View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Electronic Notes in Theoretical Computer Science 14 (1998)
URL: http://www.elsevier.nl/locate/entcs/volumel4.html 20 pages

Research on Domain-specific Embedded
Languages and Program Generators

Samuel N. Kamin!

Computer Science Department
University of lllinois at Urbana-Champaign
Champaign, IL, USA

Abstract

Embedding is the process of implementing a language by defining functions in an
existing “host” language; the host language with these added functions s the new
language. As a consequence, the new language comes equipped with all the features
of the host language, with no additional work on the part of the language designer.
Embedding works particularly well when the host language is a functional language.

We describe several examples of embedded languages. The first is a language for
specifying simple pictures. The others are program generators, that is, languages
used to specify programs in other languages. In all of these examples, the host
language is Standard ML; in the program generating languages, the target language
is C++. The power obtained from the host language is the main emphasis of our
presentation.

1 Introduction

The goal of research in programming languages is to develop concepts and tools
to facilitate language design and implementation. These tools should be of
help not only for the design of traditional general-purpose languages, but also
— in fact, especially — for the design of special-purpose, or domain-specific,
languages. Furthermore, they should not only simplify the construction of
language processors, but should aid in the design of high-quality languages.
To many programming language researchers, the highest quality languages
are the functional languages, such as Haskell [5] and Standard ML [16]. As it
happens, there is a simple way to construct languages for specific application
areas so that these languages will, without fail, be well-designed functional
languages: embedding [2,4,7,10,12]. Embedding is the process of implementing
a language by defining functions in an existing “host” language; the host

L Partial support received from NSF under Grant CCR 96-19655.

©1998 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

https://core.ac.uk/display/82452359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

KAMIN

language with these added functions ¢s the new language, so that the new
language has all the power of the host language. Though this method could
be used with any language, certain features of functional languages — such as
higher-order functions — tend to make the results of embedding in a functional
language particularly satisfactory.

The embedding approach is particularly useful for the implementation of
domain-specific languages, languages that incorporate operations peculiar to
a narrow area of computation. They tend to be used for comparatively small
programs, often written by domain experts rather than professional program-
mers. For such uses, the high level of discourse and concise syntax provided
by functional languages are particularly appreciated, while their inefficiencies
are suffered more easily.

This paper describes several experiments in language implementation by
embedding. The first is a language for describing simple pictures, inspired
by a well-known domain-specific language, the pic preprocessor for troff
[13]. The remainder are all examples of program-generating languages. This
is a category of languages in which programs are actually specifications for
programs in other languages. Perhaps the best-known examples are the parser
generators, such as yacc [14]. From our point of view, these are just languages
produced by embedding, that is, by adding program-generating functions to a
functional language. Our examples include a simple parser generator for which
we give all details, a more complicated one for which we give only examples,
and a language for specifying certain types of tree-structured data types.

All of our examples use Standard ML as the host language. The program
generators produce C++ code.

The alternative to language implementation by embedding is the tradi-
tional approach in which a grammar is designed and a parser written (or
generated), and syntax-directed translation of the parse tree produces the de-
sired effect. By comparison, the embedding approach has two advantages: it
is easier to do, and it produces a powerful language as its result.

We view the second of these advantages — the quality of the resulting
language — as by far the more important, for reasons we would like to ex-
plain. Domain-specific languages are most often implemented by the tradi-
tional method, with great pains taken to provide a syntax natural for domain
experts. However, beyond this domain-specific syntax, they tend to be weak
and poorly designed; such programming features as are provided are added
haphazardly. The justification is that such features are supposedly not needed,
since the domain-specific features cover everything needed by the domain ex-
pert, the intended user of the language.

Yet, time and time again — especially when the domain-specific language
achieves widespread use — we see that programming features are needed, and
then it is often too late. The beauty of language design by embedding is that
the programming features come automatically and for free. This, in our view,
is the real point of the method. Accordingly, our presentation emphasizes the

2

KAMIN

power obtained “for free” from the host language. Even in the case of parser
generators, we give examples showing the power of the programming features.
On the other hand, language embedding has its drawbacks, including syn-
tax that is often far from optimal, poor error messages, and an inability to per-
form domain-specific optimizations and transformations. These issues, which
are the topics of current research, are discussed in the conclusions.
The paper assumes knowledge of Standard ML.

