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We generalize to the category of orbifolds (topological spaces locally modelled on Euclidean 
space modulo a finite group) some fundamental theorems in the study of 3-manifolds, including 

the fact that compact $‘-irreducible 3-manifolds with nonempty boundary have incompressible 

surfaces and can be decomposed into balls by repeated cutting along such surfaces. 

AMS (MOS) Subj. Class.: 57N10, 57S30 

orbifold hierarchy sufficiently large 

An orbifold is a kind of generalized manifold, a topological space with local 

models given by quotients of Iw” by finite groups. In particular, the quotient of a 

manifold by a properly discontinuous group action naturally inherits the structure 

of an orbifold. Ever since W. Thurston made use of 3-dimensional orbifolds in his 

proof of the existence of hyperbolic structures on atoroidal Haken 3-manifolds, it 

has been a commonplace that a concept or theorem about manifolds can easily be 

translated into an analogous concept or theorem that holds for orbifolds. This is 

indeed the case quite often, as with the fundamental group or the Euler characteristic. 

‘Predictable’ definitions of this sort are listed for the reader’s convenience in the 

Glossary, which also explains such jargon as “BALL” and “turnover”. Further 

background on orbifolds may be found in a number of sources, including [ 14, Chap. 

131, P3, § 21, [II, and [31. 
However, there are concepts, such as homology groups, which do not translate 

well. This makes it difficult to generalize the usual proof of the existence of 2-sided, 

non-a-]], incompressible surfaces in a 3-manifold M, which involves showing that 

H,(M) is infinite [7, Theorem 6.61. We turn therefore to another method for finding 

incompressible surfaces, due to Stallings, that involves finding a nontrivial action 

of n,(M) on a (simplicial) tree, constructing an equivariant map from A? to the 

tree, and then looking at the inverse images of midpoints of edges [2, Prop. 2.3.11. 

As it turns out, for technical reasons we prefer to use the machinery of [2] rather 

than to generalize Stallings’s method in a straightforward way, so the mode of attack 

outlined above is obscured in the proof of Theorem 11 that we give. 
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Since it is not quite true that irreducible 3-orbifolds admitting incompressible 

2-suborbifolds have hierarchies ending in balls (or quotients of balls), the word 

“Haken” will not be used in connection with 3-orbifolds, as it would tend to lead 

to confusion. 3-orbifolds having 2-sided, non-&/l, incompressible 2-suborbifolds 

will be called sujiciently large, and 3-orbifolds which can be decomposed into 

BALLS by repeated cutting along such suborbifolds will be said to have a (strong) 

hierarchy. Sufficiently large 3-orbifolds do have a hierarchy of a weaker sort, which 

is occasionally useful (as in [ 151). 

The main result of the paper can be stated as follows (a combination of Theorem 

11 and Corollary 17): 

Theorem. Let Q be a smooth, compact, connected, irreducible, abad, orientable 3- 

orbifold, in which every turnover with x G 0 is boundary-parallel. If Q is sujkiently 

large, and in particular if aQ has a component which is not a turnover, then Q has a 

strong hierarchy. 

There are numerous examples of 3-orbifolds with nonempty boundary in which 

every 2-sided, incompressible 2-suborbifold is a-](. They include BALLS, (any 

turnover with x 2 0) x [0, 11 and the following (singular edges can have any order 

23, e.g.): 

Fig. 1 

Doubling this orbifold along one boundary component yields an irreducible, 

sufficiently large 3-orbifold which does not have a strong hierarchy. 

In fact, take any closed 3-orbifold which is not sufficiently large (e.g. a spherical 

3-orbifold) and has at least one vertex in its singular set. Remove a regular neighbor- 

hood of all vertices, and renumber the orders of all edges so as to ensure that the 

boundary turnovers have x<O. The result will be a compact 3-orbifold with non- 

empty boundary which is not sufficiently large. 

When one is trying to decompose an arbitrary 3-orbifold into irreducible pieces 

by cutting along SPHERES and filling in with BALLS, it is not any more difficult 

to cut along turnovers with x G 0 (without filling anything in). The above theorem 

implies that the resulting pieces (sometimes called ‘primitive’) will either have a 

strong hierarchy or will not be sufficiently large. 
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Convention. We will generally be concerned only with 3-orbifolds which are smooth, 

compact, connected, abad, irreducible, and orientable. We will remind the reader 

of this by referring to them as “3-orbifolds satisfying (*)“. Furthermore, 2-orbifolds 

will be assumed to be smooth, compact, and connected unless otherwise specified. 

As a consequence of restricting attention to orientable 3-orbifolds, compressions 

can only occur along disks and cones, a-compressions only along disks, and annulus- 

compressions only along annuli. Also, a 2-suborbifold of an orientable 3-orbifold 

is 2-sided if and only if it is orientable. 

We begin with a few introductory propositions of independent interest, which 

should help to accustom the reader to the terminology. These are followed by the 

main results: Theorem 11, which gives conditions for the existence of a 2-sided, 

non-a- 11, incompressible 2-suborbifold, and Corollary 17, which gives conditions for 

the existence of a hierarchy. 

