutions of the equationsδJi(y,h) = 0, i = 1, . . . ,m, and that of
δJ ∗(y,h) = 0, whereJ ∗(y) = J0(y) + ∑m

i=1 λiJi(y).

Example. Suppose it required to find the extremum of the integration functiona
q-nonuniform lattices

J0
(
y
(
x(z)

)) =
b∫

a

[
1

2

(
Dy

(
x(z)

))2 − a
(
q + q2 + 2q

3
2
)
y
(
x
(
q− 1

2 z
))]

dqx(z)

=
qβ∑

z=qα

γ (z)

[
1

2

(
Dy

(
x(z)

))2 − a
(
q + q2 + 2q

3
2
)
y
(
x
(
q− 1

2 z
))]

(58)

under the constraints

J1
(
y
(
x(z)

)) = 4aq
3
2

b∫
a

[
x2(q− 3

4 z
)
y
(
x
(
q− 1

2 z
))]

dqx(z)

= 4aq
3
2

qβ∑
z=qα

γ (z)
[
x2(q− 3

4 z
)
y
(
x
(
q− 1

2 z
))] = c1. (59)

According to Theorem 4.1, this is equivalent to the problem of finding the ordinar

tremum for the functional
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ce

con-
J ∗(y(
x(z)

)) =
b∫

a

F ∗[x(z), y
(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
dqx(z)

=
qβ∑

z=qα

γ (z)F ∗[x(z), y
(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
, (60)

where

F ∗ = 1

2

(
Dy

(
x(z)

))2 + [
4λaq

3
2 x2(q− 3

4 z
) − a

(
q + q2 + 2q

3
2
)]

y
(
x
(
q− 1

2 z
))

. (61)

The Euler–Lagrange equation for this problem is

D
[
Dy

(
q− 1

2 z
)] = 4λaq

3
2 x2(q− 3

4 z
) − a

(
q + q2 + 2q

3
2
)
. (62)

Its solution reads

y
(
x(z)

) = 4aq4

(q3 + q2 + q + 1)(q2 + q + 1)
x4((z))

− qa(q5 + q4 + 4q3 + 4q2 + q + 1)

(q2 + 1)(q2 + q + 1)
x2((z))

+ q(q4 + q3 + 3q2 + q + 1)

2(q3 + q2 + q + 1)
+ p1

(
x(z)

)
, λ = 1, (63)

wherep1(x(z)) is any first degree polynomial inx(z).

4.2. The Lagrange problem onq-nonuniform lattices

The problem Let now be given aq-nonuniform lattices integration functional

J0
(
ȳ(x)

) =
b∫

a

F0
[
x(z), ȳ

(
x
(
q− 1

2 z
))

,Dȳ
(
x(z)

)]
dqx(z)

=
qβ∑

z=qα

γ (z)F0
[
x(z), ȳ

(
x
(
q− 1

2 z
))

,Dȳ
(
x(z)

)]
(64)

defined inE′n. Hereȳ(x) = (y1(x), . . . , yn(x)). Let moreover be given a set of differen
equations onq-nonuniform lattices

φi

[
x(z), ȳ

(
x
(
q− 1

2 z
))

,Dȳ
(
x(z)

)] = 0, i = 1, . . . ,m < n. (65)

The Lagrange problem consists in finding extremals of the functional (64) under the

straints (65).
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The solution The Lagrange problem can be reduced to the isoperimetric one by
forming (65) in type (57) constraints. For that, we multiply the both sides of (65
arbitrary functionsλi(x), and then take the integral on theq-nonuniform lattice froma

to b. We obtain new constraints

Ji

(
ȳ(x)

) =
b∫

a

λi(x)φi

[
x(z), ȳ

(
x
(
q− 1

2 z
))

,Dȳ
(
x(z)

)]
dqx(z) = 0,

i = 1, . . . ,m. (66)

Under the conditions of Theorem 4.1, the solutions(y1(x), . . . , yn(x)) of the isoperimetric
problem (64), (66) satisfy the Euler–Lagrange equation for the functional

Ĵ (ȳ) = J0(ȳ) +
m∑

i=1

λ̂i (x)Ji(ȳ), λ̂i(x) = λ̃iλi(x), i = 1, . . . ,m, (67)

for some constants̃λi . But since clearly from (65) follows (66), the solutions of t
Lagrange problem (64), (65) satisfy as well the Euler–Lagrange equation for the
functional (67).

