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Abstract

We present different results derived from a theorem stated by Wan and Lidl [Permutation
polynomials of the form xrf (x(q−1)/d ) and their group structure, Monatsh. Math. 112(2) (1991)
149–163] which treats specific permutations on finite fields. We first exhibit a new class of
permutation binomials and look at some interesting subclasses. We then give an estimation of
the number of permutation binomials of the form Xr(X(q−1)/m + a) for a ∈ F∗

q . Finally we
give applications in coding theory mainly related to a conjecture of Helleseth.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The study of permutation polynomials started with Hermite [9] for prime fields,
and Dickson [5] for arbitrary finite fields. Recently, the applications of permutations
of finite fields for cryptography [11–13,16,17,20] bring this subject back to the front
scene. The articles of Lidl and Mullen [14,15] list some open problems of inter-
est and one of them is to find new classes of permutation polynomials. Despite the
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interest of numerous authors, still very little is known about which polynomials are per-
mutation ones.

This article is based on a characterization of permutation polynomials from
Niederreiter [21] generalized by Lidl and Wan [26] from which we derive a new
class of permutation polynomials. We then exhibit interesting subclasses it contains:
permutation binomials [4,10,23,24,6,27], complete permutations [19,21,25] and power
permutation with Niho exponents [3,7,22]. In a second part, we establish a lower bound
on the number of permutation polynomials of the form Xr(X(q−1)/m + a).

Finally, we state some consequences in coding theory. This work was first motivated
by the study of an old conjecture by Helleseth [8]

Conjecture 1.1. For all integer k coprime with 2n − 1, there exists a ∈ F∗
2n such that

Trace(xk + ax) is a balanced word.

The links between this conjecture and the preceding results are given in the
third part.

2. Preliminary

In this article, p will be a prime number, q a power of p, and Fq will denote the
finite field of order q. Fq [X] is the set of polynomials with coefficients in Fq and
indeterminate X. � will be a primitive element in Fq .

Definition 2.1. A polynomial with coefficients in Fq for which the associated polyno-
mial function is a permutation of Fq is called permutation polynomial of Fq .

In [26], Wan and Lidl give a useful characterization of permutation polynomials we
will use extensively.

Theorem 2.2. Let m and r be two positive integers such that m divides q − 1. Let
� be a primitive element in Fq and assume P is a polynomial in Fq [X]. Then Q =
XrP (X(q−1)/m) is a permutation polynomial of Fq if and only if the following condi-
tions are satisfied:

(i) Gcd(r,
q−1
m

) = 1.

(ii) ∀i; 0� i < m, P (�i
q−1
m ) �= 0.

(iii) ∀i, j ; 0� i < j < m, Q(�i )
q−1
m �= Q(�j )

q−1
m .

Remark 1. If m is small, this also gives an efficient way to test whether Q is a
permutation polynomial.

Remark 2. If m = q − 1, we get Q = XrP (X) is a permutation polynomial if and
only if the associated function on Fq is injective.
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Remark 3. If m = 1, we get Q = P(1)Xr is a permutation polynomial if and only if

(i) Gcd(r, q − 1) = 1.
(ii) P(1) �= 0.

In the third section, we will need a classical theorem on character sums.

Definition 2.3. Let G be a finite group of order m. A morphism � : G → C is called
a character of the group G. When G is the multiplicative group F∗

q , � is extended
using �(0) = 0.

Theorem 2.4 (see Lidl and Niederreiter [18, Theorem 5.41]). Let � be a multiplica-
tive character of Fq of order m > 1 and let P ∈ Fq [X] be a monic polynomial of
positive degree that is not an mth power of a polynomial. Let d be the number of
distinct roots of P in its splitting field over Fq . Then for every x ∈ Fq we have

∣∣∣∣∣∣
∑
a∈Fq

�(xP (a))

∣∣∣∣∣∣ �(d − 1)
√

q.

3. A new class of permutation polynomials

We will derive from Theorem 2.2 a new class of permutation polynomials, with
coefficients lying in an appropriate subfield.

Theorem 3.1. Let p be a prime, m be a positive integer and k be the order of p

in Z/mZ. Let � be a positive integer, take q = pk�m. Assume r is a positive integer
coprime with q − 1 and P is a polynomial in Fpk� [X].