KAMIN

2 FPIC

FPIC [12] is a language for drawing simple pictures. It is inspired by the
Unix utility pic [13], a widely used preprocessor for troff. FPIC attempts
to preserve the flavor of pic’s syntax, though it differs in detail.

FPIC is embedded in Standard ML and consists of approximately 1200 lines
of ML. Our claim is that writing these lines represents a modest effort for the
power of the resulting language.

To illustrate, we give a collection of examples that use the following op-
erations (a subset of the roughly 100 operations currently provided with the
FPIC distribution). We name the type of each operation, in the hope that the
intent of these types is self-evident, but we do not in this paper give the defi-
nitions either of the types or the operations; see references [12,11] for details.
All the binary operations listed below are infix, except harrow and line.

Operation & type

square: real — Picture

circle: real — Picture

line: Point — Point — Picture

lines: Point list — Picture
harrow: real — real — Picture
seq: Picture x Picture — Picture

hseq: Picture X Picture — Picture
vseq: Picture X Picture — Picture
seqlist: Picture list — Picture

empty: Picture

offsetBy: Picture X (real X real) — Picture

scale: Picture x real — Picture
scaleTo: Picture x (real X real) — Picture

centeredAt: Picture x Point — Picture

Description

Draw a square of a given size
Draw a circle of a given radius
Draw a line between two points

Draw a line between each pair of
points in the list

Draw an arrow to the right, at a
given height and of a given length

Superimpose one

another

picture on

Draw one picture next to another
Draw one picture above another
Superimpose all pictures in the list

An empty picture, useful as a right
identity for sequencing operations

Move picture by a given amount

Stretch a picture horizontally and
vertically by certain amount

Resize a picture to fit within a given
sized box

Move a picture so that its center is
at a given point

KAMIN

The following examples are intended merely to show how the programming
capabilities of Standard ML, combined with the few primitives listed above,
add up to a powerful programming language for pictures. For example, the
function-plotting operations defined below — plot and xyplot — could easily
be supplemented with operations to read function values from a file, to draw
a grid, to include a legend, and so on, forming a plotting library comparable

to, but far more powerful than, say, gnuplot [15].

(* Draw two squares connected by a horizontal arrow *)
val sq = square 1.0;

val boxes = sq hseq harrow 0.5 1.0 hseq sq;

boxes;

(* Use ML’s foldr operation to draw several copies of boxes *)
foldr (op vseq) empty [boxes, boxes, boxes];

(* Draw a regular polygon with n sides *)
fun regular_poly n =
let val rn = toReal n
val realintvl = map toReal (intvl O n)
val angles = map (fn k => k * (2.0*Math.pi/rn)) realintvl
val points = map (fn theta => (Math.cos theta, Math.sin theta))
angles
in lines points
end;

regular_poly 9;

KAMIN

(* Draw n copies of P, moving each by (dx,dy) and scaling by s *)
fun copies P n (dx, dy) s =
seqlist (map (fn k => P offsetBy (k*dx,k*dy) scale (Math.pow(s,k)))
(map toReal (intvl 0 (n-1))));

copies (circle 5.0) 8 (1.0,0.0) 0.75;

(* Plot function f in the range x0..xl1, sampling at each *)
(* interval of size dx; fit the plot into an area of size w by h *)
fun plot w h (x0:real) x1 dx f =
let fun drawpoints x fx = if x>x1 then empty
else let val fdx = f (x+dx)
in (line (x, fx) (x+dx, fdx))
seq (drawpoints (x+dx) fdx)
end
in (drawpoints x0 (f x0)) scaleTo (w,h)
end;

plot 5.0 5.0 0.0 (2.0*Math.pi) 0.05 Math.sin;

KAMIN

(* Connect a list of points by lines, with a picture drawn at each point *)
fun xyplot ptlis ptpic =
(lines ptlis) seq (seqlist (map (fn p => ptpic centeredAt p) ptlis));

val djia = [(1.0,7.000), (2.0, 7.440), (3.0, 7.730), (4.0, 8.220),
(5.0,7.800), (6.0, 8.000), (7.0, 7.500), (8.0, 8.000),
(9.0,7.900), (10.0, 7.900), (11.0, 8.600), (12.0, 9.000)];

xyplot djia (square 0.2);

3 Program generation

A program generator is a language processor whose input is a program speci-
fication and whose output is a program. A well-known example is the parser
generator yacc [14]:

context-free
grammar

yace C program

Ne—

In line with our philosophy of language implementation by embedding,
we propose to create program generators by adding program-manipulating
combinators to Standard ML. Thus, just as an FPIC picture specification is an
ML expression of type Picture, so in these languages program specifications
are ML expressions of type Program.

