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Abstract

Embedding is the process of implementing a language by de�ning functions in an

existing �host� language� the host language with these added functions is the new

language� As a consequence� the new language comes equipped with all the features

of the host language� with no additional work on the part of the language designer�

Embedding works particularly well when the host language is a functional language�

We describe several examples of embedded languages� The �rst is a language for

specifying simple pictures� The others are program generators� that is� languages

used to specify programs in other languages� In all of these examples� the host

language is Standard ML� in the program generating languages� the target language

is C��� The power obtained from the host language is the main emphasis of our

presentation�

� Introduction

The goal of research in programming languages is to develop concepts and tools

to facilitate language design and implementation� These tools should be of

help not only for the design of traditional general�purpose languages� but also

� in fact� especially � for the design of special�purpose� or domain�speci�c�

languages� Furthermore� they should not only simplify the construction of

language processors� but should aid in the design of high�quality languages�

To many programming language researchers� the highest quality languages

are the functional languages� such as Haskell ��� and Standard ML ��	�� As it

happens� there is a simple way to construct languages for speci
c application

areas so that these languages will� without fail� be well�designed functional

languages� embedding ���
���������� Embedding is the process of implementing

a language by de
ning functions in an existing �host� language� the host
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language with these added functions is the new language� so that the new

language has all the power of the host language� Though this method could

be used with any language� certain features of functional languages � such as

higher�order functions � tend to make the results of embedding in a functional

language particularly satisfactory�

The embedding approach is particularly useful for the implementation of

domain�speci
c languages� languages that incorporate operations peculiar to

a narrow area of computation� They tend to be used for comparatively small

programs� often written by domain experts rather than professional program�

mers� For such uses� the high level of discourse and concise syntax provided

by functional languages are particularly appreciated� while their ine�ciencies

are su�ered more easily�

This paper describes several experiments in language implementation by

embedding� The 
rst is a language for describing simple pictures� inspired

by a well�known domain�speci
c language� the pic preprocessor for troff

����� The remainder are all examples of program�generating languages� This

is a category of languages in which programs are actually speci
cations for

programs in other languages� Perhaps the best�known examples are the parser

generators� such as yacc ��
�� From our point of view� these are just languages

produced by embedding� that is� by adding program�generating functions to a

functional language� Our examples include a simple parser generator for which

we give all details� a more complicated one for which we give only examples�

and a language for specifying certain types of tree�structured data types�

All of our examples use Standard ML as the host language� The program

generators produce C�� code�

The alternative to language implementation by embedding is the tradi�

tional approach in which a grammar is designed and a parser written �or

generated�� and syntax�directed translation of the parse tree produces the de�

sired e�ect� By comparison� the embedding approach has two advantages� it

is easier to do� and it produces a powerful language as its result�

We view the second of these advantages � the quality of the resulting

language � as by far the more important� for reasons we would like to ex�

plain� Domain�speci
c languages are most often implemented by the tradi�

tional method� with great pains taken to provide a syntax natural for domain

experts� However� beyond this domain�speci
c syntax� they tend to be weak

and poorly designed� such programming features as are provided are added

haphazardly� The justi
cation is that such features are supposedly not needed�

since the domain�speci
c features cover everything needed by the domain ex�

pert� the intended user of the language�

Yet� time and time again � especially when the domain�speci
c language

achieves widespread use � we see that programming features are needed� and

then it is often too late� The beauty of language design by embedding is that

the programming features come automatically and for free� This� in our view�

is the real point of the method� Accordingly� our presentation emphasizes the

�
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power obtained �for free� from the host language� Even in the case of parser

generators� we give examples showing the power of the programming features�

On the other hand� language embedding has its drawbacks� including syn�

tax that is often far from optimal� poor error messages� and an inability to per�

form domain�speci
c optimizations and transformations� These issues� which

are the topics of current research� are discussed in the conclusions�

The paper assumes knowledge of Standard ML�

�
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� FPIC

FPIC ���� is a language for drawing simple pictures� It is inspired by the

Unix utility pic ����� a widely used preprocessor for troff� FPIC attempts

to preserve the �avor of pic�s syntax� though it di�ers in detail�

FPIC is embedded in Standard ML and consists of approximately ���� lines

of ML� Our claim is that writing these lines represents a modest e�ort for the

power of the resulting language�

To illustrate� we give a collection of examples that use the following op�

erations �a subset of the roughly ��� operations currently provided with the

FPIC distribution�� We name the type of each operation� in the hope that the

intent of these types is self�evident� but we do not in this paper give the de
�

nitions either of the types or the operations� see references ������� for details�

All the binary operations listed below are in
x� except harrow and line�

Operation � type Description

square� real � Picture Draw a square of a given size

circle� real � Picture Draw a circle of a given radius

line� Point � Point � Picture Draw a line between two points

lines� Point list � Picture Draw a line between each pair of

points in the list

harrow� real � real � Picture Draw an arrow to the right� at a

given height and of a given length

seq� Picture � Picture � Picture Superimpose one picture on

another

hseq� Picture � Picture � Picture Draw one picture next to another

vseq� Picture � Picture � Picture Draw one picture above another

seqlist� Picture list � Picture Superimpose all pictures in the list

empty� Picture An empty picture� useful as a right

identity for sequencing operations

offsetBy� Picture � �real � real� � Picture Move picture by a given amount

scale� Picture � real � Picture Stretch a picture horizontally and

vertically by certain amount

scaleTo� Picture � �real � real� � Picture Resize a picture to 
t within a given

sized box

centeredAt� Picture � Point � Picture Move a picture so that its center is

at a given point
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The following examples are intended merely to show how the programming

capabilities of Standard ML� combined with the few primitives listed above�

add up to a powerful programming language for pictures� For example� the

function�plotting operations de
ned below � plot and xyplot � could easily

be supplemented with operations to read function values from a 
le� to draw

a grid� to include a legend� and so on� forming a plotting library comparable

to� but far more powerful than� say� gnuplot �����

�� Draw two squares connected by a horizontal arrow ��
val sq � square ����
val boxes � sq hseq harrow ��	 ��� hseq sq�
boxes�

�� Use ML
s foldr operation to draw several copies of boxes ��
foldr �op vseq� empty �boxes� boxes� boxes
�

�� Draw a regular polygon with n sides ��
fun regular�poly n �
let val rn � toReal n

val realintvl � map toReal �intvl � n�
val angles � map �fn k �� k � �����Math�pi�rn�� realintvl
val points � map �fn theta �� �Math�cos theta� Math�sin theta��

angles
in lines points
end�

regular�poly ��

�
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�� Draw n copies of P� moving each by �dx�dy� and scaling by s ��
fun copies P n �dx� dy� s �
seqlist �map �fn k �� P offsetBy �k�dx�k�dy� scale �Math�pow�s�k���

�map toReal �intvl � �n�������

copies �circle 	��� � ��������� ���	�

�� Plot function f in the range x���x�� sampling at each ��
�� interval of size dx� fit the plot into an area of size w by h ��
fun plot w h �x��real� x� dx f �

let fun drawpoints x fx � if x�x� then empty
else let val fdx � f �x�dx�

in �line �x� fx� �x�dx� fdx��
seq �drawpoints �x�dx� fdx�

end
in �drawpoints x� �f x��� scaleTo �w�h�
end�

plot 	�� 	�� ��� �����Math�pi� ���	 Math�sin�
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�� Connect a list of points by lines� with a picture drawn at each point ��

fun xyplot ptlis ptpic �

�lines ptlis� seq �seqlist �map �fn p �� ptpic centeredAt p� ptlis���

val djia � ������������� ����� ������� ����� ������� ����� �������

�	���������� ����� ������� ����� ��	���� ����� �������

������������ ������ ������� ������ ������� ������ ������
�

xyplot djia �square �����

� Program generation

A program generator is a language processor whose input is a program speci�


cation and whose output is a program� A well�known example is the parser

generator yacc ��
��

context�free

grammar

yacc
C program

In line with our philosophy of language implementation by embedding�

we propose to create program generators by adding program�manipulating

combinators to Standard ML� Thus� just as an FPIC picture speci
cation is an
ML expression of type Picture� so in these languages program speci
cations

are ML expressions of type Program�

The Program type � actually� we use more descriptive type names� like

Parser � can represent programs in whatever target language we choose�

We have written generators that produce Java code� HTML� TeX� and even

Standard ML� However� most of our examples generate C�� code� and in the

following sections we con
ne ourselves to such examples�

Three examples will su�ce to give the �avor of our approach� The 
rst is
a generator for simple recursive descent parsers� the second an LL��� parser