Example. Suppose now that it is required to find the extremum of the functional

J0(x, y,u) = 1

2

b∫
a

[
u2(t (z)) − x2(t(q− 1

2 z
))]

dqx(z)

= 1

2

qβ∑
z=qα

γ (z)
[
u2(t (z)) − x2(t(q− 1

2 z
))]

, (68)

under the constraints

Dx
(
t (z)

) = y
(
t
(
q− 1

2 z
))

, Dy
(
t (z)

) = u
(
t (z)

)
. (69)

This is a Lagrange type problem hence it is equivalent to the problem of finding an ord
extremum for the functional

J ∗(x, y,u,λ1, λ2)

=
b∫

a

F ∗[t (z), x(
t
(
q− 1

2 z
))

, y
(
t
(
q− 1

2 z
))

, u
(
t (z)

)
,Dx

(
t (z)

)
,Dy

(
t (z)

)]
dqx(z)

=
qβ∑

z=qα

γ (z)F ∗[t (z), x(
t
(
q− 1

2 z
))

, y
(
t
(
q− 1

2 z
))

, u
(
t (z)

)
,Dx

(
t (z)

)
,Dy

(
t (z)

)]
,

(70)
where
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the
F ∗ = 1

2

(
u2(t (z)) − x2(t(q− 1

2 z
)))

+ λ1(t)
(
Dx

(
t (z)

) − y
(
t
(
q− 1

2 z
))) + λ2(t)

(
Dy

(
t (z)

) − u
(
t (z)

))
. (71)

The Euler–Lagrange equation for this problem reads

x
(
t (z)

) = D+D−D−D+x
(
t (z)

)
, (72)

where

D+h
(
t (z)

) def= h(t (z)) − h(t (qz))

t (z) − t (qz)
,

D−h
(
t (z)

) def= h(t (z/q)) − h(t (z))

t (z/q) − t (z)
. (73)

Searching the solution under the form

x
(
t (z)

) =
∞∑

j=0

(aj z
j + a−j z

−j ), (74)

one finds the following recurrence relations for the coefficients:

aj =
+∫

a

−∫
a

−∫
a

+∫
a

(aj ), (75)

where the applications
∫ ±
a

:

±∫
a

: (a±(j−1), a±j , a±(j+1)) → a±
±j (76)

are given by

a±
j = γ0q

j
2

1− qj

(
aj−1q

∓ j−1
2 − aj+1q

∓ j+1
2

)
, γ0 = q− 1

2 − q
1
2

2
,

a±
−j = γ0q

j
2

1− qj

(
a−j+1q

± j−1
2 − a−j−1q

± j+1
2

)
, j = 2, . . . ,

a±
1 = γ0(2a0 − a2q

∓), a±
−1 = γ0(2a0 − a−2q

±), a±
0 = cte, (77)

such that the applications

±∫
:

∞∑
j=0

(aj z
j + a−j z

−j ) →
∞∑

j=0

(
a±
j zj + a±

−j z
−j

)
(78)

are the inverses ofD±. Additional constraints to (74) are obtained by the fact that
applications

∫ + and
∫ − are defined on series

∑∞
j=0(bj z

j + b−j z
−j ) for whichb1 = qb−1
andb−1 = qb1, respectively.
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4.3. The optimal control problem onq-nonuniform lattices

The problem Consider now the integration functional onq-nonuniform lattices

J
(
ȳ(x), ū(x)

) =
b∫

a

f 0[x(z), ȳ
(
x
(
q− 1

2 z
))

, ū
(
x(z)

)]
dqx(z)

=
qβ∑

z=qα

γ (z)f 0[x(z), ȳ
(
x
(
q− 1

2 z
))

, ū
(
x(z)

)]
, (79)

whereȳ(x) = (y1(x), . . . , yn(x)) andū(x) = (u1(x), . . . , un(x)). The functional is defined
onE′n union the set of admissible (that is which values belong to a fixed setU in Rn) func-
tions ū(x), whereE′n is the subset ofEn which elements satisfy the boundary constra

ȳ
(
qα− 1

2
) = ȳ

(
qβ+ 1

2
) = C . . . . (80)

Consider then the difference equations onq-nonuniform lattices

Dyi

(
x(z)

) = fi

[
x(z), ȳ

(
x
(
q− 1

2 z
))

, ū
(
x(z)

)]
, i = 1, . . . , n. (81)

The optimal control problem consists in finding among all admissible vector func
ū(x), that for which the corresponding solution of (80), (81) is an extremal of the funct
(79). The functions̄y(x) andū(x) are said to constitute anoptimal processand are called
optimal trajectoryandoptimal control, respectively.