The Program type — actually, we use more descriptive type names, like
Parser — can represent programs in whatever target language we choose.
We have written generators that produce Java code, HTML, TeX, and even
Standard ML. However, most of our examples generate C++ code, and in the
following sections we confine ourselves to such examples.

Three examples will suffice to give the flavor of our approach. The first is
a generator for simple recursive descent parsers, the second an LL(1) parser
generator, and the third a generator of C++ class definitions for abstract
syntax trees. In each case, we will provide examples in the language and some
indication of the size of the language implementation (in lines of ML), but
only for the first will we actually show the implementation.

7

KAMIN

4 Simple parser generator

Parsers are a classic example of language embedding in functional languages
[8,9]. Traditionally, a parser is a function from an input stream to a syntax
tree (we're simplifying somewhat for expository purposes). Combinators like
oo and || can be defined and used to form parser-valued expressions like?

val A
and B

term a oo B oo B || B
term b || term c oo A;

representing the grammar with rules A — aBB|B and B — b|cA. This parser
can then be applied to an input stream to produce a parse tree. All of this is
in ML; there is no program generation being done here.

Similar combinators can be defined to generate a parser in C+4. Some
care is required in the types of the combinators. A “parser” in this language
is a C++ function (or, ambiguously, a sequence of C++ functions). Each
non-terminal has an associated parsing function, and the various parts of the
context-free rules for that non-terminal represent the body of this function.
Thus, the value of the right-hand side of a rule is of a different type from the
rule as a whole. Specifically, the types of the combinators are:

|l: RHS x RHS — RHS

oo: RHS x RHS — RHS
term: Token — RHS
nonterm: Name — RHS

::=: Name x RHS — Parser

The nonterm combinator is needed to turn a name into a call to the appro-
priate parser function; it is not needed in the pure ML version because each
non-terminal is the ML name of a parsing function. The ::= combinator is
also new. It is the combinator that produces the C++ function definition; it
takes the place of recursion in the functional language itself (see above). When
recursion in the host language is used in a language’s embedding, it will nec-
essarily need to be replaced by a combinator that emits the appropriate target
language code.
The grammar give above is rewritten as

"A" ::= term a oo nonterm "B" oo nonterm "B"
|| nonterm "B" ;
"B" ::= term b

|| term ¢ oo nonterm "A" ;

These are expressions of type Parser. Their values are these two C++
functions:

int parseA () {

2 In ML, A and B need to be defined as functions, in order to avoid non-termination,
though this would not be necessary in a lazy language like Haskell; we have elided this
“eta-expansion” step to simplify the example.

8

KAMIN

int pos = current;
if (tokens[current] == a)
current++;
else
goto LO;
if (!parseB()) goto LO;
if (!parseB()) goto LO;
return true;
LO:
current = pos;
if (!parseB()) goto L1000;
return true;
L1000:
current = pos;
return false;

int parseB () {
int pos = current;
if (tokens[current]
current++;
else
goto L1;
return true;

Il
]
o’
<

Li:
current = pos;
if (tokens[current] == c)
current++;
else
goto L1000;
if (!parseA()) goto L1000;
return true;
L1000:
current = pos;
return false;

}

We give the definitions of the combinators in section 4.2.

4.1 Using the parser-generator language

In the introduction to this paper, we placed strong emphasis on the power
of the language that one obtains from the embedding approach. In this case,
one gets the ability to manipulate grammars, a feature totally absent from
yacc. Yet it is often stated that domain-specific languages do not need a
programming capability, and indeed yacc has survived quite nicely without
one. Here we give two examples to demonstrate that programming features

9

KAMIN

can be useful even in a parser generator.

Bear in mind that all the programming features we use in these examples
— excepting only the parsing combinators listed above — are obtained for
free.

(Before continuing, we warn the reader that these examples do not quite
work, in the sense that the grammars resulting from the transformations we
will make are not necessarily amenable to our simple parsing method — in-
deed, very few grammars are. The point is that we can use the programming
facilities of the host language to manipulate grammars. With a stronger pars-
ing method — such as the one implemented in the next section — the examples
would be more likely to produce working parsers.)

