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Abstract Mass mortalities of angelfish eggs accompanied with very low hatchability were reported

in a private ornamental fish farm in Egypt. Examined eggs were badly damaged by water mould

that was decisively confirmed as Saprolegnia species. Presumptive identification of the ten retrieved

isolates was initially suggestive of Saprolegnia species.Mycological investigations have revealed that

only 7 out of 10 isolates were capable of producing sexual stages. Therefore, using molecular tools

such as PCR coupled with partial sequencing of inter-transcribed spacer (ITS) gene was one of the

most important approaches to distinguish Saprolegnia parasitica from other water moulds. The

sequences of ITS gene data derived from eight isolates showed 100% similarity with S. parasitica

ATCC90312 sequence and the remaining two isolates were different in one nucleotide (99.9%).

The phylogenetic analysis of ITS genes grouped the ten isolates with other S. parasitica in one clad.

Further, to control such fungal infection, the efficacy of povidone iodine as surface disinfectant for

angelfish and their fertilized eggs were tested. By trial, it was obvious that the obtained post-rinsing

results were highly suggestive for the efficacy of povidone iodine as an efficient antifungal disinfec-

tant for both fish and eggs.
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1. Introduction

Fungal infections are one of the main factors responsible for

mortality and economic losses among the ornamental and food
fish farming industries [1–4]. The most commonly identified
fungal pathogens of fish are water molds (Class Oomycetes)
of the Saprolegnia genus [5,6]. Many literatures have reported

Saprolegniosis to be the cause of mass kills among Nile tilapia
Orechromis niloticus (Linnaeus) eggs, grey mullet Mugil
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cephalus (Linnaeus) [7–9], and in many non native fish species
such as roach Rutilus rutilus (Linnaeus), barramundi Lates
calcarifer (Bloch), kissing gourami Helostoma temminckii (Cu-

vier–Valenciennes), guppy Poecilia reticulate (Peters), sword-
fish Xiphias gladius (Bloch), platyfish Xiphophorus maculatus
(Günther) [10], sockeye salmon Oncorhynchus nerka (Wal-

baum) [11], eels Anguilla anguilla (Linnaeus), channel catfish
Ictalurus punctatus (Rafinesque) [12] and sturgeon Acipencer
persicus (Borodin) eggs [2,13]. Mass kills due to Saprolegniosis

are particularly catastrophic at lower water temperatures.
Thereby, most of Saprolegnia associated mortalities are con-
fined to late autumn, winter and early spring seasons [14,15].

These water moulds affect fish eggs by direct adhesion

mechanism followed by dynamic penetration into the egg
resulting in mass mortality during hatching period due to the
direct oxygen withdrawal from the egg surroundings [16–19].

Infections often occur soon after eggs are exposed to water
[2,20]. Once established, these fungi can rapidly spread to
healthy eggs [6,21]. Saprolegnia spp. were traditionally identi-

fied based on the morphology of their reproductive structure
[22,23]. Recently, molecular tools such as PCR coupled with
partial sequencing of inter transcribed spacer (ITS) gene are

the most current approaches to distinguish S. parasitica from
other Saprolegnia spp. [24].

Routine application of disinfectants is a commonly used
procedure during egg incubation at fish hatcheries worldwide

[25,26]. However, most of them have been considered obsolete.
Formerly, formalin, formalin – malachite green, malachite
green – oxalate solutions were the most potent fish fungicide

to be used in a fish hatchery [26–28]. A bunch of literatures
has confirmed that malachite green is a potential carcinogen,
teratogen and mutagen; hence, it has been banned for usage

in aquaculture by FDA [19,29,30]. This ban has necessitated
the search for acceptable safe/efficient alternatives to be used
instead [22]. Eissa et al. [31] declared that povidone iodine is

an efficient/safe disinfectant against bacterial, viral and fungal
pathogens affecting both eggs and spawner salmon. In a simi-
lar comparative study, Eric et al. [32] concluded that povidone
iodine is a potential egg disinfectant in rainbow trout

hatcheries.
In Egypt, Saprolegniosis is considered one of the most

important causes of mortalities among angelfish Pterophyllum

scalare (Cuvier–Valenciennes) [33]. However, literatures about
Saprolgenia infection in spawner angelfish were nil. Thereby,
the current study aimed to identify aquatic fungi affecting