Proposition 1. Let T be a compressible torus in an irreducible, orientable 3-orbifold 

Q. Then either T bounds a DISK x S’ in Q or T is contained in a 3-ball in Q. 

Proof. Mimic the manifold proof, e.g. as in [6]. One possible conclusion is that T 

is contained in a cone x [0, 11, but upon further inspection, one sees that such a T 

must bound a solid torus. 0 

Proposition 2. Any turnover S with x(S) c 0, that is a suborbifold of a 2-orbifold, is 

superincompressible. 

Proof. There can be no compressing DISKS or compressing annuli, since all circles 

in S bound DISKS. Cl 

Proposition 3. Let S be a superincompressible 2-suborbifold (# turnover with x G 0) 

of a 3-orbifold Q satisfying (*). Then S is non-&II. 

Proof. Suppose that S is a-11; from the definition of superincompressibility, S is 

orientable and ,Y( S) < 0. 

Case 1: (aS# 0). Take a circle in S that doesn’t bound a DISK, and use the 

&parallelism to extend it to an annulus with the other boundary component in aQ. 

This will be a compressing annulus for S (a contradiction). 

Case 2: (as # 0). Take an arc in S (a-to-a) that is not &]I, i.e. does not separate 

off a disk. The &parallelism will yield a a-compressing disk for S (a contra- 

diction). Cl 

Proposition 4. Let Q be a Seifert-fibered orbifold satisfying (*), with boundary consist- 

ing of a union of tori. Let A be a vertical annulus in Q. Suppose that A projects to a 

non-a- 11 arc in the base orbifold of thejibration; then A is 2-sided and superincompress- 

ible (hence non-a-l/ by Proposition 3). 
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Proof. The first property is immediate. A is incompressible since a compression 

would imply that fibers in some (torus) component of aQ bounded DISKS, and 

hence (by Proposition 1) Q would equal DISKX S’, Seifert-fibered by meridional 

circles, an impossibility. A has no &compressions since then one could show A to 

be a-11. A has no compressing annuli since simple closed curves on A either bound 

disks or are a-11. 0 

Proposition 5. If F is a compact orientable 2-orbgold, and S is a 2-sided incompressible 

2-suborbifold of F x [0, 11, P, # aS E F x 0, then S is boundary-parallel. 

Proof. S separates F x [0, l] into two pieces A and B, with F x 1 c aB. The incom- 

pressibility of S ensures (via the Equivariant Loop Theorem [ll]) that all inverse 

images of S in the universal covers of F x [0, 11, A, and B, are universal covers of 

S. Thus 

rryb( F) = T;‘~( F x [0, 11) = nTrb(A) *+rb(s) nyrb( B), 

but since the second factor maps onto, the amalgamated free product is trivial, and 

rryrb( S) + vryrb(A) is an isomorphism. Applying the 3-dimensional h-cobordism 

theorem [7, Theorem 10.21 to a finite cover of A, and using the fact that finite group 

actions on a product are standard ([4, Theorem 4.11 for the case aF # 0, [IO] for 

the closed case), we conclude that A = S x [0, 11. 0 

Proposition 6. If S is a 2-sided, incompressible, non-a- 11 2-suborbifold of an orientable 

3-orbifold, then some component of the suborbifold S’ obtained from S by either a 

a-compression or an annulus-compression is both incompressible and non-a- 11. 

Proof (&compression along D). We will first show that any component of S’ is 

either incompressible or a a-11 DISK. If some component of S’ had a compressing 

DISK E, any intersection of a,?? with N(D) can be removed by isotoping the arcs 

into S’-N(D), bordermost first. Any remaining intersections of E with the 3-cell 

N(D) can be eliminated by isotopies to yield a compressing DISK for S, a contra- 

diction. 

Furthermore, if some component of S’ is a a-(] DISK, then S’ must have two 

components and the other component must be incompressible. To see that Sn D 

separates S, note that otherwise S would have to be an annulus (or annulus with 1 

cone point) which arises as the boundary of a half-BALL with N(D) either removed 

(the result is compressible) or added (the result is a-]]); see Fig. 2. Note that as a 

consequence, any a-11 DISKS in S’ must in fact be a-11 cones, since D was a 

a-compressing disk. 

To see that S’ cannot consist of two a-11 cones, note that either the products they 

cut off would be disjoint, which would make S a-11, or one cone C, would be a 

suborbifold of the product C2 x [0, l] cut off by the other, in which case C, would 

be a-11 inside C2 x [0, l] by Proposition 5, and S would be compressible disk-with-two- 

singular-points; see Fig. 3. 
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Fig. 2 

Fig. 3 

Let us say that a component of S’ is parallel outward if the product it cuts off 

from Q misses the &compressing disk D, and is parallel inward if the product 

includes D. If some component is non-&j\, it is incompressible as well by the 

arguments in previous paragraphs. So suppose that to the contrary that all com- 

ponents of S’ are &(I. If S’ is connected and parallel outward, then S would be a- I); 

if parallel inward, a compressing disk for S could be constructed. If S’ has two 

components S, and Sz, either both are parallel outward (in which case S would be 

a- 11) or by Proposition 5 we may assume that S, is parallel inward, to a suborbifold 

of 3Q which contains the suborbifold of 8Q to which S2 is outwardly parallel. From 

an arc in S, not parallel to a fixed subarc of as, (the attaching point for N(D)), 

and from the corresponding arc in S,, we can construct a compressing disk for S. 