For our first example, consider the following problem: Assume the language
we wish to parse is an expression language which, like Standard ML itself, has
token classes opl, op2, ..., op9, representing binary operators of increasing
precedence. Grammars that incorporate precedence, are unambiguous, and
can be parsed top-down are tricky to write. Here is the classic example of
expressions over + and *:

E— TF
E'-+FE | ¢
T—PT
T"—* T | €
P —id

Thus, our grammar will have a sequence of rules of the form:

Exprl — FEzpr2 Exprl’
Expr1l’ — opl Ezprl | e
Expr2 — Expr3 Expr2’
Expr2" — op2 Ezpr2 | e

(Ezpr10 is a separate case that must be written out by hand, like P above.)
We can avoid writing such a long list of rules by using the facilities of the
host language to write a rule-generating function:

fun leveln (n:int) =
let val ntn = "Expr"~(toString n)
val ntn’ = "Expr"~ (toString n) ~'"prime"
val ntn’’ = "Expr"~(toString (n+1))
val opn = "op"~(toString n)
in [ntn ::= nonterm ntn’’ oo nonterm ntn’,
ntn’ ::= term opn oo nonterm ntn || empty

10

KAMIN

]

end;
Now we can generate all 27 rules with the call
map leveln (intvl 1 9)

As another example, suppose we wanted to add the capability of using
regular-right-part rules, that is, rules with regular expressions in their right-
hand sides.

There is a well-known translation from a regular-right-part rule to a set of
ordinary rules parsing the same sentences. We will formalize this translation
as follows: Consider a production A — R, where R is a regular expression over
grammar symbols. Note that, since right-hand sides can use alternation, we
can make the restriction, without loss of generality, that every non-terminal
has a single production. We translate R into a pair R, containing an ordinary
right-hand side for A and a set of new, ordinary productions (from new non-
terminals). Thus, if A has the one production A — R, and if R= (a, @), then
the set of productions {A — a} U ® derive the same sentences (from A) as
the one original production.

Here, then, is the definition of }/i;, by induction on the structure of R:

RS = (RS,R,U5,)

§|T'S’ — (B,{B— R,|S;} UR,US,), where B is new
Rx = (B,{B — R,Ble} U Ry, where B is new

X = (X,{}),if X is a token, non-terminal, or €

This translation generates only ordinary rules, because for every R, ﬁl con-
tains no Kleene stars or alternation, and the new productions in I/%Z contain
no Kleene stars and alternation only at the top level.

With the programming facilities of the host language, we can write these
translations:

type RRP = RHS * Parser list;

val rpempty (*: RRP *) = (empty, [1);
val rpterm (*: Token -> RRP *) = fn t => (term t, [1);
val rpnonterm (*: Name -> RRP *) = fn n => (nonterm n, []);

infix 3 ooo; (* RRP * RRP -> RRP)
fun (rhsi,rll) ooo (rhs2,rl2) = (rhsl oo rhs2, rll @ rl2);

infix 2 |||; (* RRP * RRP -> RRP x*)

11

KAMIN

fun (rhsi,rll) ||| (zhs2,rl2) =
let val B = genName ()
in (nonterm B,
[B ::= rhs1 || rhs2] @ rll @ rl2)
end;

val star (* RRP -> RRP x*)
= fn (rhs,rl) => let val B = genName ()
in (nonterm B,

(B ::= rhs oo nonterm B || empty) :: rl)
end;
infix 1 ::==; (* :name * RRP -> Parser list %)
fun A ::== (rhs,rl) = (A ::= rhs) :: rl;

4.2 Defining the combinators

The parsing method we implement is recursive-descent. Recursive descent
parsing is not a powerful method. Or, rather, it is powerful only insofar as it
is used informally and can be modified manually in specific cases. The LL(1)
method presented in the next section is far more powerful. However, this
example is much easier to explain, as it includes only about 50 lines of ML (of
which about 15 is C++ code to be emitted). We will present all the code for
this example, and not for the more elaborate examples to follow.