angelfish eggs through using DNA based phylogenetic tech-
nique and some fungal morphological parameters. An ultimate
aim was to test the efficacy of povidone iodine to control Sap-
rolegnia infections in angelfish eggs under normal hatchery

conditions in Egypt.
2. Materials and methods

2.1. Eggs and spawner fish’ sampling

On the mid December 2011, we have received an official report
indicating the emergence of mass mortalities among spawner
angelfish and their eggs with consequent low hatchability at

a private ornamental fish farm located at south of Giza prov-
ince, Egypt. To investigate the problem, 400 eggs and 10 spaw-
ner angelfish were obtained from aforementioned ornamental
fish farm. During sampling time, average water temperature
was 16 ± 0.5 �C.

Eggs were washed several times with sterile distilled water,

and then placed in sterile 7.5 · 18.5 cm Whirl-Pak bags (Nas-
co, Fort Atkinson, WI, USA) (10 eggs per bag). Washed eggs
were flooded with double distilled water containing chloram-

phenicol/gentamycin at a concentration of 100 mg mL�1 for
12 h at 18 �C to prevent bacterial contamination. Fish with
cotton wool like fungal mats were washed up with double dis-

tilled water to get rid of superficial bacterial contaminants and
kept on crushed ice during entire process of examination.

2.2. Isolation and purification of Saprolegnia species

Washed eggs (10 eggs/sample) were placed in 7.5 · 18.5 cm
Whirl-Pak bags (Nasco, Fort Atkinson, WI, USA) then di-
luted with Hank’s Balanced Salt Solution (HBSS, Sigma

Chemical Co., St. Louis, MO, USA) in a ratio of 1 whole
egg mixture:2 HBSS (v/v). Eggs–HBSS mixture was stomached
for 2 min at high-speed stomacher till mixture got completely

homogenized. Aliquots from the homogenate were inoculated
into sterile plates of Sabouraud dextrose agar with chloram-
phenicol and sterile hemp seeds (Cannabis sativa) to investigate

sexual structure of isolates (SDA, Difco Lab., USA).
Fish with cotton wool like fungal mats were washed up with

double distilled water to get rid of superficial bacterial contam-
inants then loopfuls from the deep cotton wool like mats as

well as deep skin lesions were spread onto sterile plates of Sab-
ouraud dextrose agar with chloramphenicol and sterile hemp
seeds (SDA, Difco Lab., USA).

Culture plates were incubated at 20�C for 3–5 days with
regular daily inspection for any expected fungal growths. Har-
vested fungal colonies were purified then slide culture tech-

nique was adopted on retrieved colonies for initial
morphological identification. Fungal spores were fixed with
one drop of methyl alcohol and stained with lactophenol cot-

ton blue as described by Willoughby [16]. S. parasitica
ATCC90213 was used as a reference strain for cultural mor-
phology confirmation as well as positive control during molec-
ular study.

2.3. Morphological studies

Infested hemp seeds for each isolate were placed into six-well

culture plate confining sterile freshwater and incubated at
20�C for 21 days. Identification of sexual structure and pattern
of germination were made under inverted microscope. Finally,

the isolated strains were identified according to the criteria of
Coker [34], Seymour [35], Willoughby [36] and Pickering et al.
[37].

2.4. DNA extraction

The protocol of DNA extraction was adopted from Moller
et al. [38]. Briefly, 10 mg (net weight) of freshly harvested fun-

gal mats were transferred to a 1.5 mL centrifuge tube contain-
ing 20 lL Tris–EDTA (TE) buffer (10 mM Tris–HCl, pH 8.0;
10 mM EDTA, pH 8.0) and frozen at �70 �C for 30 min, then

grinded into a slurry using Kontes micro-homogenizer with
sterilized tips (Fisher Scientific, Hanover Park, IL, USA), then
incubated for 60 min. This process was repeated once. The
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mycelial slurry was diluted with 400 lL sterile double distilled
water. Consecutively, 100 lL of the dilute was suspended in
0.5 mL CTAB digestion buffer [100 mM Tris–HCl, pH 8.0;

20 mM EDTA, pH 8.0; 1.4 M NaCl; 3% CTAB; 2% b-
mercaptoethanol; 4% (w/v) PVP (polyvinylpyrrolidone)] and
incubated at 65 �C for 2 h. To increase the nucleic acid yield,

the DNA was extracted successively with phenol–chloro-
form–isoamyl alcohol.

2.5. Detection of ITS gene by PCR

The 750 bp of the internal transcribed spacer (ITS) gene was
amplified by PCR using two ITS gene primers: 50-

TCCGTAGGTGAACCTGCGG-30 (ITS1) and 50-
TCCTCCGCTTATTGATATGC-30 (ITS4). Amplification
was done after 35 cycles of denaturation at 94 �C for
0.5 min, annealing at 58 �C for 0.5 min, and extension at

72 �C for 1 min, followed by a final extension at 72 �C for
5 min using a PCR gradient thermal cycler (TC-3000G, Bibby
Scientific Ltd., Staffordshire, United Kingdom) [39]. The PCR

product was subject to electrophoresis on 1% agarose gel and
specific bands were detected under the ultraviolet (UV) trans-
illuminator.

2.6. Cloning and sequencing of ITS gene

The purified amplified fragments were cloned into pGEM-T
Easy vector� plasmid by T4 ligase (Promega, Madison, WI,

USA), and then the cloned plasmid transformed into Esche-
richia coli DH5a by the heat shock method. The transfor-
mants clones were screened by colony PCR with the

oligonucleotide primers SP6 (50-ATTTAGGTGACACTAT-
AGAA-30) and T7 (50-TAATACGACTCACTATAGGG-30).
The plasmid DNA of clones containing the correct insert

segments were then purified using the QIAprep Spin Mini-
prep Kit (Qiagen, Germantown, MD, USA) to be sequenced
[40]. Sequence reactions were then performed using the ABI

Prism Big Dye Terminator Cycle Sequencing Ready Reac-
tion Kit (Perkin Elmer Applied Biosystems, CA, USA) with
the oligonucleotide primers SP6 and T7. The samples were
then loaded into the ABI Prism 310 Genetic Analyzer (Per-

kin Elmer Applied Biosystems, CA, USA), and the nucleo-
tide sequences were determined. The nucleotide sequences
were analyzed using BioEdit version 7.0 [41]. The phyloge-

netic analysis of partially sequenced (ITS) gene was carried
out by the neighbor joining method using MEGA version
5 [42].
Table 1 Key details of retrieved Saprolegnia parasitica isolates.

Strain No. Isolates Source Country Year of isolation

1 EGY111220 Angelfish eggs Egypt 2011

2 EGY111224 Angelfish eggs Egypt 2011

3 EGY120111 Angelfish eggs Egypt 2012

4 EGY120114 Angelfish eggs Egypt 2012

5 EGY120115 Angelfish eggs Egypt 2012

6 EGY120120 Angelfish eggs Egypt 2012

7 EGY120130 Angelfish eggs Egypt 2012

8 EGY120212 Angelfish eggs Egypt 2012

9 EGY120221 Angelfish eggs Egypt 2012

10 EGY120223 Angelfish eggs Egypt 2012
2.7. Nucleotide sequence accession number

The nucleotide sequences determined in this study were sub-
mitted to GenBank nucleotide sequence database, and the
accession numbers were given) Table 1).

2.8. Field trial evaluation of povidone iodine as potent

disinfectant

A buffered 1% Betadine solution which contains 10% povi-

done iodine complex was used in the current experiment (Bet-
adine, Mundipharma AG-Basel, Switzerland). Prior to
spawning, rinsing solutions of 60 mg L�1 povidone iodine for

30 min as initial dose followed by a maintenance dose of
70 mg L�1 for 10 min were applied to angelfish spawners. In
hatchery, angelfish eggs were shell-hardened in 80 mg L�1

povidone iodine for 30 min as described by Eissa et al. [31].
The tested eggs were observed under light microscope on daily
bases for five successive days. Isolation trials from equal num-

ber of post rinsing spawner angelfish and their eggs were per-
formed under the same laboratory conditions.

3. Results

3.1. Identification of the retrieved water mould

The hypothetical problem of this manuscript was built on the
emerging event of mass mortalities of angelfish eggs in the
investigated private ornamental fish farm at Giza, Egypt.

The overall assessment of the achieved data confirmed that
mortality rates among examined angelfish eggs have ap-
proached 70% of the entire egg stock. Reduced hatchability

among examined eggs was very noticeable. Whitish opaque
eggs (dead eggs) were abundant.

Ten water mould isolates were obtained from the infected

eggs. Visual inspection of the cultured SDA plates has exposed
the eminent growth of mould colonies. The colonies can be
morphologically depicted as cysts of whitish cottony long hairs
that quickly shifted to grey then black after 96 h. Microscopi-

cally, fungal colonies were characterized by an extensive and
dense mycelium. By examination, 3 out of 10 isolates showed
the characteristic appearance of branched nonseptated hyphae

together with masses of mature and immature sporangia,
which is indicative for asexual reproduction. Such sporangia
were filled with large number of spherical sporangiospores,

which were separated from the basal somatic hyphae by a
Sexual reproduction in vitro PCR Accession no. References

Attainable Positive AB727986 This study

Unattainable Positive AB727987 This study

Unattainable Positive AB727984 This study

Attainable Positive AB727985 This study

Unattainable Positive AB727988 This study

Attainable Positive AB727989 This study

Attainable Positive AB727990 This study

Attainable Positive AB727991 This study

Attainable Positive AB727992 This study

Attainable Positive AB727993 This study



Figure. 2 The amplified fragments of the internal transcribed

spacer (ITS) gene extracted from fish eggs isolates (n= 10) and

the reference strains of Saprolegnia parasitica ATCC90213 (n= 1)

using two ITS gene primers: (ITS1) 50-TCCGTAGGT-

GAACCTGCGG-30 and (ITS4) 50-TCCTCCGCTTATTGA-

TATGC-30 Lane M, Marker; lane 1, S. parasitica ATCC90213;

and lanes 2–11, angelfish eggs isolates of S. parasitica.
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small septum. However, the majority of the retrieved isolates
(7/10 isolates) showed identical morphological characteristics
of Saprolegnia’ sexual reproduction such as terminal oogonia

with centric oospores and antheridia (Fig. 1).

3.2. PCR and phylogenetic analysis

A 750 bp fragment was amplified from high-quality DNA ex-
tracted from 10 isolates using primers targeting the ITS gene
(Fig. 2). The 10 ITS region’ sequences achieved from the high-

est-scoring segment pairs from the BLAST search using the
ITS region sequence were from S. parasitica. The ITS region
sequence from S. parasitica ATCC90213 (GenBank Accession

No. AY455771) showed 99% identity to the portion of the
PCR fragment containing the ITS region sequences. The phy-
logenetic analysis using neighbor joining method showed that
the amplified sequences were grouped with known sequences

of S. parasitica and separated from other groups belonged to
Saprolegnia hypogyna, Saprolegnia diclina and Saprolegnia lon-
gicaulis (Fig. 3)

3.3. Field trial evaluation of povidone iodine

The used concentrations of 60 mg L�1 povidone iodine for

30 min as initial dose followed by a maintenance dose of
70 mg L�1 for 10 min as rinsing solutions for spawner angel-
fish has proved its disinfectant efficacy against the mould infec-
tion. Egg wise, 60 mg L�1 for 30 min as an immersion solution

for eggs was very efficient to combat mould infection among
egg stocks. These conclusive results were confirmed by inabil-
ity to retrieve the water mould back from the treated angelfish

spawners and their eggs. Such disinfection protocol has re-
sulted in an abrupt decline of spawner angelfish and their
egg mortalities. Number wise, the mortality rates of incubated

eggs were abruptly declined from 70% to 30%, while hatching
rate had sharply increased from 10% to 60% within one week
post treatment.

4. Discussion

Initial assessment of the mass mortalities which have occurred

among spawner angelfish stocks and their egg progeny were
Figure. 1 Sexual reproduction of the Saprolegnia parasitica

isolate showing mature oogonium with centric oospores.
very complicated if multifactorial hypothesis was considered.

However, by progress of diagnostic investigations through
the entire event of mass kills, visual detection of hyphal masses
on both spawners and their egg progeny were presumptively

suggestive of a water mould infection. Ten pathogenic water
moulds were identified as Saprolegnia spp. based on morpho-
logical characteristics and phylogenetic analysis. Our findings

confirm that Saprolegnia spp. are the major cause of Saproleg-
niasis in ornamental fish production [43].

Identification of Saprolegnia spp. is complex and sometimes
confusing. However, several typical morphological features

involving asexual and sexual reproductive organs serve for
classical Saprolegnia identification [44]. In the current study,
the fact that 30% of the isolates were unable to develop sexual

stages even after prolonged incubation period cannot be ne-
glected, particularly after the addition of hemp seeds as biolog-
ical enhancer. The oogonia of these isolates are either

completely absent (30% of the retrieved isolates) or are formed
only after a prolonged period of time (70% of the retrieved iso-
lates). Hence, Saprolegnia which were pathogenic to angelfish
spawners/egg progeny have been identified as S. parasitica

according to criteria described by Hatai and Hoshiai [45].
Our data (unattainable sexual reproduction after 21 days incu-
bation for 30% of the isolates) coincide with Ristanović and

Miller [46], Hatai and Hoshiai [45] and Hussein et al. [47]
who concluded that hemp seed could be of no identification
value if the oogonia or antheridia (sexual structures) were

not seen within 60 days of incubation at maximum (very long
incubation period compared to ours). Therefore, using molec-
ular tools such as PCR coupled with partial sequencing of in-

ter-transcribed spacer (ITS) gene was one of the most
important choices to distinguish S. parasitica from other water
moulds (Oomycetes) [39].

Non coding internal transcribed spacer regions (ITS1 and

ITS2) of the ribosomal DNA are considered to be the most ac-
cepted genetic markers because of their relatively high se-
quence variability [48] and the availability of primers that

would supply sequence data for Oomycetes [49]. These non
coding regions are located between two coding regions, the
18S and the 28S genes. Another coding region, the 5.8S gene,

is found between the ITS1 and ITS2. Thus, genetic sequential
analysis of these regions has been adopted to study the intra-
genic as well as the inter-genic relationships among the 10 re-

trieved Saprolegnia isolates [50]. Further, the phylogenetic
analysis based on the ITS rDNA region further confirmed
the taxonomic position of the 10 Saprolegnia isolates and con-



Figure. 3 Phylogenetic tree generated based on the sequence of ITS gene of fish eggs isolates and other ITS genes of S. parasitica, S.

diclina, S. salmonis, S. hypogyna and S. longicaulis. This phylogenetic tree was constructed with the neighbor joining method using MEGA

version 5.
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firmed its identification as S. parasitica which coincides with
similar findings by Cao et al. [39].

Based upon the pathogenic mechanism adopted by the
water mould, the process of S. parasitica invasion to spawner
fishes is relatively different from that utilized toward their egg

progeny [3]. This hypothesis was confounded on the fact that
eggs/yolk sac stage were infected or colonized after death by
various Saprolegnia saprophytic species; whereas Angelfish
spawners were infected by pathogenic S. parasitica isolates

[3]. Saprophytic Saprolegnia spp. are well known for their
strict aerobic nature. They grow on the egg shell surface with
continuous withdrawal of oxygen from the egg surrounding.

This mechanism will ultimately lead to complete exhaustion
of oxygen with consequent egg death due to hypoxia [15,51].
On the contrary, S. parasitica were capable of invading fish tis-

sues after being attached to the skin by the cilia of the motile
zoospores with consequent germination and production of
proteolytic enzymes (chemotrypsin like) [15,51].

Numbers of environmental as well as wildlife dynamic fac-
tors could be presented as the main predisposing factors be-
hind fish/egg mortalities. In the Greater Cairo/Giza
provinces, air temperatures fluctuate swiftly throughout the
majority of winter days. This swift fluctuation in air tempera-

tures usually triggers consequent profound fluctuations in
water bodies’ temperatures. Additionally, the commercial or-
namental fish’ ponds have a large surface area coupled with

shallow depth (1–1.5 m) which constitute another detrimental
dynamic factor imposing a dramatic water temperatures fluc-
tuation. Such environmental stresses would initiate a cascade
of dynamic bombardments of the physical/innate skin barrier

with consequent immunosuppression followed by quick shift
of the mould pathogenicity from saprophytic into pathogenic
phase [14,15].

Ecologically, the sharp decrease in water temperature en-
hanced the quick proliferation of Saprolegnia free swimming
zoospores with consequent attachment to skin/eggs of spawner

angelfish [3]. The germination of the mould spores has initiated
severe fungal invasion of the skin and muscles. The proteolytic
activity of the germinating mould has induced remarkable

ulcerative skin lesions [3]. Ultimately, the osmoregulatory fail-
ure arising from the massive skin lesions would be the real
cause behind the angelfish mortalities [5,6].
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Epidemiologically, amphibians (frogs, amphipods) intrud-
ing the fish ponds would be another potential source of infec-
tion to the cohabitating angelfish. Numerous Saprolegnia

species are known to cause fatal skin diseases in frog/toad pop-
ulations. Infected amphibians usually shed the mould spores
from their bodies while moving through the fish pond/hatcher-

ies which represent a reliable mechanical transmission route to
their neighboring fishes/eggs [52,53].

The selection of the proper disinfectant is an essential deci-

sion for the maintenance of healthy stocks of fish and their
eggs in intensive aquaculture operations. For decades, mala-
chite green has been known for its effective disinfection power
against water moulds including Saprolgenia spp. [27]. How-

ever, because of its potential teratogenic/mutagenic properties,
malachite green has been banned [54,55].

Formalin is another potential disinfectant that has been

used on a large scale throughout the past few decades. Such
outdated disinfectant is still adopted by some fish hatchery
managers as the best multipurpose disinfectant for brood-

stocks and their egg progeny [54]. However, formalin has the
potential of being toxic, where it has been reported to cause to-
tal eggs mortality when temperature rises above 25 �C [56].

Numerous disinfectant were further developed and proved to
be less efficient and of narrow safety margin. Thus, the search
for an efficient and safe disinfectant was a must in modern
food/ornamental aquaculture operations.

Based on its high efficacy/safety, iodophors are widely used
as the sole disinfection protocol for both broodstocks and eggs
at modern fish farms/hatchery facilities. Office of International

Epizootics (OIE) mandated that eggs be disinfected in
50 mg L�1 iodophors for 30 min at the facility where those
eggs are being fertilized. In the current study, a simple treat-

ment protocol using 10% povidone iodine (Betadine�) solu-
tion has been efficiently used for both infected angelfish’
spawners and their eggs. The used concentrations of 60 mg L�1

povidone iodine for 30 min as initial dose followed by a main-
tenance dose of 70 mg L�1 for 10 min as rinsing solutions for
spawner’ angelfish has proved its disinfectant efficacy against
the mould infection. Egg wise, 60 mg L�1 for 30 min as an

immersion solution for eggs was very efficient to combat
mould infection among egg stocks.

The povidone iodine antifungal disinfectant efficacy was

confirmed by the subsequent failure to re-isolate the mould
back from the treated broodstocks as well as eggs. Such disin-
fection protocol has resulted in an abrupt decline of spawner

angelfish and their egg mortalities. Impressively, the mortality
rates of incubated eggs were abruptly declined from 70% to
30%, while hatching rate had sharply increased from 10% to
60% within one week post treatment which explicitly confirms

the antifungal efficacy/safety of povidone iodine at the above
stated treatment doses. These results are in complete accor-
dance with original studies published by Cipriano et al. [57]

and Eissa et al. [31].
Although the internationally approved 10% povidone io-

dine is considered among the most efficient and safe disinfec-

tants due to its organic nature, its effective concentration
was moderately affected by the presence of excessive organic
matter and fish mucus which enforced us to continuously re-

place the rinsing solution every hour of full rinsing . Removal
of infested eggs from the troughs or incubation gutter is also
important in the control of the mould infection [31].
In brief, the diminished identification power (low percentage
of isolates with attainable sexual structures together with lon-
gevity of incubation period) of using morphological character-

istics based on sexual structure development of regular or hemp
seed supplemented media has triggered us to adopt an accurate/
swift/specific molecular protocol to fully identify the retrieved

isolates. Further, the utilization of an accurate phylogram has
enabled us to depict the phylogenetic relationships between
our isolates (10 isolates with accession numbers in GenBank

data base) and many Saprolegnia spp. of regional and world-
wide importance. To sum up, the current work reports on the
first isolation of S. parasitica during an episode of angelfish/
egg mortalities at a private Egyptian ornamental fish farm with

consequent successful treatment trial of fish/egg progeny using
safe/effective concentrations of povidone iodine.
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