The solution To solve the optimal control problem, we consider it as ann + m dimen-
sional Lagrange problem: Findn+m functions(y1(x), . . . , yn(x)) and(u1(x), . . . , un(x))

that are extremals for (79) under the conditions (80) and

φi

(
x, ȳ

(
x
(
q− 1

2 z
))

, ū
(
x(z)

)) = 0, (82)

where

φi

(
x, ȳ

(
x
(
q− 1

2 z
))

, ū
(
x(z)

))
= Dyi

(
x(z)

) − fi

[
x(z), ȳ

(
x
(
q− 1

2 z
))

, ū
(
x(z)

)]
, i = 1, . . . , n. (83)

According to the discussions done in the preceding subsection, the solutions of s
extremum problem satisfy necessarily the Euler–Lagrange system of the functional

J ∗(ȳ(x), ū(x)
) =

b∫
a

F ∗[x(z), ȳ
(
x
(
q− 1

2 z
))

, ū
(
x(z)

)]
dqx(z)

=
qβ∑

z=qα

γ (z)F ∗[x(z), ȳ
(
x
(
q− 1

2 z
))

, ū
(
x(z)

)]
, (84)
where
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F ∗[x(z), ȳ
(
x
(
q− 1

2 z
))

, ū
(
x(z)

)]
= f 0[x(z), ȳ

(
x
(
q− 1

2 z
))

, ū
(
x(z)

)]
+

n∑
i=1

ψi(x)
[
Dyi(x) − fi

[
x(z), ȳ

(
x
(
q− 1

2 z
))

, ū
(
x
(
q− 1

2 z
))]]

. (85)

The corresponding Euler–Lagrange system is then

f 0
vj

−
n∑

i=1

ψi(x)fivj
−D

[
ψi

(
x
(
q− 1

2 z
))] = 0, j = 1, . . . , n, (86)

f 0
wj

−
n∑

i=1

ψi(x)fiwj
= 0, j = 1, . . . ,m. (87)

Heref 0
i andfi have as argumentsx(z), ȳ(x(q− 1

2 z)), ū(x(q− 1
2 z)) andgvj

andgwj
mean

the partial derivatives ofg with respect to its(j + 1)th and (n + j + 1)th arguments
respectively. Setting

H = −f 0[x(z), ȳ
(
x
(
q− 1

2 z
))

, ū
(
x(z)

)]
+

n∑
i=1

ψi(x)
[
fi

[
x(z), ȳ

(
x
(
q− 1

2 z
))

, ū
(
x(z)

)]]
, (88)

so, (81), (86) and (87) give, respectively,

Dyi(x) = Hψi
, (89)

D
[
ψi

(
x
(
q− 1

2 z
))] = −Hyi

, j = 1, . . . , n, (90)

and

Hui
= 0, j = 1, . . . ,m. (91)

Thus, the necessary condition for the optimal control problem is given by (91), pro
is solved the system (89)–(90). Due to similarities with the continuous case [14], on
refer toH and (89)–(90) asq-nonuniform lattices Hamilton–Pontriaguine functionand
system, respectively.

Example (Linear quadratic problem onq-nonuniform lattices). The problem now is tha
of finding a control functionu(x) such that the corresponding solution to the bound
value problem

Dy = −ay
(
x
(
zq− 1

2 z
)) + u

(
x(z)

)
, a > 0,

y
(
qα− 1

2
) = y

(
qβ+ 1

2
)

(92)
is an extremal for the functional (quadratic cost functional onq-nonuniform lattices)
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J (y,u) = 1

2

b∫
a

[
u2(x(z)

) + y2(x(
q− 1

2 z
))]

dqx(z)

= 1

2

qβ∑
z=qα

γ (z)
[
u2(x(z)

) + y2(x(
q− 1

2 z
))]

. (93)

The problem is of optimal control type. The Hamilton–Pontriaguine function and sy
are, respectively,

H = −1

2

[
y2(x(

q− 1
2 z

)) + u2(x(z)
)] + ψ

(
x(z)

)[−ay
(
x
(
zq− 1

2 z
)) + u

(
x(z)