The basic idea of top-down parsing [1] is this: We are at all times attempt-
ing to find a substring of the input that can be derived from a particular
non-terminal. By looking at the next token of the input, we decide which
rule for that non-terminal is most appropriate, and then proceed to try to
find strings derivable from each part of that right-hand side; this in turn leads
to attempts to find strings for the non-terminals occurring in that right-hand
side, and so on. Recursive descent parsing is a method of implementing top-
down parsing in which each non-terminal is represented by a parsing function,
which performs the actions just described. That is, it decides which right-hand
side is appropriate and then attempts to match a string derivable from that
right-hand side; if a non-terminal occurs in the right-hand side, the parsing
function corresponding to that non-terminal is called. Thus, one obtains a set
of mutually recursive parsing functions.

The key question in formalizing this method is, how does a parsing function
determine which right-hand side is appropriate? For this example, we give a
very simple answer: it checks the next input token against the first symbol of
each rule that starts with a token; if none match the input token, then the
rule that does not begin with a token is used. This version of the method
requires that only one right-hand side for a given non-terminal can start with
a non-terminal (or €); we further require that this rule be presented as the last

12

KAMIN

rule for that non-terminal.?
As we have said, a “parser” in this language is a C++ function:

type Parser = CFunction;

Each non-terminal in a grammar has an associated parsing function. Thus,
the collection of all rules for a non-terminal will be an expression of type
Parser. The individual rules, on the other hand, denote parts of that parsing
function. More precisely, each right-hand side denotes an attempt to parse the
input, which may fail and have to jump to the next right-hand side. Thus,

type RHS = Label -> CCommand;

The combinators have the following types, as given earlier:

[l: RHS x RHS — RHS

oo: RHS x RHS — RHS
term: Token — RHS
nonterm: Name — RHS

::=: Name x RHS — Parser

The simplest case is the code corresponding to a token — term ¢ — which
just compares the current token to ¢ and either succeeds or jumps to the failure
label. Assuming the entire input is in an array tokens and the integer variable
current is the index of the next token, the piece of code is

if (tokens[current]) == t)
current++;

else
goto failure-label;

Abstracting from both the token and the failure label, we get the definition
of term (the carat (~) is ML’s string concatenation operator):

fun term (t:Token) = fn (lab:Label) =>

"if (tokens[current]) == " "t =~ ")\n"
~ "current++;\n"
~ "else\n"

~ "gOtO "~ 1ab " n;\nn ;

We are treating the C++ program simply as a string, and indeed we will
continue to do so in all of our program generators.

We can enhance the readability of this code by using ML’s anti-quotation
feature. With this feature, one can write*

3 Of course, recursive descent could never be used in practice if these restrictions were
enforced. Again, the method is normally used informally, with “lookahead” added as needed.
Formalizing this lookahead leads eventually to LL(1) parsing, which we will implement
separately. The idea here is to give a simple formalization of recursive descent so that we
can illustrate the program generation method.

* The feature is more general than what we are presenting; see [17] for details.

13

KAMIN

htoo. Tx LS for ... cox T

and %... “(==-) ...¢ for M..v ot (=mo) oL

That is, within anti-quotation brackets (%¢ and ¢), an anti-quoted expres-
sion (surrounded by ~(and)) is evaluated (to a string) and spliced in. As
an abbreviation, if the expression “---" consists of a single identifier, the
parentheses can be elided. Furthermore, newlines can be embedded within
anti-quotation brackets.

Using anti-quotation, the definition of term becomes:

(* term: Token —> RHS *)
fun term (t:Token) = fn (lab:Label) =>
%¢if (tokens[current] == ~t)
current++;
else
goto “lab; ¢ ;

Here are the other combinators. Note how the alternation combinator
creates a label for the second alternate, and the rule-forming combinator : :=
provide the final failure label.

(* empty: RHS x)
val empty = fn lab => %‘¢;

(* nonterm: Name -> RHS x*)
fun nonterm (v:Name) = fn (lab:Label) =>
%¢if (!parse”v()) goto "lab;‘ ;

(*x oo: RHS -> RHS -> RHS *)
infix 3 oo0;
fun ((rhs1:RHS) oo (rhs2:RHS))
%¢~(rhsl lab)
~(rhs2 lab) ¢ ;

fn (lab:Label) =>

(* ||: RHS -> RHS -> RHS %)
infix 2 ||;
fun ((rhs1:RHS) || (rhs2:RHS))
let val 1 = genLabel()
in %‘"(rhs1 1)
return true;
“1l: current = pos;
~(rhs2 lab)‘

fn (lab:Label) =>

end;
(¥ ::= : Name -> RHS -> CFunction *)
infix 1 ::= ;
fun (v:Name) ::= (rhs:RHS) =

14

KAMIN

%h¢int parse“v () {
int pos = current;
~(rhs "L1000")
return true;

L1000:
current = pos;
return false;

e

5 LL(1) parser generator

An LL(1) parser [1] operates by keeping a (statically generated) table A/ which
maps non-terminals and tokens to productions. When attempting to parse a
string derived from non-terminal A, when the current token is ¢, M[A,t] gives
the unique production from A — it has to be unique, or the grammar is not
LL(1) — that can derive a string starting with ¢, if any. The construction of
M is somewhat complex and is the heart of the parser construction process.