Note that this procedure works even when S2 is a a-(( cone. 

The argument for annulus compressions is similar. 0 

Proposition 7. Any orientable BALL satisjies (*) and is not suficiently large. 

Proof. Any orientable BALL B is clearly smooth, compact, and connected. It is 

abad since it is covered by a ball, and it is irreducible by examination of the three 

cases: no singular set, singular set an (unknotted) arc, singular set Y-shaped. The 

first case is handled by the Schonflies theorem. In the second case, we observe that 

any sphere separates B into two pieces, one of which is topologically a ball and 

misses the singular set. If B contains a football, then by intersecting it with the 

topological disk (arc from cone point to bdy) x [0, l] c cone x [0, l] = B, we find 
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that the football bounds its corresponding BALL (the singular arc in the topological 

ball bounded by the football is unknotted). Elementary intersection theory shows 

that B contains no SPHERES with 3 singular points. The third case is handled 

similarly, using 3 topological disks in B each bounded by 2 edges of the Y plus an 

arc in aB; see Fig. 4. 

Fig. 4 

Suppose that F is a 2-sided, incompressible 2-suborbifold of B. F must be closed, 

since otherwise some boundary component would bound a DISK in aB, which 

would lead to the conclusion that F was a a-11 DISK (using the irreducibility of B). 

B cannot be a ball, since n,(F) + nI( B) would not inject, for example. B also 

cannot be a football, since an innermost arc of intersection of F with the topological 

disk in Fig. 4 would yield a compressing disk D for F (D n F bounds a disk with 

two singular points in F). B cannot be a turnover for similar reasons (in this case 

D may be a DISK). 0 

Proposition 8. Let M be a compact, connected 3-manifold, and let F, , . . . , F,, be 

disjoint, connected 2-sided surfaces in M. then 

( 
# ofcomponentsofM=Ufi 

) 
an-p,(M)+l. 

Proposition 9. Let M be a compact, connected 3-manifold, and let F,, . , . , F,, be 

disjoint, connected, 1 -sided surfaces in M; then n s p,( M; Z,). 

Proof. P,(M; Z,) = P2(M; Z,), by Poincare duality and the coefficient theorem. If 

n were larger than the latter, then some Z,-linear-combination (i.e. some subcollec- 

tion) of {FI , . . . , F,} would equal zero in H,(M; Z,), i.e. would bound a compact 

codimension-0 submanifold in M, contradicting one-sidedness. 0 

Theorem 10. Let Q be a simple 3-orbtfold satisfying (*) with singular set TX # 0. Set 

M := Q - N(E); then either 

(A) M has a geometricallyjinite hyperbolic structure where meridians in aM (dual 

to edges in 2) correspond to parabolic isometries under the holonomy map n,(M) -+ 

PSL(2, C), or 

(B) M is a Setfert-fibered manifold, and Q is a Seifert-fibered orbifold which has a 

2-sided, non-& 11, superincompressible suborbifold S if aQ # 0. 
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Proof. Let P E aM be a union of tori corresponding to circle components of 2, plus 

tori in aQ, plus annuli corresponding to arcs in E (vertex-to-vertex, vertex-to-aQ, 

aQ-to-aQ). We will attempt to show that (M, P) is a simple Haken manifold which 

is ‘pared’ in the sense of [9, p. 581. If successful, we will be in case (A) by [9, p. 

601 and hence be done. If not, we will still be able to satisfy the requirements of 

case (B). 

(1) M is irreducible: If S is a sphere in M, it lies in Q, so it bounds a ball by 

irreducibility of Q. This ball is disjoint from 2, so it persists in M. 

(2) M is Haken: M is compact, orientable, irreducible, and has non-empty 

boundary (if necessary, M = B3 can be ruled out by calculating ,y(aM)). 

(3) M is simple: If T is an incompressible torus in M, then as a TORUS in Q, 

it is either incompressible or compressible. If the former, then T is a-11 in Q. Boundary 

components of Q which are tori (and product neighborhoods thereof) persist in M, 

so T is a-11 in M. If the latter, by Proposition 1, either T bounds cone x S’ in Q 

(+ T d-11 in M) or T is contained in a 3-ball in Q (contradicting T incompressible 

in M, since Z x Z + 1+ n,(M) can’t inject) or T bounds a solid torus in Q (also 

contradicts incompressibility of T in M). 

(4) Components of P are incompressible in M: Consider first the tori in P; if 

one is compressible in M, then it must bound a solid torus (torus G ball is impossible 

if torus G dM), which in turn implies M = solid torus and Q = (solid torus) u (solid 

torus with singular core). Q is thus a Seifert-fibered orbifold with empty boundary, 

and we are in case (B). Consider next the annuli in P; if one is compressible in M, 

the compressing disk 0, together with the cone which aD bounds in Q, forms a 

bad suborbifold of Q, a contradiction; see Fig. 5. 