generator� and the third a generator of C�� class de
nitions for abstract

syntax trees� In each case� we will provide examples in the language and some

indication of the size of the language implementation �in lines of ML�� but

only for the 
rst will we actually show the implementation�

�
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� Simple parser generator

Parsers are a classic example of language embedding in functional languages

������ Traditionally� a parser is a function from an input stream to a syntax

tree �we�re simplifying somewhat for expository purposes�� Combinators like

oo and �� can be de
ned and used to form parser�valued expressions like �

val A � term a oo B oo B �� B

and B � term b �� term c oo A�

representing the grammar with rules A� aBBjB and B � bjcA� This parser

can then be applied to an input stream to produce a parse tree� All of this is

in ML� there is no program generation being done here�

Similar combinators can be de
ned to generate a parser in C��� Some

care is required in the types of the combinators� A �parser� in this language

is a C�� function �or� ambiguously� a sequence of C�� functions�� Each

non�terminal has an associated parsing function� and the various parts of the

context�free rules for that non�terminal represent the body of this function�

Thus� the value of the right�hand side of a rule is of a di�erent type from the

rule as a whole� Speci
cally� the types of the combinators are�

��� RHS � RHS � RHS

oo� RHS � RHS � RHS

term� Token � RHS

nonterm� Name � RHS

���� Name � RHS � Parser

The nonterm combinator is needed to turn a name into a call to the appro�

priate parser function� it is not needed in the pure ML version because each

non�terminal is the ML name of a parsing function� The ��� combinator is

also new� It is the combinator that produces the C�� function de
nition� it

takes the place of recursion in the functional language itself �see above�� When

recursion in the host language is used in a language�s embedding� it will nec�

essarily need to be replaced by a combinator that emits the appropriate target

language code�

The grammar give above is rewritten as

�A� ��� term a oo nonterm �B� oo nonterm �B�

�� nonterm �B� �

�B� ��� term b

�� term c oo nonterm �A� �

These are expressions of type Parser� Their values are these two C��

functions�

int parseA �� �

� In ML� A and B need to be de�ned as functions� in order to avoid non	termination�

though this would not be necessary in a lazy language like Haskell
 we have elided this

�eta	expansion� step to simplify the example�

�
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int pos � current�

if �tokens	current
 �� a�

current���

else

goto L��

if �
parseB��� goto L��

if �
parseB��� goto L��

return true�

L��

current � pos�

if �
parseB��� goto L�����

return true�

L�����

current � pos�

return false�

�

int parseB �� �

int pos � current�

if �tokens	current
 �� b�

current���

else

goto L��

return true�

L��

current � pos�

if �tokens	current
 �� c�

current���

else

goto L�����

if �
parseA��� goto L�����

return true�

L�����

current � pos�

return false�

�

We give the de
nitions of the combinators in section 
���

��� Using the parser�generator language

In the introduction to this paper� we placed strong emphasis on the power

of the language that one obtains from the embedding approach� In this case�

one gets the ability to manipulate grammars� a feature totally absent from

yacc� Yet it is often stated that domain�speci
c languages do not need a

programming capability� and indeed yacc has survived quite nicely without

one� Here we give two examples to demonstrate that programming features

�
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can be useful even in a parser generator�

Bear in mind that all the programming features we use in these examples

� excepting only the parsing combinators listed above � are obtained for

free�

�Before continuing� we warn the reader that these examples do not quite

work� in the sense that the grammars resulting from the transformations we

will make are not necessarily amenable to our simple parsing method � in�

deed� very few grammars are� The point is that we can use the programming

facilities of the host language to manipulate grammars� With a stronger pars�

ing method � such as the one implemented in the next section � the examples

would be more likely to produce working parsers��

For our 
rst example� consider the following problem� Assume the language

we wish to parse is an expression language which� like Standard ML itself� has

token classes op�� op�� � � �� op�� representing binary operators of increasing

precedence� Grammars that incorporate precedence� are unambiguous� and

can be parsed top�down are tricky to write� Here is the classic example of

expressions over � and ��

E � T E �

E � � � E j �

T � P T �

T � � � T j �

P � id

Thus� our grammar will have a sequence of rules of the form�

Expr� � Expr� Expr� �

Expr� � � op� Expr� j �

Expr� � Expr� Expr� �

Expr� � � op� Expr� j �

���

�Expr�� is a separate case that must be written out by hand� like P above��

We can avoid writing such a long list of rules by using the facilities of the

host language to write a rule�generating function�

fun leveln �n�int� �

let val ntn � �Expr���toString n�

val ntn� � �Expr���toString n���prime�

val ntn�� � �Expr���toString �n����

val opn � �op���toString n�

in 	ntn ��� nonterm ntn�� oo nonterm ntn��

ntn� ��� term opn oo nonterm ntn �� empty

��
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end�

Now we can generate all �� rules with the call

map leveln �intvl � ��

As another example� suppose we wanted to add the capability of using

regular�right�part rules� that is� rules with regular expressions in their right�

hand sides�

There is a well�known translation from a regular�right�part rule to a set of

ordinary rules parsing the same sentences� We will formalize this translation

as follows� Consider a production A� R� where R is a regular expression over

grammar symbols� Note that� since right�hand sides can use alternation� we

can make the restriction� without loss of generality� that every non�terminal

has a single production� We translate R into a pair bR� containing an ordinary

right�hand side for A and a set of new� ordinary productions �from new non�

terminals�� Thus� if A has the one production A� R� and if bR � ������ then

the set of productions fA � �g � � derive the same sentences �from A� as

the one original production�

Here� then� is the de
nition of bR� by induction on the structure of R�

cRS � � bR�
bS�� bR� �

bS��

dRjS � �B� fB � bR�j
bS�g �

bR� �
bS��� where B is new

cR� � �B� fB � bR�Bj�g � bR�� where B is new

bX � �X� fg�� if X is a token� non�terminal� or �

This translation generates only ordinary rules� because for every R� bR� con�

tains no Kleene stars or alternation� and the new productions in bR� contain

no Kleene stars and alternation only at the top level�

With the programming facilities of the host language� we can write these

translations�

type RRP � RHS � Parser list�

val rpempty ��� RRP �� � �empty� 	
��

val rpterm ��� Token �� RRP �� � fn t �� �term t� 	
��

val rpnonterm ��� Name �� RRP �� � fn n �� �nonterm n� 	
��

infix � ooo� �� RRP � RRP �� RRP ��

fun �rhs��rl�� ooo �rhs��rl�� � �rhs� oo rhs�� rl� � rl���

infix � ���� �� RRP � RRP �� RRP ��

��
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fun �rhs��rl�� ��� �rhs��rl�� �

let val B � genName ��

in �nonterm B�

	B ��� rhs� �� rhs�
 � rl� � rl��

end�

val star �� RRP �� RRP ��

� fn �rhs�rl� �� let val B � genName ��

in �nonterm B�

�B ��� rhs oo nonterm B �� empty� �� rl�

end�

infix � ����� �� �name � RRP �� Parser list ��

fun A ���� �rhs�rl� � �A ��� rhs� �� rl�

��� De�ning the combinators

The parsing method we implement is recursive�descent� Recursive descent

parsing is not a powerful method� Or� rather� it is powerful only insofar as it

is used informally and can be modi
ed manually in speci
c cases� The LL���

method presented in the next section is far more powerful� However� this

example is much easier to explain� as it includes only about �� lines of ML �of

which about �� is C�� code to be emitted�� We will present all the code for

this example� and not for the more elaborate examples to follow�

The basic idea of top�down parsing ��� is this� We are at all times attempt�

ing to 
nd a substring of the input that can be derived from a particular

non�terminal� By looking at the next token of the input� we decide which

rule for that non�terminal is most appropriate� and then proceed to try to


nd strings derivable from each part of that right�hand side� this in turn leads

to attempts to 
nd strings for the non�terminals occurring in that right�hand

side� and so on� Recursive descent parsing is a method of implementing top�

down parsing in which each non�terminal is represented by a parsing function�

which performs the actions just described� That is� it decides which right�hand

side is appropriate and then attempts to match a string derivable from that

right�hand side� if a non�terminal occurs in the right�hand side� the parsing

function corresponding to that non�terminal is called� Thus� one obtains a set

of mutually recursive parsing functions�

The key question in formalizing this method is� how does a parsing function

determine which right�hand side is appropriate� For this example� we give a

very simple answer� it checks the next input token against the 
rst symbol of

each rule that starts with a token� if none match the input token� then the

rule that does not begin with a token is used� This version of the method

requires that only one right�hand side for a given non�terminal can start with

a non�terminal �or ��� we further require that this rule be presented as the last