We do not wish to explain the construction of LL(1) parsing tables, but we
can say this much: The construction involves the calculation of two functions,
First : Non-terminals = @(tokens U {€}) and Follow : Non-terminals =
o(tokens U {eof}). First(A) contains every token that can possibly be the
initial token in a string derived from A; it includes “€” if A can derive the
empty string. Follow(A) contains all the tokens that can immediately follow A
in any string derivable from the start symbol (that is, in any sentential form); if
A can appear as the last symbol in a sentential form, then Follow(A) contains
eof. Note that these sets cannot be determined solely from the productions
for A; Follow(A), for example, can be determined only by looking at all the
productions of the grammar in which A occurs.

These “global” calculations can be induced from the meanings of individual
phrases in the grammar, as long as those meanings are rich enough. For this
parser generator, we have had to change the combinator types a bit. Here,
a RHSPart refers to a fragment of a right-hand side, a RHS is one or more
complete right-hand sides for a single non-terminal, and a Rule is a non-
terminal together with all its right-hand sides. Thus, the combinators are:

|l: RHS x RHS — RHS

00: RHSPart x RHSPart — RHSPart
term: Token — RHSPart

nonterm: Name — RHSPart

prod: RHSPart — RHS

::=: Name x RHS — Rule

Note the new combinator prod, which coerces a RHSPart to a RHS. A new
function, called grammar, converts a list of Rules to a list of parsing functions
in C++. The grammar used as an example in the previous section becomes:

15

KAMIN

"A" ::= prod (term a oo nonterm "B" oo nonterm "B")
|| prod (nonterm "B") ;
"B" ::= prod (term b)

|| prod (term ¢ oo nonterm "A") ;

The global nature of the table construction entails that the combinator
definitions be quite a bit more complex than in the previous section. Here we
present only the types:

type RHSPart =

(unit -> token list) (* calculate FIRST set *)
* (token list -> unit) (* add to FOLLOW set *)

* CCommand; (* code to parse rhs, or fail *)
type RHS = (unit -> (token list) list) (* FIRST sets of all RHS’s *)
* (token list -> unit) (* add to FOLLOW set *)

* CCommand list; (* code for all RHS’s x*)

type Rule = (unit->unit) (* add to First set for lhs x)

* (unit->unit) (* add to Follow set for lhs x*)

* (unit->(token list) list) (* get First sets for all rhs’s *)
* (unit -> int -> CArrayInit) (* calculate array M x)

* CCommand; (*x calculate C++ parser fcn *)

The entire set of combinators (including auxiliary functions and type dec-
larations) comes to about 350 lines of ML code. As a point of comparison, the
Bison LR parser generator [3] is about 7000 lines of C. Granted, the LALR(1)
construction that Bison uses is more complicated than the LI (1) construction
used here, and Bison includes some additional facilities such as ambiguity res-
olution. However, it contains nothing analogous to the programming facilities
whose use we illustrated in the previous section. (Those examples need some
minor changes to work with the current set of combinators.)

6 Abstract syntax tree generation

Language processors usually begin their work by parsing their input and con-
structing an abstract syntaz tree [1], basically a simplified version of the parse
tree. Abstract syntax trees (AST’s) are trees whose nodes are labelled with
abstract syntax operators. Each operator o has a signature 7y X o X -7, — T
In an AST, the type of a node labelled with ¢ is 7, and it must have exactly n
children with types 71, ..., 7,. An abstract syntaz is a finite set of abstract syn-
tax operators. In short, then, an AST is a tree whose structure is constrained
by the set of operators in its abstract syntax.

C++ has excellent facilities for defining tree-like data and hiding their
representation. Given an abstract syntax, it is a simple matter to write a
class whose objects are AST nodes. There are two basic styles, which we’ll
call the single-class style and the subclass style. In the single-class style, the

16

KAMIN

class ASTNode contains a tag field (the name of the operator), a union type
(the children corresponding to each operator), and a collection of constructors,
accessors, and auxiliary functions, like print. The latter is written as a switch
statement, dispatching on the tag (that is, the abstract syntax operator) of
the node. In the subclass style, ASTNode is an abstract base class, and each
operator is implemented as a derived class of ASTNode; each such class defines
its own constructors and destructors, and its own part of functions like print,
eliminating the switch statement in favor of dynamic method dispatch.

Either way is straightforward, but each has disadvantages. The subclass
method makes it easy to add a new abstract syntax operator, since the required
changes are completely localized: just add a new subclass. On the other hand,
the single-class method facilitates the addition of new auxiliary functions, since
these can be added as single function definitions in a single class, instead of as
separate parts of a function definition spread across all the subclasses. Thus,
either method can result in code that is difficult to maintain, depending upon
the types of changes that need to be made.

Yet in either case the implementation of abstract syntax trees is highly
stylized; an experienced programmer can write such classes almost without
thinking. Thus, this would appear to be a natural domain for program gen-
eration.

We have written a program generator that generates (single-class) imple-
mentations of abstract syntax trees given a list of the abstract syntax oper-
ators. As an example, suppose we have an abstract syntax with one type
(Ezpr) and three operators:

const: int — Expr
plus: Expr x Expr — Erpr
negate: Fxpr — Ezrpr

We would specify this abstract syntax as follows:

genAbsSyn "Expr" (* name of the abstract syntax *)
["Expr"] (* AST types that are being defined x)
["const" oftype "int" --> "Expr",
"plus" oftype "Expr" ** "Expr" --> "Expr",
"negate" oftype "Expr" --> "Expr"
15

This function call produces two C++ files, Expr.h and Expr.C. As usual, the
“.h” file gives the representation and some small function definitions, while
the “.C” file contains the remaining function definitions. Specifically, the class
defines constructors, accessors, settors, and a print function. In total, the two
files contain about one hundred lines of C++ code.

The program generator is written in about 180 lines of ML.

The use of a program generator has some decided advantages over either
of the representations that a C+-+ programmer might use. The addition
of new abstract syntax operators is as simple as it could possibly be, even

17

KAMIN

simpler than in the subclass implementation. Adding new auxiliary functions
— there are countless possibilities — is perhaps harder than it would be using
the single-class implementation, because it requires modifying the program
generator, but the advantage is that, once the change is made, it is made
in all the AST classes generated by the generator. Similarly, a change in
representation requires changes in the program generator, but once made, is
made everywhere.

7 Conclusions

Though much has been learned about the structure of programming languages
and their processors, the simple question “how should I design a language ap-
propriate for my application?” has no easy answer. Embedding in a functional
language is a method that is relatively easy and produces good results.

However, these results are far from perfect, and many issues remain before
the method can be very widely used. A functional language designed for
embedding would need to meet the needs of the domain-specific language user
more fully. Some needed accommodations are:

Better syntax. The syntax of all of our embedded languages is more verbose
than it would be if the language were defined from scratch. An example
is the syntax of context-free grammars used in our parser generators; it is
“isomorphic” to the yacc syntax, but still about twice as long simply due
to syntactic issues such as having to place an operator between each symbol
in the right-hand sides.

Better error messages. Users can receive error messages that are utterly
incomprehensible, because they are designed for users of the host language
rather than users of the embedded language. For example, if a user enters
the following grammar in the recursive-descent parser generator:

"A" := (term a) oo (nonterm "B") oo (nonterm "B")
|| (nonterm "B") ;

(typing := instead of ::=), our embedded implementation produces this
fearsome response:

Error: operator and operand don’t agree [tycon mismatch]
operator domain: ’Z ref * ’Z

operand: string * (Label -> string)
in expression:
"A" := term a

The error message can be understood only by a user who not only knows
ML, but also knows how values in the embedded language are represented.
(An even worse result occurs if the user types:

"A" ::= (term a) o (nonterm "B") oo (nonterm "B")
|| (nonterm "B") ;

18

KAMIN

mistyping the first oo as o. o is an infix operator in ML, representing
function composition, and the above expression, as it happens, is both syn-
tactically correct and type correct. Indeed, the value of this expression is
a syntactically legal C++ function. Unfortunately, that function does not
parse the grammar that the user intended to enter.)