(5) We now wish to show that every abelian, noncyclic subgroup of r,(M) is 

conjugate to a subgroup of r,(P). By [5, Corollary 3.31, such a subgroup is finitely 

generated, and therefore by standard arguments (e.g., [7, Theorem 9.13]), it suffices 

to consider subgroups isomorphic to Z x Z (other formulations of [9, p. 601, e.g. 

[16], restrict consideration to Z x Z in the definition of a pared manifold). 

Suppose Z x Z = H G n,(M) is not conjugate into n,(P). Construct a map f: S’ x 

S’ + M such that& : m,( S’ x S’) + n,(M) is injective and imf* = H (for some choice 

of base points). In the language of [8], (M, P) is a Haken manifold pair, and 

f: (S’ x S’, 0) + (M, P) is a nondegenerate map of pairs. By the Torus Theorem [8, 

VIII.141, either there exists a nondegenerate embedding g : S’ x S’+ M or M is a 

‘special Seifert-fibered manifold’. The former is impossible since im g would be an 

incompressible torus in M that was not a-11, contradicting M simple (note that if 

T is a torus in dM that is not contained in P, then T is a union of annuli in P and 

annuli in aQ-N(X). Since Q is irreducible, it would have to be cone x [0, 11, M 

would be a solid torus, and H could not exist). If the latter holds, we are in case 

(B), and we proceed to describe the Q’s and S’s. Proposition 4 will generally be 

used to show that S has the desired properties. 

(a) M Seifert-fibered over D2 with zero or one exceptional fiber: Impossible, for 

then M would be a solid torus. and H could not exist. 
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Fig. 5 

(b) M Seifert-fibered over D2 with 2 exceptional fibers: if the fibers are not 

homotopic to a meridian of afi(E), then the fibering of M extends to a fibering of 

Q over a 2-orbifold (aQ =0). Fiber--meridian leads to a contradiction to the 

irreducibility of Q by examining the football in Q whose intersection with M is a 

vertical annulus over an arc in D2 separating the singular fibers. 

(c) M Seifert-fibered over an annulus with no exceptional fibers: then M is 

T2x I. If (Y (and possibly /3) represent the meridians of aN(X) in r,( T2)= 

n-,( T2 x 0) = rl( T2 x l), then fibering T2 x I by curves y not homotopic to (Y or p 

will permit extension to a Seifert fibering of Q. Either aQ=0 or Q=conex S’; in 

the latter case, take S = cone x *. 

(d) M Seifert-fibered over an annulus with one exceptional fiber: as in (b), Q is 

Seifert-fibered unless one of the (1 or 2) meridians of 8N(X) is homotopic to a 

fiber of M, in which case we could construct a vertical annulus in M (see Fig. 6), 

then a football in Q, and reach a contradiction as in (b). The solid football must 

be on the side we ‘expect’ because the other side either has a torus boundary 

component or an S’ G 2. If 8Q # 0, then it either fibers over a disk with one singular 

point (choose S as in (c)) or over a disk with two singular points (take S to be a 

vertical annulus over an arc separating the two points). 

(e) M is Seifert-fibered over a pair of pants with no exceptional fibers: Q is 

Seifert-fibered unless one of the (1, 2, or 3) meridians of aN(Z) is homotopic to a 

fiber, in which case we reach a contradiction as before. If aQ f 0, Q will fiber over 

a disk with zero, one, or two singular points (choose S as in (d)) or over an annulus 

with zero or one singular point (take S := vertical annulus over an arc connecting 

the two boundary components). 

(f) M is Seifert-fibered over a Mobius band with no exceptional fibers: then 

M = (orientable I-bundle over Klein bottle). Since M has 2 Seifert fiberings, we 

can find one that extends to Q (aQ = 0). 

(g) All other special Seifert-fibered manifolds have empty boundary. 

Thus, our supposition that there was a Z XZ in r,(M) not conjugate into vi(P) 

has led either into case (B) or to contradictions. 
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Fig. 6 

(6) Finally, we wish to show that if C$ : (S’ x I, S' x 81) + (M, P) injects on rr,, 

then 4 is homotopic as a map of pairs to $ : (S’ x I, S’ x 81) + (P, P). Suppose that 

4 is not homotopic into P; then 4 is a nondegenerate map and by the annulus 

theorem, there is a nondegenerate embedding 5: (S' x I, S' x 81) -+ (M, P) [8, 

VIII.13]. Set A:= im 5. There are are several possibilities: 

(a) aA lies on distinct tori T,, T2 in P: T := dN( Tl u Au T2), if compressible, 

bounds a solid torus away from T, u T,, and we conclude that M fibers over an 

annulus with G 1 singular point (M is the result of one ‘Dehn filling’ on pants x S’; 

fiber-meridian would yield a reducible M). From here, we follow the argument 

in (5~) and (5d). On the other hand, if T is incompressible, it must be &I] since M 

is simple. This implies that M = pants x S’ and we follow (se). 

(b) dA is contained in a torus T, in P: fi( T,uA) is either pantsx S’ or the 

orientable S’-bundle over (Mobius band-disk). If the former, M will Seifert-fiber 

over a disk with 0, 1, or 2 singular points (the first two are impossible, the third is 

handled as in (5b)), over an annulus with 0 or 1 singular point (cf. (5~) and (5d)), 

or over pants (cf. (5e)) [6, Lemma 3.71. If the latter, the conclusion is that M = 

(orientable I-bundle over Klein bottle) and one proceeds as in (5f). 

(c) Both components of dA lie on annuli in P (possibly equal): capping off A 

with cones (in Q) yields either a bad 2-suborbifold (contradicting Q abad) or a 

football (which gives a homotopy of A into P, contradicting 5 nondegenerate). Here 

we are using the fact that, by construction, there are no parallel annuli in P. 

(d) One component is on a torus T in aQ, the other on an annulus: consider 

ar\r( T u A), which is a football, once capped off in Q. The solid football that it 

bounds in Q must be on the side away from T. We conclude that Q is conex S’, 

for which P contains no annuli, a contradiction. 

(e) One component is on a torus T in aN(X), the other on an annulus: consider 

a#( Tu A), which is a football, once capped off. The solid football that it bounds 

in Q must be on the side away from T (the side towards T has an S’ G 2). We 

conclude that Q is (cone x S’) U;, (cone x S’), for which P contains no annuli, a 

contradiction. q 
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Theorem 11. Let Q be a 3-orblfold satisfying (*) (Z BALL) such that 8Q has a 

component C which is not a turnover; then Q has a 2-sided, non-a- (I, superincompressible 

2-suborbifold S. 

Proof. If Z: =0, then the hypotheses imply that Q is an orientable lP2-irreducible 

3-manifold not homeomorphic to B3 and with aQ f 0. A proof in this case is given 

in [9, p. 571, so we assume in what follows that 2 # 0. 

Suppose Q has an incompressible, non-&(] torus T. If there is no compressing 

annulus for T, then take S:= T. If there is one (call it A), let B be the annulus 

component of aN( T u A). If there is no &compressing disk for B, take S := B. If 

there is one (call it D), it must lie on the same side of T as A (or T would be 

compressible). We can take S:= disk component of aN(B u D), since T not a- I] 

implies S not a-11; see Fig. 7. 

Suppose Q has an incompressible, non-&(] pillow T with all cone angles equal 

to rr. If there is no compressing annulus for T, then take S:= T. If there is one (call 

it A), let B,, B2 be the disks with 2 cone points obtained by compressing T along 

A. If there is no &compressing disk for B, (resp. B2), let S:= B, (resp. BJ. If both 

are &compressible (by disks D, , D2), they must all lie on the same side of T as A 

(or T would be compressible). At least one of the 4 cones obtained by compressing 

B, and B2 along D, and D2 is not a-(( (or else T would be a-ii), so take S:= one 

such cone; see Fig. 8. 

Suppose Q has a non-a-/I turnover T with x = 0; then take S := T (Proposition 

2). Otherwise Q is simple, and by Theorem 10 we can assume without loss of 

Fig. 

Fig. 8 
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generality that M := Q - N(Z) has a geometrically finite hyperbolic structure where 

meridians correspond to parabolic isometries. Our first step will be to find a 2-sided, 

non-a-]], incompressible 2-suborbifold of M, with all boundary curves parallel to 

meridians. We will use the methods (and the notation) of [2] to accomplish this. 

Let 17:= v,(M); then 

dim(X(II))a-3x(M)+T+C=-$x(aM)+T+C 

where T is the number of tori in aQ, C is the number of circle components of 2, 

B is the number of ‘boundary’ (univalent) vertices of 1, I is the number of ‘interior’ 

(trivalent) vertices of ZZ, and F is the underlying surface of aQ. 

We would like to keep the meridians parabolic, i.e. keep their traces equal to +2. 

Since the number of meridians is equal to the number of edges of Z (counting a 

circle as one edge), and since 31+ B + 2C = 2 (# of edges), we need to put ;Z +fB + C 

conditions on X(n). This leaves a variety Y(H) of dimension2 --$x(F)+ B-t T. 

Looking at aQ component by component, we see that the contributions are usually 

>O, except when a component of 8Q is a turnover (F = S2 and B = 3). Under the 

hypotheses of the theorem, Y(n) is positive-dimensional, hence has an ideal point, 

and hence there is a splitting of n such that each meridian is conjugate into a vertex 

group [2, 2.2.11. Taking 7C:= union of thickened meridians s aM, we can find a 

nonempty system 9’ of 2-sided, incompressible, non-&]] surfaces in M, whose 

boundaries miss .7C [2, 2.3.11. Thus we can conclude that Yn (JM -aQ) consists of 

curves parallel to meridians. 

Taking any component of 9, we perform annulus-compressions towards 7C and 

towards aQ, and perform a-compressions towards aQ, until we can do so no longer 

(a-compressions increase x, and annulus-compressions increase the number of 

boundary components while fixing x, so this process must eventually stop). Some 

component s of the resulting surface is incompressible and non-a-II, (either by 

Proposition 6, or because we can perform the compressions by isotoping the . 
map-from M to a tree-which generated 9) and can be capped off with cones in 

Q to form a suborbifold of Q, which we call S. S can immediately be seen to be 

2-sided and non-a-l]; it can also be seen that S admits no compressing DISKS (3 

would have a compressing disk or a compressing annulus), no &compressing disks, 

and no compressing annuli. 0 

Remark. The approach that we will take from here on, with the goal of showing 

the existence of hierarchies, is modelled on [S, chaps. III and IV]. 

Theorem 12. Let Q be a 3-orbifold satisfying (*); then there exists a positive integer 

q,(Q) such that if 9={F,, . . , , F,,} is any collection of pairwise disjoint 2-sided, 

incompressible, closed 2-suborbifolds in Q, either n < n, or for some i # j, Fi is parallel 

to F, in Q. 
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Remarks. The smallest such number n,(Q) for fixed Q is called the closed Haken 

number of Q and is denoted K(Q); it is one greater than the maximal number of 

pairwise disjoint and non-ii, closed, 2-sided, incompressible 2-suborbifolds which 

can fit in Q. 

There are no major obstructions to generalizing Theorem 12 by replacing “closed” 

with “compact, &incompressible”. 

Proof of Theorem 12, Step 1. (The special case where Q has incompressible boun- 

dary, or no boundary.) Take a triangulation of Q for which the singular set 1 is a 

subcomplex. After one barycentric subdivision (result =: T, with i-skeleton denoted 

T”‘), we can assume that any 3-simplex in T intersects ;I in one edge, one vertex, 

or the empty set. Observe that the Fi can be put in general position w.r.t. T by a 

(small) isotopy; e.g., adjust near 2 first and then on the rest of Q, rel N(X) (in 

particular, 9 misses T”‘). Define the complexity of the intersection to be (q p), 

where a:=#(T(r)nS) and p:=C it r(2) (# of components of w n 9), ordered 

lexicographically. Now isotope 9 so as to obtain a collection (still designated 5) 

of minimal complexity. This collection has the following properties: 

Property 1. For all 2-simplices u of T, un .?F contains no closed curves. 

Proof (by contradiction). If u is an interior a-simplex, and C is an innermost 

such curve, then using incompressibility of 9 and irreducibility of Q, you could 

isotope S to reduce p, while (Y does not increase, contradicting minimal complexity. 

Property 2. For all 2-simplices u of T, an 9 contains no arcs that have both 

boundary points in the same edge. 

ProojI Again by contradiction, in cases: 

(Edge = 2) take an innermost such arc, take a regular neighborhood of the disk 

it cobounds with a piece of the edge, and obtain a circle that bounds a disk in Q. 

By incompressibility of 9, it must also bound a disk in 9; it can’t do so towards 

the edge (you have a disk with two singular points), so that component of 9 must 

be a football, which is never incompressible in an irreducible orbifold; contradiction. 

(Otherwise) take an innermost such arc and shove it to the other side of the edge; 

(Y is decreased by 2 (and p probably is not increased), so contradiction. 

Thus, for each 3-simplex T E T and for each component J of 9n &-, the (two) 

components of &r-J each contain at least one vertex of T; for if some component 

contained no vertex, its intersection with T(l) would be a collection of arcs. A 

bordermost such arc 6 would lead to a contradiction to Property 2. 

Property 3. For each 3-simplex r E T, every component C of 9 n T is (topologi- 

tally) a disk. 

ProoJ: If there were components that were not disks, there would be an innermost 

one (still called C), having a boundary component J that bounds a (topological) 

disk E in ?~r such that all components of 9 n int( E) bound disks in 5. After possible 

slight modification near 2, J is a circle in 9 that bounds a disk in Q, so it must 

bound a disk in 9; see Fig. 9. Those two disks and the ball they bound (by 

irreducibility of Q) give an isotopy of 9 that reduces CY (and probably p too), either 
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Fig. 9 

by eliminating J or eliminating aC -J. C must be planar since 9 is incompressible, 

so ac-J#@ 

Now take n, to be 6 (# of 3-simplices in T)+P,(M) +P,(M; Z,)+(# of a- 

components of Q), where M is the 3-manifold that is the underlying topological 

space for Q. If n 2 n,, then the complement of 9 has 3 n, - pr( M) + 1 components, 

by Proposition 8. The closures of at least P,(M; Z,)+(#a-camp)+ 1 of these 

components look like I-bundles (over a 2-orbifold) in each 3-simplex of T, hence 

are global I-bundles. Finally, no more than P,(M; Z,) of these can be nontrivial 

globally, by Proposition 9. The rest are products of 2-orbifolds with 1, and at least 

one does not intersect aQ. Hence its two boundary components are parallel suborbi- 

folds of Q. This completes Step 1; we pause now to prove two lemmas. 

Lemma 13. Let Q be a 3-orbifold satisfying (*); then there is a-finite (possibly empty) 

collection of pairwise disjoint DISKS {D,, . . . , D,} such that each component of 

Q-UMDi) 1s either a 3-orbifold satisfying (*) with all boundary components 

incompressible, or a BALL. Any such collection of DISKS is called a complete system 

of DISKS for Q. 