��
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rule for that non�terminal�
�

As we have said� a �parser� in this language is a C�� function�

type Parser � CFunction�

Each non�terminal in a grammar has an associated parsing function� Thus�

the collection of all rules for a non�terminal will be an expression of type

Parser� The individual rules� on the other hand� denote parts of that parsing

function� More precisely� each right�hand side denotes an attempt to parse the

input� which may fail and have to jump to the next right�hand side� Thus�

type RHS � Label �� CCommand�

The combinators have the following types� as given earlier�

��� RHS � RHS � RHS

oo� RHS � RHS � RHS

term� Token � RHS

nonterm� Name � RHS

���� Name � RHS � Parser

The simplest case is the code corresponding to a token � term t � which

just compares the current token to t and either succeeds or jumps to the failure

label� Assuming the entire input is in an array tokens and the integer variable

current is the index of the next token� the piece of code is

if 	tokens
current�� �� t�

current��


else

goto failure�label


Abstracting from both the token and the failure label� we get the de
nition

of term �the carat ��� is ML�s string concatenation operator��

fun term �t�Token� � fn �lab�Label� ��

�if �tokens	current
� �� � � t � ���n�

� �current����n�

� �else�n�

� �goto � � lab � ���n� �

We are treating the C�� program simply as a string� and indeed we will

continue to do so in all of our program generators�

We can enhance the readability of this code by using ML�s anti�quotation

feature� With this feature� one can write
�

� Of course� recursive descent could never be used in practice if these restrictions were
enforced� Again� the method is normally used informally� with �lookahead� added as needed�

Formalizing this lookahead leads eventually to LL
�� parsing� which we will implement
separately� The idea here is to give a simple formalization of recursive descent so that we

can illustrate the program generation method�
� The feature is more general than what we are presenting
 see ���� for details�

��
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����� �x ���� for ����� � x � �����

and ����� �	���� ���� for ����� � 	���� � �����

That is� within anti�quotation brackets ��� and ��� an anti�quoted expres�

sion �surrounded by �	 and �� is evaluated �to a string� and spliced in� As

an abbreviation� if the expression ����� consists of a single identi
er� the

parentheses can be elided� Furthermore� newlines can be embedded within

anti�quotation brackets�

Using anti�quotation� the de
nition of term becomes�

�� term� Token �� RHS ��

fun term �t�Token� � fn �lab�Label� ��

��if �tokens	current
 �� �t�

current���

else

goto �lab�� �

Here are the other combinators� Note how the alternation combinator

creates a label for the second alternate� and the rule�forming combinator ���

provide the 
nal failure label�

�� empty� RHS ��

val empty � fn lab �� ����

�� nonterm� Name �� RHS ��

fun nonterm �v�Name� � fn �lab�Label� ��

��if �
parse�v��� goto �lab�� �

�� oo� RHS �� RHS �� RHS ��

infix � oo�

fun ��rhs��RHS� oo �rhs��RHS�� � fn �lab�Label� ��

����rhs� lab�

��rhs� lab�� �

�� ��� RHS �� RHS �� RHS ��

infix � ���

fun ��rhs��RHS� �� �rhs��RHS�� � fn �lab�Label� ��

let val l � genLabel��

in ����rhs� l�

return true�

�l� current � pos�

��rhs� lab��

end�

�� ��� � Name �� RHS �� CFunction ��

infix � ��� �

fun �v�Name� ��� �rhs�RHS� �

�
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��int parse�v �� �

int pos � current�

��rhs �L������

return true�

L�����

current � pos�

return false�

�� �

� LL��� parser generator

An LL��� parser ��� operates by keeping a �statically generated� tableM which
maps non�terminals and tokens to productions� When attempting to parse a

string derived from non�terminal A� when the current token is t� M �A� t� gives
the unique production from A � it has to be unique� or the grammar is not
LL��� � that can derive a string starting with t� if any� The construction of