Domain-specific analyses. The FPIC plotting function draws a curve by
emitting a long list of line-drawing commands. Depending upon the output
device, some other representation may be more efficient. Of course, repre-
sentation transformations could be done as a separate pass, but ideally the
plotting function would have such an optimization built in. In particular,
this would allow the embedded language processor to implement represen-
tation optimizations in separately compiled program segments, just as the
ML compiler optimizes individual functions.

The program-generating languages suggest an entirely new set of domain-
specific analyses, namely analyses of the program that is to be generated.
For instance, one would like to be able to ensure the syntactic and type
correctness of generated programs a priori, before generating any actual
programs. (The MetaML language [18] does just this for program gener-
ators from ML to ML, written in a certain style.) As things stand, these
analyses are done by the C++ compiler, but building them into the gener-
ator would give earlier feedback; furthermore, the generator could perform
some optimizations, based on its knowledge of the programs it is generating,
that the C4++ compiler could not be expected to perform.

We are currently exploring ways in functional language processors could
be customized in these ways.

Acknowledgement

The author gratefully acknowledges the support provided by the Oregon Grad-
uate Institute, where he was on sabbatical during the preparation of this paper.

References

[1] Aho, A. V., R. Sethi and J. D. Ullman, “Compilers: Principles, Techniques,
and Tools,” Addison-Wesley, 1986.

[2] Carlson, W. E., P. Hudak and M. P. Jones, An ezperiment using Haskell to
prototype “Geometric Region Servers” for navy command and control, Research

Report YALEU/DCS/RR-1031, Yale Univ. C. S. Dept., May 1994.

[3] Donnelly, C. and R. Stallman, “The Bison Manual: Using the YACC-compatible
Parser Generator,” Free Software Foundation, 1995.

[4] Elliott, C., Modeling interactive 3D and multimedia animation with an
embedded language, Proc. USENIX Conf. on Domain-Specific Languages, Santa

19

KAMIN

Barbara, Oct. 1997, pp. 285-296.

[5] Hudak, P., S. Peyton Jones and P. Wadler (eds.). Report on the Programming
Language Haskell (Version 1.2), ACM SIGPLAN Notices 27(5), May 1992.

[6] Hudak, P., Building domain-specific embedded languages, Computing Surveys,
28A(4).

[7] Hudak, Paul, Tom Makucevich, Syam Gadde and Bo Whong, Haskore music
notation: An algebra of music, J. Func. Prog. 6(3) (1996), pp. 465-483.

[8] Hutton, G., Higher-order functions for parsing, J. Func. Prog. 2(3) (1992),
pp- 323-343.

[9] Hutton, G. and E. Meijer, A Haskell library of monadic parser combinators,
Web page at www.cs.nott.ac.uk/Department/Staff/gmh/pearl.hs, April,
1997.

[10] Kamin, S., The Challenge of Language Technology Transfer, ACM Computing
Surveys 28A.(4) (1996).

[11] Kamin, S., FPIC documentation, Web page at www-sal.cs.uiuc.edu/
“kamin/fpic/.

[12] Kamin, S. and D. Hyatt, A special-purpose language for picture-drawing,
Proc. USENIX Conf. on Domain-Specific Languages, Santa Barbara, Oct. 1997,
pp- 297-310.

[13] Kernighan, B. W., PIC: A crude graphics language for typesetting, Bell
Laboratory, 1981.

[14] Levine, John R., Tony Mason and Doug Brown, “Lex & Yacc,” 2nd Ed.
O’Reilly & Associates, 1992.

[15] Liaw, Andy and Dick Crawford, “gnuplot 3.5 User’s Guide,” Available by
anonymous ftp at picard.tamu.edu in directory pub/gnuplot.

[16] Milner, Robin, Mads Tofte and Robert Harper, “The Definition of Standard
ML,” The MIT Press, Cambridge, MA, 1990.

[17] Standard ML of New Jersey User’s Guide, Available at cm.bell-labs.com/
cm/cs/what/smlnj/index.html, 1997.

[18] Taha, Walid and Tim Sheard, Multi-stage programming with explicit
annotations, Proc. ACM SIGPLAN Symp. on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM ’97), Amsterdam, June 12—
13, 1997, SIGPLAN Notices 32(12) (1997), pp. 203-217.

20