Proof (induction on x(aQ)). Ifx(aQ) > 0, then some component of aQ is a SPHERE, 

which implies by irreducibility that Q is a BALL (so an empty collection of DISKS 

works). If x(aQ) G 0, either no boundary components compress (which is fine) or 

some boundary component compresses along a disk D. Now Q := Q - N(D) has 

x(aQ) = x(aQ) +2x( D) > x(aQ) +2/N, where N := maximum order of an edge in 

the singular set of Q. Q is immediately seen to be compact, abad, irreducible, and 

orientable. By induction (suppose true for x > -k/N, prove for x > -(k + l)/ N), 

0 has a collection (0,) . . . , OS}, and after an isotopy we can assume that they are 

all disjoint from D x 0 and D x 1 E aQ. Take r := s + 1 and {D,, . . . , D,}:= 

ID,&..., ox}, using the fact that Q c Q. Components of Q - IJI D, are precisely 

the components of Q-u; oi, so by the induction hypothesis, we are done. q 
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Lemma 14. Let Q be a 3-manifold satisfying (*) and let F be a (possibly disconnected) 

2-sided, incompressible, and &incompressible surface in Q. Then there exists a complete 

system ofDISKSA={D,,..., Or} for Q, such that Fn(Uj=, Di)=O. 

Proof. If all components of F are closed, then any complete system of DISKS 

intersecting F can be isotoped to one whose intersection with F has fewer com- 

ponents, by looking at a component which is innermost in A, and using incompressi- 

bility of F and irreducibility of Q (note that Lemma 13 was used). This argument 

can be extended to handle situations where aF if0 as in [8, 111.20, (step 2) and 

111.221. This time, any complete system of DISKS can be replaced by another system, 

whose intersection with F has fewer components; cut-and-paste arguments are 

used. 0 

Proof of Theorem 12, Step 2. (The general case.) If Q is a BALL, n,(Q) := 1 works, 

by Proposition 7; otherwise, by Lemma 14 there is a complete system of DISKS A 

for Q which is disjoint from 9. Suppose that n, the number of 2-orbifolds in 9, is 

greater than or equal to n,(Q) := 1 n,( Q,), where {Q, , . . . , Qk} are the components 

of Q split open along A, and the n,(Qi) come from Step 1 (or from Proposition 7). 

Since A n 9= 0, each F, is contained in some component Q,. There is some J, 

1 G J d k, for which n, 3 nO( Q,), where n, is the number of components of 9 in 

QJ, since otherwise we would be able to contradict the hypothesis that n z n,(Q). 

Focusing on Q,, we see that 9n QJ consists of at least n,(Q,) surfaces, all incom- 

pressible in Q,. Hence 2 of them are parallel in Q, and thus also parallel in Q. 0 

Theorem 15. Let Q be a 3-orbifold satisfying (*). Suppose that (Q,, F,), . . . , 
(On, Fn), . . . is a partial hierarchy for Q. If for each n, the 2-orbifold F,, is both 

incompressible and a-incompressible in Q,,, then there exist at most 3h( Q) integers n 

for which F,, is not a DISK. 

Proof. Proceed as in [S, IV.71, using Lemma 14 in place of IV.8 and Theorem 12 

in place of 111.20. 0 

Theorem 16. Any suficiently large 3-orbifold Q satisfying (*) has a weak hierarchy. 

Proof. The idea is to split along 2-orbifolds that are &incompressible, and show 

that the partial hierarchy can’t go on forever. 

If Q is not sufficiently large when split along a (possibly empty) complete set of 

DISKS, then we are done. Otherwise, Q=: Q, contains a 2-sided, incompressible, 

non-%)1 2-orbifold which is not a DISK; call it F,. By Proposition 6, F, may be 

assumed to be &incompressible as well. Note that Q2:= Q, - N( F,) is compact, 

abad, irreducible, and orientable. If Q2 is not sufficiently large when split along a 

complete set of DISKS, then we are done; otherwise, we can find F2, not a DISK, 

and continue. By Theorem 15, this process cannot continue for more than 3K(Q) 

steps. q 
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Corollary 17. A suficiently large 3-orbifold satisfying (*) in which every turnover with 

x < 0 is a- )I has a strong hierarchy. 

Proof. If Q is an orbifold as above, it has a hierarchy ending in pieces Q1, . . . , Qn 

which are not sufficiently large. If some piece, say Q, , were not a BALL, aQ1 would 

consist of turnovers with x 6 0 (by Theorem 1 l), which as suborbifolds of Q must 

be a-11. This leads one to conclude that Q = Q1 or Qi = turnover x [0, 11, either of 

which contradicts the hypotheses. 0 

Remark. “Orbifolds which are not sufficiently large when split along a complete 

set of DISKS” are playing the role of handlebodies. It is not immediately apparent 

how to classify such orbifolds; even “orbifolds which are BALLS when split along 

a complete set of DISKS” deserve to be better understood. 

Glossary 

Abad 3-orbifold Q: Q has no bad 2-suborbifolds (“pseudo-good” has also been 

used). 

Bad n-orbifold Q: there is no manifold M such that Q is the quotient of a properly 

discontinuous group action on M (equivalently, “no manifold covers Q” or “the 

universal cover of Q has nonempty singular set”). 