M is somewhat complex and is the heart of the parser construction process�

We do not wish to explain the construction of LL��� parsing tables� but we

can say this much� The construction involves the calculation of two functions�
First � Non�terminals � ��tokens � f�g� and Follow � Non�terminals �

��tokens � feofg�� First�A� contains every token that can possibly be the

initial token in a string derived from A� it includes ��� if A can derive the
empty string� Follow�A� contains all the tokens that can immediately followA

in any string derivable from the start symbol �that is� in any sentential form�� if
A can appear as the last symbol in a sentential form� then Follow�A� contains

eof� Note that these sets cannot be determined solely from the productions

for A� Follow�A�� for example� can be determined only by looking at all the
productions of the grammar in which A occurs�

These �global� calculations can be induced from the meanings of individual
phrases in the grammar� as long as those meanings are rich enough� For this

parser generator� we have had to change the combinator types a bit� Here�
a RHSPart refers to a fragment of a right�hand side� a RHS is one or more
complete right�hand sides for a single non�terminal� and a Rule is a non�

terminal together with all its right�hand sides� Thus� the combinators are�

��� RHS � RHS � RHS

oo� RHSPart � RHSPart � RHSPart

term� Token � RHSPart

nonterm� Name � RHSPart

prod� RHSPart � RHS

���� Name � RHS � Rule

Note the new combinator prod� which coerces a RHSPart to a RHS� A new

function� called grammar� converts a list of Rules to a list of parsing functions

in C��� The grammar used as an example in the previous section becomes�

��
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�A� ��� prod �term a oo nonterm �B� oo nonterm �B��

�� prod �nonterm �B�� �

�B� ��� prod �term b�

�� prod �term c oo nonterm �A�� �

The global nature of the table construction entails that the combinator

de
nitions be quite a bit more complex than in the previous section� Here we

present only the types�

type RHSPart �

�unit �� token list� �� calculate FIRST set ��

� �token list �� unit� �� add to FOLLOW set ��

� CCommand� �� code to parse rhs� or fail ��

type RHS � �unit �� �token list� list� �� FIRST sets of all RHS�s ��

� �token list �� unit� �� add to FOLLOW set ��

� CCommand list� �� code for all RHS�s ��

type Rule � �unit��unit� �� add to First set for lhs ��

� �unit��unit� �� add to Follow set for lhs ��

� �unit���token list� list� �� get First sets for all rhs�s ��

� �unit �� int �� CArrayInit� �� calculate array M ��

� CCommand� �� calculate C�� parser fcn ��

The entire set of combinators �including auxiliary functions and type dec�

larations� comes to about ��� lines of ML code� As a point of comparison� the

Bison LR parser generator ��� is about ���� lines of C� Granted� the LALR���

construction that Bison uses is more complicated than the LL��� construction

used here� and Bison includes some additional facilities such as ambiguity res�

olution� However� it contains nothing analogous to the programming facilities

whose use we illustrated in the previous section� �Those examples need some

minor changes to work with the current set of combinators��

� Abstract syntax tree generation

Language processors usually begin their work by parsing their input and con�

structing an abstract syntax tree ���� basically a simpli
ed version of the parse

tree� Abstract syntax trees �AST�s� are trees whose nodes are labelled with

abstract syntax operators� Each operator � has a signature ������� � � �n � �

In an AST� the type of a node labelled with � is � � and it must have exactly n

children with types ��� � � � � �n� An abstract syntax is a 
nite set of abstract syn�

tax operators� In short� then� an AST is a tree whose structure is constrained

by the set of operators in its abstract syntax�

C�� has excellent facilities for de
ning tree�like data and hiding their

representation� Given an abstract syntax� it is a simple matter to write a

class whose objects are AST nodes� There are two basic styles� which we�ll

call the single�class style and the subclass style� In the single�class style� the

�	
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class ASTNode contains a tag 
eld �the name of the operator�� a union type