Then the polynomial Q = XrP
(
X

q−1
m

)
is a permutation polynomial of Fq if and

only if

(iv) ∀� ∈ Fq such that �m = 1, P (�) �= 0.

Proof. We use Theorem 2.2. Note that (iv) is (ii). Thus we have to prove that Q
satisfies (i) and (iii).

The integer r is coprime with q −1 and thus coprime with (q −1)/m too. Condition
(i) is thus satisfied.

For (iii), we first note that

q − 1

m
= pk� − 1

m

m−1∑
j=0

pk�j . (1)
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Let � be a generator of the cyclic subgroup of order m of F∗
q . As it lies in Fpk� , we

have P(�i )p
k� = P(�i ) for 0� i < m. We then obtain

P(�i )
q−1
m = P(�i )

pk�−1
m

∑m−1
j=0 pk�j

via Eq. (1)

=
⎛
⎝m−1∏

j=0

P(�i )p
k�j

⎞
⎠

pk�−1
m

=
(
P(�i )m

) pk�−1
m

because P(�i ) lies in Fpk�

= P(�i )p
k�−1

= 1

and thus, we get Q(�i ) = �ri . The �ri , 0� i < m, are pairwise distinct because r is
coprime with q−1. Condition (iii) is then always satisfied by Q and being a permutation
polynomial is equivalent to condition (ii); the necessary and sufficient condition we give
is just a rewrite of it. �

Remark 4. This gives an easy way to construct sparse permutation polynomials.

Example 1. Let p := 2, m := 3 and � := 3, which give k := 2 and q := 218.
Let

Fq = F2[y]/(y18 + y3 + 1)

we have

Fpk� = F26 = F2

[
y3
]
/(y18 + y3 + 1)

= F2[z]/(z6 + z + 1).

The polynomial P(X) = X2 + (z5 + z4 + z2)X + (z4 + z) ∈ F26 [X] is irreducible on
F26 and then has no root in F26 . Since r = 29 is coprime with 218 − 1, the polynomial

Q = Xr
(
X2 q−1

3 + (y15 + y12 + y6)X
q−1

3 + (y12 + y3)
)

= X174791 + (y15 + y12 + y6)X87410 + (y12 + y3)X29

is a permutation trinomial of F218 .

We will now consider several interesting subclasses.
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4. Permutation binomials

Many authors have been interested in binomials as this is the simplest non trivial
case. One can find results on such polynomials in [4,23,24] or for more recent work
[10,27].

Our new class of permutation polynomials gives clearly a class of permutation bi-
nomials taking P = X + a.

Corollary 4.1. Let p be a prime and (m, �) ∈ N2. Let k be the order of p in Z/mZ.
Take q = pk�m and r a positive integer coprime with q − 1.

If a ∈ Fpk� , then the binomial Xr
(
X

q−1
m + a

)
is a permutation polynomial if and

only if (−a)m �= 1.

Remark 5. In [1,2] Carlitz established the existence of permutation polynomials of
the form

X(X
q−1
m + a)

provided q is large enough. However he did not give any construction.

We can remark that the two monomials Xr+ q−1
m and aXr are permutations since the

exponents are coprime with q − 1 as shown in the following lemma.

Lemma 4.2. Let k, � and p be positive integers. Let m be a divisor of pk − 1 and r
be coprime with pk�m − 1,

Gcd

(
pk�m − 1,

pk�m − 1

m
+ r

)
= 1.

Proof. Let q = pk�m. We note that

q − 1

m
= pk − 1

m

�m−1∑
i=0

[
(pk − 1) + 1

]i ≡ pk − 1

m

�m−1∑
i=0

1 ≡ 0 (mod m)

as m divides pk − 1, and thus m divides q−1
m

. q − 1 and q−1
m

have then exactly the

same prime divisors. Take d a prime divisor of q − 1, it divides q−1
m

but not r since r
and q − 1 are coprime. The lemma is thus proven. �

4.1. Complete permutations

An important problem is to find complete permutations, i.e. permutations f such that
x 	→ f (x)+ x is also a permutation (see Niederreiter and Robinson [21]). We will see
that for many values of p, m and � we obtain complete permutations.
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Theorem 4.3. Let p be a prime and (m, �) ∈ N2. Let k be the order of p in Z/mZ.
Take q = pk�m and r a positive integer coprime with q − 1. Assume a ∈ Fpk� is such
that (−a)m �= 1. Then the polynomials

P = X(X
q−1
m + a)

and

Q = aX
q−1
m

+1

are complete permutation polynomials.