)]
(94)

and

Dy = −ay
(
x
(
zq− 1

2 z
)) + u

(
x(z)

)
,

D
[
ψ

(
x
(
q− 1

2 z
))] = aψ

(
x(z)

) + y
(
x
(
zq− 1

2
))

,

ψ = u. (95)

The equation fory(x(z)) then becomes

D
[
y
(
x
(
q− 1

2 z
)) + ay

(
x
(
q−1z

))] = aDy + (a2 + 1)y
(
x
(
q− 1

2 z
))

. (96)

Searching the solutiony(x(z)) under a series of the form (74), so the recurrence relat
satisfied by the coefficients are given by

y =
−∫

y − a

+∫
y + (a2 + 1)

−∫ +∫
y, (97)

where the applications
∫ ± are defined in (77)–(78).

Remark. It is to be noted that forq → 1 (α → 0, β → +∞), the preceding problems an
examples tend to the corresponding problems and examples in the continuous ana
the interval[0,1] (which can naturally be transformed in any other finite interval by
well known linear change of variables).

4.4. Interconnection between the variational calculus, the optimal control and
the Hamilton system onq-nonuniform lattices

Consider now the case of pure variational calculus onq-nonuniform lattices that is th
control function and the control system are not present explicitly: Find extremals o
functional

J
(
y
(
x(z)

)) =
b∫

a

F
[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
dqx(z)

=
qβ∑

γ (z)F
[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
(98)
z=qα
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defined inE′. Note also that the variablex is not present explicitly. Our objective is
show the following proposition.

Proposition 4.1. On q-nonuniform lattices, are equivalent: the Euler–Lagrange equation
the Hamilton and the Hamilton–Pontriaguine systems.

Proof. We show this in three steps.
(a) We first show how to obtain the Hamilton system from the Euler–Lagrange equ

For the functional in (98), the Euler–Lagrange equation reads

Fv0

[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
−D

[
Fv1

[
x
(
zq− 1

2
)
, y

(
x
(
q−1z

))
,Dy

(
x
(
q− 1

2 z
))]] = 0. (99)

Letting

ψ(x) = Fv1

[
x(z), y

(
x
(
q− 1

2 z
))

,Dy
(
x(z)

)]
(100)

and

H = −F + ψ(x)Dy, (101)

we get from (99)–(101) the Hamilton system

Dy
(
x(z)

) = Hψ

[
y
(
x
(
q− 1

2 z
))

,ψ
(
x(z)

)
,Dy

(
x(z)

)]
,

D
[
ψ

(
x
(
q− 1

2 z
))] = −Hy

[
y
(
x
(
q− 1

2 z
))

,ψ
(
x(z)

)
,Dy

(
x(z)

)]
. (102)

(b) To get the Hamilton–Pontriaguine system from the Hamilton system (102), i
fices to supposeu(x(z)) = Dy(x(z)) to be the control equation for the given initial no
controlled extremum problem. In that case, (102) gives

Dy
(
x(z)

) = Hψ

[
y
(
x
(
q− 1

2 z
))

,ψ
(
x(z)

)
, u

(
x(z)

)]
,

D
[
ψ

(
x
(
q− 1

2 z
))] = −Hy

[
y
(
x
(
q− 1

2 z
))

,ψ
(
x(z)

)
, u

(
x(z)

)]
, (103)

with

H = −F
[
y
(
x
(
q− 1

2 z
))

, u(x)
] + ψ

(
x(z)

)
u
(
x(z)

)
, (104)

the Hamilton–Pontriaguine function, and from (100) we get the third equation in (91

Hu = 0. (105)

(c) We finally show how to obtain the Euler–Lagrange equation (99) from the Hami
Pontriaguine system (103)–(105). From (104) and (105), we have

ψ
(
x(z)

) = Fv1

[
y
(
x
(
q− 1

2 z
))

, u
(
x(z)

)] = Fv1

[
y
(
x
(
q− 1

2 z
))

,Dqy
(
x(z)

)]
, (106)

while from (103) we get

D
[
ψ

(
x
(
q− 1

2 z
))] = Fv0

[
y
(
x
(
q− 1

2 z
))

, u
(
x(z)

)]
= Fv0

[
y
(
x
(
q− 1

2 z
))

,Dqy
(
x(z)

)]
. (107)

Finally, (106) and (107) give the Euler–Lagrange equation (99), which proves the pr

tion. �
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