BALL: a 3-orbifold which is diffeomorphic to B3/Z’, Tc O(3) finite (note that 

there is a l-l correspondence between SPHERES and BALLS). 

WARNING! At this point, it has not yet been shown that all 3-orbifolds covered 

by balls are of this form (cf. [12, Thm. 31). 

&compressing disk D for a 2-suborbifold S of a 3-orbifold Q: aD is a union of two 

arcs (Y and p, CY c S, p c aQ, a! cobounds no disk in S with y c S n aQ (exactly the 

same definition as for manifolds). 

a- I( suborbifold S of (codim 1 in) Q: one of the components of Q - S is homeomor- 

phic to S x (0, 11. 

Compressing DISK D for a 2-suborbifold S of a 3-orbifold Q: D n S = aD is an 

embedded circle on S which does not bound D’ = D in S. 

Compressing annulus A for a 2-suborbifold S of a 3-orbifold Q: &,A c S, &A c aQ, 

An S = &,A, &A is not a-11 in S, does not bound a DISK in S and is not the boundary 

of any compressing DISK for S. 

Cone: a 2-orbifold (with a), topologically a 2-disk, with singular set = 1 cone point. 

Cone points: points in the singular set of a 2-orbifold modelled on R2/(rotation 

by 2n/n), for some integer n > 1. 

DISK: a 2-orbifold which is diffeomorphic to D’/Z’, Tc O(2) finite (equivalent 

to being covered by a disk). An orientable DISK is either a disk or a cone (but not 

both). 
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Euler characteristic x of an orbtfold Q: triangulate Q with the singular set being 

a subcomplex, and take the usual alternating sum, weighting each piece by l/(order 

of finite group). 

Football: a 2-orbifold, topologically a 2-sphere, with singular set = 2 cone points 

of equal order. 

Hierarchy, partial (Q a compact 3-orbifold): a finite or infinite sequence of pairs 

(91, Cl,. . . . , (On, FnL . . . where Qi = Q, F,, is a 2-sided, incompressible, non-&II 

2-suborbifold in Q,,, and Q,,+, is the orbifold obtained from Q,, by splitting along 

F, (i.e., Qn+l = Qn -N(E)). 
Hierarchy, strong: a (finite) partial hierarchy where for some n, all components 

of Qn - N(F,) are BALLS. 

Hierarchy, weak: a (finite) partial hierarchy where for some n, no component of 

Q,, - N( F,) has a 2-sided, incompressible, non-& 11 2-suborbifold. 

Incompressible 2-suborbifold S of a 3-orbifold Q: S is a non-a-11 DISK or (x(S) < 0 

and S has no compressing DISKS). 

Irreducible 3-orbifold: every suborbifold which is a SPHERE bounds the corre- 

sponding BALL. 

Meridians: simple closed curves on aM, bounding cones in Q (where M = Q - 

N(E)). 
N( .), N( .): used to denote open and closed regular neighborhoods. 

n-orbifold: topological space locally modelled on @/(finite group) (or 

{(Xi,. f., x,): x, 3 O}/(finite group) at the boundary). 

k-suborbifold of an n-orbifold: locally modelled on (Iw”, IWk)/(finite group) (with 

appropriate modification at the boundary). 

Order of cone point (resp. singular edge): order of cyclic group r of rotations 

providing the model [w2/r (resp. [w3/r). 

Orientable orbifold Q: Q - (singular set) is orientable, and all finite groups act 

preserving orientation. 

Punts or pair of punts: a 2-orbifold (with a), topologically a disk-with-two holes 

with empty singular set. 

pillow: a 2-orbifold, topologically a 2-sphere, with singular set =4 cone points. 

Setfert-jibered 3 -orbifold Q: there is a projection p: Q + 0 to a 2-orbifold 0, where 

p restricted to the inverse image of a small open set U/T in 0 is (U x S’)/T+ U/T, 

where r acts diagonally on U x S’ (“Q fibers over a 2-orbifold with (generic) fiber 

S’“). 

Simple 3 -orbifold : an abad, irreducible 3-orbifold in which every 2-sided incom- 

pressible TORUS is a-11. 

Singular set of an orbtfold: points with neighborhoods modelled on a”/ (non-trivial 

group). 
SPHERE: a 2-orbifold which is diffeomorphic to S2/r, r c O(3) finite (equivalent 

to being covered by a sphere). 

Suflciently large: a 3-orbifold which has a %-sided, non-&l), incompressible 2- 

suborbifold. 
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Superincompressible 2-suborbifold S of a 3-orbzfold Q: S is a non-a-11 DISK or 

(x(S) s 0 and S has no compressing DISKS, &compressing disks or compressing 

annuli). 

TORUS: a 2-orbifold which is diffeomorphic to E2/r, r a crystallographic group 

(equivalent to being covered by a torus). 

Turnover: a 2-orbifold, topologically a 2-sphere, with singular set = 3 cone points. 

2-sided suborbifold S of (codim 1 in) Q: aN(S) is disconnected. 

Vertical 2-suborbifold of a Seifert-jibered 3-orbifold: one that is a union of fibers. 
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