Proof. From Corollary 4.1, P is a permutation polynomial. If a lies in Fpk� and is such
that (−a)m �= 1, so does a +1. Thus, again with Corollary 4.1, P +X is a permutation
polynomial.

Q is a permutation polynomial since, via Lemma 4.2, Gcd(q − 1,
q−1
m

+ 1) = 1.
Finally, Q + X is a permutation polynomial via Corollary 4.1. �

4.2. An asymptotic result

We obtained a family of permutation binomials of the type Xr(X(q−1)/m + a)

for specific values of a. A natural question is how many such polynomials are permu-
tation ones.

Definition 4.4. We define

B(q, m, r) =
{
a ∈ F∗

q such that Xr
(
X

q−1
m + a

)
is a permutation polynomial

}

and

N(q, m, r) = #B(q, m, r).

It is known that
∣∣∣N(q, m, r) − m!

mm q

∣∣∣ = O(
√

q), but it seems that no exact upper

bound has been explicited. Theorem 2.2 gives us a quick way to do this.

Theorem 4.5. Let q be a power of a prime. Assume r is a positive integer coprime
with q − 1 and m is a divisor of q − 1. Then:

∣∣∣∣N(q, m, r) − m!
mm

q

∣∣∣∣ �m!
(

1

mm
+ (m − 2)

)√
q + (m + 1)!



64 Y. Laigle-Chapuy / Finite Fields and Their Applications 13 (2007) 58–70

Proof. We work in Fq with m dividing q − 1; we can thus consider G the cyclic
subgroup of F∗

q of order m and take � a generator, i.e. G = 〈�〉. Take � a primitive
mth root of unity in C.

We will denote by � the application from G to the set of mth roots of unity in C:
�(�i ) = �i , and extend it with �(0) = 0.

For a ∈ Fq , Theorem 2.2 ensures that Qa(X) = Xr
(
X

q−1
m + a

)
is a permutation

polynomial if and only if the following two conditions are satisfied:

(
∀i, 0� i < m, �i + a �= 0

)
which is equivalent to (−a)m �= 1 (2)

the function

{ {1, . . . , m} → {1, . . . , m}
i 	→ log�

(
Q(�i )

q−1
m

) is a permutation. (3)

For f : {1, . . . , m} → {1, . . . , m}, we define

Pf (X1, . . . , Xm) =
m∏

i=1

⎛
⎝m−1∑

j=0

[
Xi�

−f (i)
]j⎞⎠ . (4)

Let � be the character x 	→ �(x
q−1
m ).

For x = (x1, . . . , xm) a m-tuplet of elements in F∗
q , we use the notation �(x)

= (�(x1), . . . ,�(xm)). We then have

Pf (�(x)) =
⎧⎨
⎩mm if log�

(
x

q−1
m

i

)
= f (i) for all i,

0 otherwise.
(5)

We also have P(0) = 1.
Let S be the set of permutations of {1, . . . , m}. The first important thing to note is

that according to (5)

1

mm

∑
�∈S

P�

(
�
(
Qa(�

1), . . . , Qa(�
m)
)) =

{
1 if (3) is satisfied,

0 otherwise.
(6)

Therefore,

N(q, m, r) = 1

mm

∑
a∈F∗

q

(−a)m �=1

∑
�∈S

P�

(
�
(
Qa(�

1), . . . , Qa(�
m)
))

. (7)

Our goal is now to estimate this sum.
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Let M(P ) be the set of monomials of P. For a monomial M, let ind(M) be the
number of indeterminates appearing in M.

The character � is multiplicative and we then have

M ◦ �(x1, ·, xm) = � ◦ M(x1, ·, xm).

Therefore, for any � ∈ S
∣∣∣∣∣∣
∑
a∈Fq

P�(�(Qa(�
1), . . . , Qa(�

m))) − q

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
∑
a∈Fq

∑
M∈M(P )
ind(M)>0

M(�(Qa(�
1), . . . , Qa(�

m)))

∣∣∣∣∣∣∣∣
�

m∑
k=1

∑
M∈M(P )
ind(M)=k

∣∣∣∣∣∣
∑
a∈Fq

�(M(Qa(�
1), . . . , Qa(�

m)))

∣∣∣∣∣∣ .

If M = ∏
i∈I X

ki

i , we obtain

M(Qa(�
1), . . . , Qa(�

m)) =
∏
i∈I

[
�ir (�i + a)

]ki

which—seen as a polynomial with indeterminate a—has exactly #I = ind(M) roots
which are {−�i |i ∈ I }. They have multiplicity ki which are here strictly lower than m.
Using Theorem 2.4 on character sums we thus obtain

∣∣∣∣∣∣
∑
a∈Fq

P�(�(Qa(�
1), . . . , Qa(�

m))) − q

∣∣∣∣∣∣ �
m∑

k=1

∑
M∈M(P )
ind(M)=k

(k − 1)
√

q. (8)

Finally, as each indeterminate appears exactly in one of the m terms of the product (4)
defining P, we have #{M ∈ M(P )|ind(M) = k} = (m − 1)k

(
m
k

)
and thus

∣∣∣∣∣∣
∑
a∈Fq

P�(�(Qa(�
1), . . . , Qa(�

m))) − q

∣∣∣∣∣∣ �
(

m∑
k=1

(m − 1)k
(m

k

)
(k − 1)

)
√

q. (9)
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The classical formula for binomial coefficients k
(

m
k

) = m
(

m−1
k−1

)
gives

m∑
k=1

(m − 1)k
(m

k

)
(k − 1) = m

m∑
k=1

(m − 1)k
(

m − 1

k − 1

)
−

m∑
k=1

(m − 1)k
(m

k

)

= m(m − 1)mm−1 − (mm − 1)

= 1 + mm(m − 2).

Summing inequality (9) for � ∈ S, we obtain

∣∣∣∣N(q, m, r) − m!
mm

q

∣∣∣∣ = 1

mm

∣∣∣∣∣∣∣∣∣
∑
�∈S

⎛
⎜⎜⎜⎝

∑
a∈F∗

q

(−a)m �=1

P�

(
�(Qa(�

1), . . . , Qa(�
m))

)
− q

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

� 1

mm

∑
�∈S

⎛
⎝
∣∣∣∣∣∣
∑
a∈Fq

P�

(
�(Qa(�

1), . . . , Qa(�
m))

)
− q

∣∣∣∣∣∣
+
∣∣∣∣∣∣

∑
{a|(−a)m=1}∪{0}

P�

(
�(Qa(�

1), . . . , Qa(�
m))

)∣∣∣∣∣∣
⎞
⎠

� m!
mm

(1 + mm(m − 2))
√

q +
∑
�∈S

∑
{a|(−a)m=1}∪{0}

1

� m!
mm

(
1 + mm(m − 2)

)√
q + m!(m + 1)

and this completes the proof. �

Thus we are able to derive a lower bound on q providing a sufficient condition for
the existence of polynomials in B(q, m, r).

Corollary 4.6. Let q = pn, p a prime. Let m divide q − 1 and r coprime with

q − 1. Assume that q >
(

1 + m+1
mm+2

)2
m2m+2. Then there exists a ∈ F∗

q such that the

polynomial Xr(X
q−1
m + a) is a permutation polynomial of Fq .

Proof. The existence is equivalent to N(q, m, r) > 0. According to Theorem 4.5,
a sufficient condition is thus

0 <
1

mm
q −

(
1

mm
+ (m − 2)

)√
q − (m + 1).
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The biggest root of this degree two polynomial is

mm+1

2

⎛
⎝(1 + 1

mm−1 − 2

m

)
+
√(

1 + 1

mm−1 − 2

m

)2

+ 4
m + 1

mm+2

⎞
⎠

which is lower than

mm+1

2

(
1 +

√
1 + 4

m + 1

mm+2

)
.

Using the fact that
√

1 + x < 1 + x/2 we obtain the bound

mm+1
(

1 + m + 1

mm+2

)
.

This is a lower bound on
√

q, squaring this value gives the result. �

Remark 6. In [1] Carlitz proved that for q large enough, N(q, m, 1) is strictly positive
but he doesn’t give a bound, except for m = 2.

5. Consequences in coding theory

5.1. Preliminary

To any Boolean function f : F2n→F2 one can associate the binary word (f (x))x∈F2n .
This implies an order on the element of F2n which can be obtained using a fixed
primitive element �.

Definition 5.1. Let f be a Boolean function. We will use the notation (f (x))x∈F2n for
the binary word f (0)f (�) · · · f (�2n−1).

In cryptography, we are interested in words giving little information to the opponent.

Definition 5.2. A binary word is said balanced if it contains as many 0 as 1.

The field F2n is a vector space of dimension n over F2. An element a ∈ F2n can thus
be seen as a n-tuplet of elements ai in F2, and a function F : F2n → F2n as a n-tuplet
of Boolean functions fi . The next proposition gives a characterization of permutation
functions, it is proven in a more general context in [18] (Theorem 7.17).
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Proposition 5.3. F is a permutation of F2n if and only if for all a ∈ F∗
2n the word

(a1f1(x) + · · · + anfn(x))x∈F2n

is a balanced word.

5.2. Helleseth’s conjecture

There are many applications of results on permutation polynomials. We will present
a conjecture made by Helleseth [8], and the results derived from the first part.

The conjecture in [8] was in terms of cross-correlation functions, but it is equivalent
to the following one.

Conjecture 5.4. For all integers k coprime with 2n − 1, there exists a ∈ F∗
2n such that

(Trace(xk + ax))x∈F2n is a balanced word.

Remark 7. The original conjecture is more general, it deals not only with the case
2 but with a prime p. Some of the following results could easily be extended to
this case.

Proposition 5.3 tells us that if Xk+aX is a permutation polynomial, then (Trace(xk+
ax))x∈F2n is a balanced word. Finding permutation binomials is thus a way to answer
partially to this conjecture.

From this point of view, Corollaries 4.1 and 4.6 give the following:

Theorem 5.5. Let m and � be two positive integers, and k be the order of 2 in Z/mZ.
Note q = 2k�m, then Helleseth’s conjecture is satisfied for k = q−1

m
+ 1.

Theorem 5.6. For all m�3, for all n > 2 log2

(
1 + m+1

mm+2

)
+ (2m + 2) log2(m) such

that m divides 2n − 1, Helleseth’s conjecture is satisfied for k = 2n−1
m

+ 1.

5.3. Niho exponents

Another important class of polynomials are the polynomials Xk when k is a so-called
Niho exponent. Those exponents have been introduced by Niho in his thesis [22] for
the definition of interesting binary sequences. Niho proposed several conjectures which
are being considered for instance in [3,7].

Definition 5.7. Let n = p2t − 1 and k be a positive integer lower than n. Then k is a
Niho exponent if and only if

• Gcd(k, n) = 1.
• k /∈ {1, p, pp, . . . , pt−1}.
• k ≡ pj (mod pt − 1) for some j , 0�j < t − 1.
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We will show that some of our binomials are of the form Xk + aX with k a Niho
exponent.

Proposition 5.8. p2t−1
m

+ 1 is a Niho exponent in normal form in Fp2t if and only if
m divides pt + 1.

Proof. Writing q = p2t , we have:

q − 1

m
+ 1 = �(pt − 1) + pj ⇔ q − 1 + m = �(pt − 1)m + pjm

⇔ m = (pt − 1)(pt + 1)

�(pt − 1) + pj − 1
.

With j = 0, we obtain the result. �

Using the results we have on permutation binomials, we obtain some Niho exponent
and we have moreover a property of their spectrum.

Proposition 5.9. Let m and � be positive integers, k be the order of 2 in Z/mZ. Take
q = 2k�m. If m divides 1 + √

q, then

k = q − 1

m
+ 1

is a Niho exponent and there exists a ∈ Fq∗ such that the word (Trace(xk + ax))x∈Fq

is balanced.

Proof. Proposition 5.8 ensures that k is a Niho exponent, while Proposition 4.1
gives some a such that Xk+aX is a permutation polynomial and therefore∑

x∈F2k
(−1)Trace(xk+ax) = 0. �
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