�the children corresponding to each operator�� and a collection of constructors�

accessors� and auxiliary functions� like print� The latter is written as a switch

statement� dispatching on the tag �that is� the abstract syntax operator� of

the node� In the subclass style� ASTNode is an abstract base class� and each

operator is implemented as a derived class of ASTNode� each such class de
nes

its own constructors and destructors� and its own part of functions like print�

eliminating the switch statement in favor of dynamic method dispatch�

Either way is straightforward� but each has disadvantages� The subclass

method makes it easy to add a new abstract syntax operator� since the required

changes are completely localized� just add a new subclass� On the other hand�

the single�class method facilitates the addition of new auxiliary functions� since

these can be added as single function de
nitions in a single class� instead of as

separate parts of a function de
nition spread across all the subclasses� Thus�

either method can result in code that is di�cult to maintain� depending upon

the types of changes that need to be made�

Yet in either case the implementation of abstract syntax trees is highly

stylized� an experienced programmer can write such classes almost without

thinking� Thus� this would appear to be a natural domain for program gen�

eration�

We have written a program generator that generates �single�class� imple�

mentations of abstract syntax trees given a list of the abstract syntax oper�

ators� As an example� suppose we have an abstract syntax with one type

�Expr� and three operators�

const� int � Expr

plus� Expr � Expr � Expr

negate� Expr � Expr

We would specify this abstract syntax as follows�

genAbsSyn �Expr� �� name of the abstract syntax ��

	�Expr�
 �� AST types that are being defined ��

	�const� oftype �int� ��� �Expr��

�plus� oftype �Expr� �� �Expr� ��� �Expr��

�negate� oftype �Expr� ��� �Expr�


 �

This function call produces two C�� 
les� Expr�h and Expr�C� As usual� the

��h� 
le gives the representation and some small function de
nitions� while

the ��C� 
le contains the remaining function de
nitions� Speci
cally� the class

de
nes constructors� accessors� settors� and a print function� In total� the two


les contain about one hundred lines of C�� code�

The program generator is written in about ��� lines of ML�

The use of a program generator has some decided advantages over either

of the representations that a C�� programmer might use� The addition

of new abstract syntax operators is as simple as it could possibly be� even

��
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simpler than in the subclass implementation� Adding new auxiliary functions

� there are countless possibilities � is perhaps harder than it would be using

the single�class implementation� because it requires modifying the program

generator� but the advantage is that� once the change is made� it is made

in all the AST classes generated by the generator� Similarly� a change in

representation requires changes in the program generator� but once made� is

made everywhere�

	 Conclusions

Though much has been learned about the structure of programming languages

and their processors� the simple question �how should I design a language ap�

propriate for my application�� has no easy answer� Embedding in a functional

language is a method that is relatively easy and produces good results�

However� these results are far from perfect� and many issues remain before

the method can be very widely used� A functional language designed for

embedding would need to meet the needs of the domain�speci
c language user

more fully� Some needed accommodations are�

Better syntax� The syntax of all of our embedded languages is more verbose

than it would be if the language were de
ned from scratch� An example

is the syntax of context�free grammars used in our parser generators� it is

�isomorphic� to the yacc syntax� but still about twice as long simply due

to syntactic issues such as having to place an operator between each symbol

in the right�hand sides�

Better error messages� Users can receive error messages that are utterly

incomprehensible� because they are designed for users of the host language

rather than users of the embedded language� For example� if a user enters

the following grammar in the recursive�descent parser generator�

�A� �� �term a� oo �nonterm �B�� oo �nonterm �B��

�� �nonterm �B�� �

�typing �� instead of ����� our embedded implementation produces this

fearsome response�

Error� operator and operand don�t agree 	tycon mismatch


operator domain� �Z ref � �Z

operand� string � �Label �� string�

in expression�

�A� �� term a

The error message can be understood only by a user who not only knows

ML� but also knows how values in the embedded language are represented�

�An even worse result occurs if the user types�

�A� ��� �term a� o �nonterm �B�� oo �nonterm �B��

�� �nonterm �B�� �

��
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mistyping the 
rst oo as o� o is an in
x operator in ML� representing

