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Abstract 

A space X is said to be an (a)-space provided that for every open cover U of X and every 

dense subspace D of X there exists a closed in X and discrete subspace F c D such that 
St(F,U) = X. We show that every Tychonoff space can be represented as a closed subspace of a 
Tychonoff (a)-space. Also we consider closed Gb-subspaces. 0 1997 Elsevier Science B.V. 
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A space X is said to be an (a)-space [lo], provided that for every open cover U of 

X and every dense subspace Y c X there exists a closed (in X) discrete subspace 

F c Y such that St( F, U) = X. This definition was motivated by the consideration of 

act spaces [ 1,2,7-9,12,15,19,20] (a space X is act [7] provided that for every open cover 

U of X and every dense subspace Y c X there exists a finite subset F c Y such that 

St( F, 2.4) = X) which form a subclass of the class of countably compact spaces due to the 

star characterization of countable compactness (see [4]): a Hausdorff space is countably 

compact iff for every open cover U of X there exists a finite subset F c X such that 

St(F,U) = X. It is clear that act is equivalent to (a) plus countable compactness. It 

was demonstrated in [lO,l l] that in many ways property (a) behaves like normality. In 

this paper we demonstrate that yet in one way property (a) and normality behave quite 

different: while normality is hereditary with respect to closed subsets, property (a) is 

not closed hereditary at all: all Tychonoff spaces are closed subspaces of (a)-spaces! We 

prove the following: 
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Theorem 1. Every Tychonof space X can be represented as a closed nowhere dense 

zero-set in a TychonofS (a)-space R(X). Zf X IS normal or countably paracompact then 
so is R(X). 

Theorem 2. Every Tychonoff countably compact space can be represented as a nowhere 

dense zero-set (hence as a closed Gs-subspace) in a Tychonoff act space. 

Theorem 2 improves Theorem 4.2 from [9] which states that every Tychonoff countably 

compact space can be represented as a closed subspace of a Tychonoff act space. It was 

also demonstrated in [9] that a regular closed, Gs-subset in an act space is not necessary 

act. However, the following questions remain open: 

Question 3. Characterize those Tychonof spaces which can be represented as regular 
closed subsets in Tychonoff (a)-spaces. 

Question 4. Characterize those TychonofScountably compact spaces which can be rep- 
resented as regular closed subspaces of Tychonoff act spaces. 

Before starting the constructions, we note that the problem of closed embeddings was 

considered in different classes of spaces: 

(1) Pseudocompact spaces: operation 

XAPXX (WI x l)\(PX\X) x {WI) 

embeds arbitrary Tychonoff space X into a pseudocompact space as a closed sub- 

space ([13], see [4]). Other constructions provide closed embeddings into pseudo- 

compact spaces preserving certain topological properties [ 14,16,6]. Some problems 

concerning this subject remain open [ 171. 

(2) L. KoEinac noted that every Tychonoff space is representable as a closed subspace 

of a C.C.C. space. 

(3) The author noted that every Tychonoff space can be represented as a closed Gg- 

subspace of a Baire space [5]. 

(4) As it was noted before, every Tychonoff, countably compact space can be rep- 

resented as a closed subspace of a Tychonoff act space [93. Recently, Vaughan 

has found an alternative proof of this fact: if X is countably compact then the 

Alexandroff duplicate of X is act. 

(5) Davis showed that every topological space can be represented as a closed subspace 

of an AD-refinable space [3]. 

We start with the description of a construction of TkaCuk [ 181 and with the discussion 

of the properties of this construction. Later we use this construction in the proof of 

Theorem 2. 
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1. Some properties of TkaEuk’s construction 

Let 2 be a topological space and let r = /Z/. Denote by A(T) the one-point compact- 

ification of the discrete space A of cardinality 7; A(T) = A U {CL}. Fix a disjoint family 

{A,: z E 2) f o countable infinite subsets of A and put 

T(Z) = (2 x {CA}) u Yo c Z x A(T) 

where YO = U{(z) x A,: z E Z}. Then 

(1) Z is closed and nowhere dense in T(Z); T(Z) \ Z is open, dense and discrete in 

T(Z) [181. 
(2) If Z is compact then so is T(Z) [18]. 

Properties (1) and (2) are true also for the well-known Alexandroff Duplicate con- 

struction; besides TkaEuk’s construction has some nicer properties which the Alexandroff 

Duplicate construction has not in general. 

(3) Every point of Z is a limit point for a convergent sequence of points of T(Z) \ Z 

(A, converges to 2). 

(4) If Z is countably compact then T(Z) is act [9]. 

(5) If H is a closed subspace of Z then there exists a regular closed subspace R(H) c 

T(Z) such that R(H) n Z = H. 

Proof. Put R(H) = H U YH where YH = {{r} x A,: 2 E H}. Then YH is open in Z 

and it remains to prove that YH = RH. Let p E YH \ YH. Then p E Z x {u} since Yo is 

discrete. Suppose p $ H. Then ((Z x {a} \ H) x A(T)) nT( Z) is an open neighbourhood 

of p in T(Z) that does not intersect YH which is a contradiction. 0 

(6) There exists a decreasing sequence 

T(Z) = To(Z) 3 T,(Z) 3 ... 3 T,(Z) 3 “. (n E w) 

of subspaces of T(Z) such that 

(6a) n{&(Z): n E w} = Z, 

(6b) T,(Z) is closed in T(Z) and h omeomorphic to T(Z) for each n E w. 

Proof. We enumerate A, for each z E X: A, = {aznr : m E w} and put TTL(Z) = 

z u {uzm: zEZandm>n}. 0 

It is easy to show that 

(6~) Each T,(Z) is homeomorphic to T(Z) so that the homeomorphism restricted 

to Z is the identity mapping. (To prove this, one needs just to reenumerate the 

points.) 

Henceforward, in fact, we use only properties (l)-(6), so T can be assumed to be any 

construction other than TkaCuk’s one which satisfies these properties. 
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2. Density tightness lemma 

The density tightness of a space X is the cardinal number 

&(X) = min{ 7: V dense subspace Y c X V’z E X 3A c Y 

such that IAl < w and 2 E A}. 

This notion was defined by Vaughan; for the countable case it implicitly appeared 

in [9] where the following simple lemma was proved: 

Lemma 5 [9, Lemma 1.71. Every countably compact space with countable density tight- 

ness is act. 

In this paper we need a special case of this lemma. A subset Y c X is w-dense in X 

[9] provided for every II: E X there exists a countable A c Y such that z E 2. 

Lemma 6. If a countably compact space X contains an w-dense subspace the points of 

which are isolated in X then X is act. 

Indeed, if J c X is a w-dense subspace of X and every point of J is isolated in X 

then every dense subspace Y E X must contain J and hence Y is w-dense in X. 

3. Proof of Theorem 1 

We put R(X) = X x (w + 1) with the topology stronger than that of a Tychonoff 

product: the points of X x w are isolated while a basic neighbourhood of a point p = 

(z, w) E X x {w} takes the form U x [n, w] where U is a neighbourhood of 2 in X and 

n E w. Clearly, X is homeomorphic to X x {w}, a closed, nowhere dense Gb-subset of 

R(X) and R(X) is a Hausdorff space. To show that it is Tychonoff, suppose that H is 

a closed set in R(X) and p $ H. We are to construct a function f : R(X) 4 R such 

that f(p) = 0 and f(H) = (1). S ince the points of R(X) \ (X x {w}) are isolated, 

only the case p E X x {w} is interesting. In that case, there is a continuous function 

fe : X x {w} + R such that fo(p) = 0 and fa(Ha) = {l} where Ha = H n (X x {w}). 

Put 

f((z’ n)) = { )a((~, w)) 

if (z,n) E H, 

if (z, n) $ H. 

Then f is the desired function. 

Similar proof shows that R(X) is normal if so is X. 

Now we show that R(X) is an (a)-space. Let U be an open cover of R(X) and let D 

be a dense subspace of R(X). Then D > X x w and without loss of generality we can 

suppose that D = X x w. For n E w we denote 

V,={Ux[n,w]: U’ is o p en in X and U x [n, w] is contained in some 

element of U} 
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and 

u, = u {u: u x [n,w] E I&}. 

Then U,J > Ur > r/, > t . . and 

X = U{U& n E w}. <t> 

Next we put F, = X x (0) f orn=OandF,=(X\U,_1)x{n}forO<n<ti. 

We denote F = U{Fn: n E u}. We claim that F is closed and discrete in R(X). All 

we have to show is that an arbitrary point p = (2, w) E X x {w} is not a limit point for 

F. By (t), there is an n E w for which z E U, and therefore there is also an U C X 

such that z E U and U x [n, W] E V,. Then U x [n + 1, w] is a neighbourhood of p in 

R(X) that does not meet F. 

Now, let X be countably paracompact. We have to show that R(X) also is countably 

paracompact. Let 0 be a countable open cover of R(X). For each 0 E 0 we denote 

Wo, = {U c X: U is open in X and U x [n,~] c 0). 

Clearly, this family contains the maximal (with respect to inclusion) element IV,,, = 

U{U: U E Wo,}. Then l_l{Won: 0 E 0, n E w} is a countable open cover of X. 

There is therefore a locally finite open refinement V of W. For each V E V we choose 

a lVo(~)~(~) E W that contains V. Then V x [n(V),w] is contained in O(V) and 

ZJa = {V x [n(V), w]: V E V} is a locally finite (in R(X)) cover of X x {w} by open 

sets (in R(X)). Finally, U = 240 U ((4): q $ UZ&} . 1s a locally finite open refinement 

of 0. 

4. Proof of Theorem 2 

Let 2 be a Tychonoff countably compact space. Consider the following subspace S( 2) 

of the product T(Z) x (w + 1): 

S(Z) = U {Tn(Z) x {n}: n E u} U (2 x {u}} 

(see property (6) for the definition of the subspaces T,(Z)). Clearly 2 x {w} N 2 is a 

nowhere dense zero-set in S( 2). To show that S(Z) is countably compact we need to 
show that S(Z) is closed in the product T(Z) x (w + 1). Suppose p E S(Z) \ S(Z). 

Since, for each n, T,(Z) is closed in T(Z) and Tn(Z) x {n} is clopen in S(Z) we 

conclude that p E T(Z) x {ti} and hence p E (T(Z) \ 2) x {w}. By (6a) there exists 

an integer n such that p E (T(Z) \ T,(Z)) x {w}. Then (T(Z) \ T,(Z)) x [n,w] is 

a neighbourhood of p in T(Z) x (w + 1) that does not intersect S(Z), a contradiction. 

Being a closed subspace of a countably compact space S(Z) also is countably compact. 

Now, we have to show that S(Z) IS act. For each n E w put J, = (T,(Z) \ 2) x {n}. 

Then the subspace J = l_l{&: n E w} is dense in S(Z) and consists of points isolated 

in S(Z). By Lemma 6 it remains to check that J is w-dense in S(Z). Let z E S(Z). If 

z E Tn(Z) x {n} for some n E w then z E 7[ for some countable subset A C J, since 
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by (6~) T,(Z) { ) ’ h x 12 1s omeomorphic to T(Z) (where J, takes the role of Yo). So let 

x = (p,w) E Z x {w}. By previous observation, for each n E w there is a countable 

subset A, c J, such that (p, n) E &. Then for the set A = U{An: n E w} we have 

IAl = w, A c J and z E 2. 

5. Final remarks 

One can see from the proof of Theorem 1 that normality and countable paracompact- 

ness are not the only properties that are preserved by the operation R. For example, 

paracompactness is preserved too. I have chosen normality and countable paracompact- 

ness because of my interest to Dowker and (a)-Dowker spaces (a space X is (a)-Dowker 

[lo] provided X is an (a)-space while X x (w + 1) is not). Since normality and countable 

paracompactness are closed-hereditary properties, we obtain the following corollary from 

Theorem 1: 

Corollary. Every Dowker space can be embedded as a closed subspace into a Dowker 

(a)-space. 

Note that every normal, (a)-Dowker space is a Dowker space [lo]. 
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