function composition� and the above expression� as it happens� is both syn�

tactically correct and type correct� Indeed� the value of this expression is

a syntactically legal C�� function� Unfortunately� that function does not

parse the grammar that the user intended to enter��

Domain�speci�c analyses� The FPIC plotting function draws a curve by

emitting a long list of line�drawing commands� Depending upon the output

device� some other representation may be more e�cient� Of course� repre�

sentation transformations could be done as a separate pass� but ideally the

plotting function would have such an optimization built in� In particular�

this would allow the embedded language processor to implement represen�

tation optimizations in separately compiled program segments� just as the

ML compiler optimizes individual functions�

The program�generating languages suggest an entirely new set of domain�

speci
c analyses� namely analyses of the program that is to be generated�

For instance� one would like to be able to ensure the syntactic and type

correctness of generated programs a priori� before generating any actual

programs� �The MetaML language ���� does just this for program gener�

ators from ML to ML� written in a certain style�� As things stand� these

analyses are done by the C		 compiler� but building them into the gener�

ator would give earlier feedback� furthermore� the generator could perform

some optimizations� based on its knowledge of the programs it is generating�

that the C�� compiler could not be expected to perform�

We are currently exploring ways in functional language processors could

be customized in these ways�

Acknowledgement

The author gratefully acknowledges the support provided by the Oregon Grad�

uate Institute� where he was on sabbatical during the preparation of this paper�

References

�	
 Aho� A� V�� R� Sethi and J� D� Ullman� �Compilers� Principles� Techniques�
and Tools�� Addison�Wesley� 	
���

��
 Carlson� W� E�� P� Hudak and M� P� Jones� An experiment using Haskell to

prototype �Geometric Region Servers� for navy command and control� Research
Report YALEU�DCS�RR�	��	� Yale Univ� C� S� Dept�� May 	

��

��
 Donnelly� C� and R� Stallman� �The Bison Manual� Using the YACC�compatible
Parser Generator�� Free Software Foundation� 	

��

��
 Elliott� C�� Modeling interactive �D and multimedia animation with an

embedded language� Proc� USENIX Conf� on Domain�Speci�c Languages� Santa

��



Kamin

Barbara� Oct� 	

�� pp� �����
��

��
 Hudak� P�� S� Peyton Jones and P� Wadler �eds��� Report on the Programming

Language Haskell �Version ��	
� ACM SIGPLAN Notices ������ May 	

��

��
 Hudak� P�� Building domain�speci�c embedded languages� Computing Surveys�

��A����

��
 Hudak� Paul� Tom Makucevich� Syam Gadde and Bo Whong� Haskore music

notation� An algebra of music� J� Func� Prog� ���� �	

��� pp� ��������

��
 Hutton� G�� Higher�order functions for parsing� J� Func� Prog� ���� �	

���

pp� ��������

�

 Hutton� G� and E� Meijer� A Haskell library of monadic parser combinators�

Web page at www�cs�nott�ac�uk�Department�Staff�gmh�pearl�hs� April�

	

��

�	�
 Kamin� S�� The Challenge of Language Technology Transfer� ACM Computing

Surveys ��A��� �	

���

�		
 Kamin� S�� FPIC documentation� Web page at www�sal�cs�uiuc�edu�

�kamin�fpic��

�	�
 Kamin� S� and D� Hyatt� A special�purpose language for picture�drawing�

Proc� USENIX Conf� on Domain�Speci�c Languages� Santa Barbara� Oct� 	

��

pp� �
���	��

�	�
 Kernighan� B� W�� PIC� A crude graphics language for typesetting� Bell

Laboratory� 	
�	�

�	�
 Levine� John R�� Tony Mason and Doug Brown� �Lex � Yacc�� �nd Ed�

O�Reilly � Associates� 	

��

�	�
 Liaw� Andy and Dick Crawford� �gnuplot ��� User�s Guide�� Available by

anonymous ftp at picard�tamu�edu in directory pub�gnuplot�

�	�
 Milner� Robin� Mads Tofte and Robert Harper� �The De�nition of Standard

ML�� The MIT Press� Cambridge� MA� 	

��

�	�
 Standard ML of New Jersey User�s Guide� Available at cm�bell�labs�com�

cm�cs�what�smlnj�index�html� 	

��

�	�
 Taha� Walid and Tim Sheard� Multi�stage programming with explicit

annotations� Proc� ACM SIGPLAN Symp� on Partial Evaluation and

Semantics�Based Program Manipulation �PEPM �
��� Amsterdam� June 	��

	�� 	

�� SIGPLAN Notices ���	�� �	

��� pp� �����	��

��


