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Aberrant activation of AMP-activated protein kinase contributes
to the abnormal distribution of HuR in amyotrophic lateral sclerosis
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Distorted mRNA metabolism contributes to amyotrophic lateral sclerosis (ALS). The human antigen
R (HuR) is a major mRNA stabilizer. We report that abnormal localization of HuR was associated
with enhanced AMP-activated protein kinase (AMPK) activity in the motor neurons of ALS patients.
Activation of AMPK changed the location of HuR in mouse motor neurons and in a motor neuron
cell line via phosphorylation of importin-a1. Stimulation of the A2A adenosine receptor normalized
the AMPK-evoked redistribution of HuR. This suggests that aberrant activation of AMPK in motor
neurons disrupts the normal distribution of HuR, which might imbalance RNA metabolism and con-
tribute to ALS pathogenesis.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction ALS. TDP-43 controls the stabilization of the transcript of the
Amyotrophic lateral sclerosis (ALS) is a progressive neurode-
generative disease. The major symptoms of ALS patients are mus-
cle weakness and atrophy, which are caused by the degeneration of
motor neurons. The clinical presentations of ALS include respira-
tory insufficiency and voluntary movement impairment [1]. Most
patients die after 3–5 years of being diagnosed with ALS. The for-
mation of cytosolic protein aggregates in motor neurons is a hall-
mark of ALS. In addition, aberrant RNA metabolism because of
dysfunction and/or mislocalization of RNA-binding proteins has
been implicated in ALS [2]. For instance, mislocalization of TDP-
43, a RNA-binding protein that mediates multiple pathways (e.g.,
gene expression, RNA splicing, microRNA regulation, and mRNA
stability [3,4]) is believed to contribute to the pathogenesis of
human low-molecular-weight neurofilament (hNFL) by interacting
directly with the 30 untranslated region (30UTR) of hNFL. In the
motor neurons of patients with ALS, cytosolic mislocalization and
aggregation of TDP-43 are associated with the downregulation of
the hNFL transcript [5]. The human antigen R (HuR) is another
important RNA-binding protein that has been implicated in ALS.
It was originally identified as a Drosophila embryonic lethal abnor-
mal vision protein that regulates the development of the nervous
system in this fly [6]. HuR binds to the adenylate- and uridylate-
rich elements (AREs) located in the 30UTR and stabilizes those tran-
scripts [7]. A wide variety of genes, including those involved in
inflammatory processes, cell migration, apoptosis, and cell cycle,
are modulated by HuR. Given the importance of RNA stabilization,
HuR has been implicated in many human diseases, such as cancers,
inflammatory diseases, cardiovascular disorders, and ALS [8,9].
Under normal conditions, HuR is mainly located in the nucleus.
Cellular mislocalization of HuR is closely associated with patho-
genesis [10,11]. The abundance of the cytoplasmic HuR protein is
an indicator of poor prognosis in cancer patients [12,13]. Moreover,
HuR is sequestered in intracellular inclusions in motor neurons in
mice with ALS, which markedly reduces the binding of HuR to the
transcript of the vascular endothelial growth factor and may con-
tribute to cytotoxicity in ALS. The mechanism that regulates the
subcellular distribution of HuR remains largely unknown [9].
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The AMP-activated protein kinase (AMPK) is a key energy sensor
that regulates the cellular energy homeostasis [14]. AMPK is a het-
erotrimeric protein that contains three subunits (a, b, and c). The
activation of AMPK requires the phosphorylation of threonine
172, which is located within the catalytic a subunit and is sensitive
to the cellular AMP:ATP ratio [15]. The activity of AMPK is believed
to modulate the neuronal susceptibility to stresses in neurodegen-
erative disorders, including Alzheimer disease, Huntington disease,
Parkinson disease, and ALS [16,17]. For example, abnormal activa-
tion of AMPK was shown in the spinal cord and primary spinal cord
neuronal cultures of a well-characterized ALS mouse model [17].
The functional consequence of such enhanced activity of AMPK is
currently unknown. In the present study, we report that elevated
AMPK activity was closely correlated with cellular accumulation
of HuR in the motor neurons of patients with ALS. Activation of
AMPK in a motor neuron cell line (NSC-34) using 5-aminoimidaz-
ole-4-carboxamide ribonucleotide (AICAR) or a dominant-positive
AMPK mutant (AMPK-a1-T172D) caused the subcellular redistribu-
tion of HuR via the phosphorylation of importin at Ser105. Suppres-
sion of AMPK using a dominant-negative AMPK mutant (AMPK-a1-
T172A) or a cAMP-elevating agent normalized the localization of
HuR. Collectively, our results suggest that aberrant activation of
AMPK in motor neurons triggers the subcellular redistribution of
HuR and contributes to the pathogenesis of ALS. Therefore, a thera-
peutic strategy aimed at the tight control of AMPK activity in motor
neurons may be beneficial for ALS patients.

2. Materials and methods

2.1. Human spinal cord sections

Human spinal cord sections were obtained from the NICHD
Brain and Tissue Bank for Developmental Disorders (University of
Maryland, Baltimore, MD, USA).

2.2. Intrathecal injection

C57BL/6 mice were first anesthetized (100 mg/kg of ketamine
plus 7.5 mg/kg of xylazine, intraperitoneal injection), then oper-
ated on the space located between L4 and L6, for intrathecal injec-
tion. The spinal cord was injected with 5 lL of AICAR (30 lg/lL) or
0.9% saline using a 10 lL Hamilton syringe. Mice were sacrificed
24 h postinjection to collect the L4–L6 region of spinal cord tissues
for immunohistochemical staining.

2.3. Cell culture

The NSC-34 cell line used in this study was a kind gift from Dr.
Cashman [18]. NSC-34 was maintained in growth medium supple-
mented with 10% fetal bovine serum and 1% penicillin–streptomy-
cin (Invitrogen GibcoBRL, Carlsbad, CA, USA) in Dulbecco’s
modified Eagle’s medium.

2.4. Constructs

The V5-tagged AMPK mutants (T172A or T172D) were con-
structed by replacing Thr172 with Ala and Asp, respectively, and
were characterized as described previously [19]. The V5-tagged
importin-a1 variants (S105A or S105D) were constructed and sub-
cloned into pcDNA3.1 (Invitrogen Life Technologies, Carlsbad, CA,
USA) by replacing the Ser105 residue with Ala and Asp, respec-
tively, using standard molecular biology techniques [20].

2.5. Sample preparation and western blotting

NSC34 cells were lysed using RIPA buffer (50 mM Tris–HCl, 0.5%
sodium deoxycholate, 1% Triton X-100, and 150 mM NaCl)
containing protease and phosphatase inhibitors. The lysates were
subjected to western blot analysis, as described previously [19].
The following primary antibodies were used in this study: anti-
AMPK-p (1:1,000; Cell Signaling Technology, Danvers, MA, USA),
anti-AMPK (1:1,000; GeneTex, Irvine, CA, USA), and anti-a-tubulin
(1:10,000; Sigma–Aldrich, St. Louis, MO, USA). The ECL reagents
(PerkinElmer, Waltham, MA, USA) were used to detect immunore-
active signals.
2.6. Immunohistochemical and immunocytochemical staining

The analysis of human spinal cord sections (5 lm) was per-
formed using immunohistochemical staining as described previ-
ously [19]. In brief, the sections were immunostained at 4 �C for
48 h with the following primary antibodies: anti-HuR (1:200;
Santa Cruz Biotechnology, Santa Cruz, CA, USA) and anti-choline
acetyltransferase (anti-ChAT; 1:100; Millipore, Billerica, MA,
USA). After extensive washing, the sections were incubated for
an additional 48 h with an anti-AMPK-p antibody (1:50; Cell Sig-
naling Technology), followed by incubation with the corresponding
secondary antibodies at room temperature (RT) for 2 h. The nuclei
were stained using DAPI. Images were acquired and analyzed using
a confocal microscope (LSM 510; Carl Zeiss, Jena, Germany).

The spinal cord tissues of mice were fixed with 4% paraformalde-
hyde overnight and hydrated in 0.1 M phosphate buffer solution
(PBS) containing 30% sucrose for 36–48 h before paraffin embed-
ding and sectioning (5 lm) were performed using standard proto-
cols. After deparaffinization and rehydration, slices were washed
with Na-PBS (81.4 mM Na2HPO4, 18.3 mM NaH2PO4, and
149.7 mM NaCl; pH = 7.4) and blocked with 3% bovine serum albu-
min (BSA). All primary antibodies were diluted in Na-PBS containing
1% BSA. The slices were incubated with antibodies for 36–40 h at
4 �C. The primary antibodies used included anti-HuR (1:200; Santa
Cruz Biotechnology) and anti-ChAT (1:100, Millipore) antibodies.
Incubation with the secondary antibodies (Alexa Fluor 488, Alexa
Fluor 568) was carried out at RT for 2 h. Images were acquired using
laser confocal microscopy (LSM 780; Carl Zeiss).

NSC-34 cells were fixed with methanol (�20 �C) for 10 min, and
then blocked with 3% normal goat serum at RT for 1 h. Cells were
then immunostained with the indicated primary antibody at 4 �C
for 24 h, washed extensively, and incubated with the correspond-
ing secondary antibody for 1 h. The primary antibodies used in
the present study were anti-HuR (1:200; Santa Cruz Biotechnol-
ogy), and anti-V5 (1:200; GeneTex). The nuclei were stained with
DAPI. Images were acquired and processed using a confocal micro-
scope (LSM 510; Carl Zeiss).

2.7. Adenylyl cyclase activity

The preparation of membrane fractions and the adenylyl
cyclase (AC) assay were performed as described previously [21].
Briefly, cells were lysed and centrifuged at 50,000�g for 45 min,
to collect the P1 membrane fractions, and assayed for the activity
of AC in an AC assay buffer (6 mM MgCl2, 0.2 mM EGTA, 100 mM
NaCl, 50 mM HEPES, 1 mM ATP, 1 lM GTP, and 0.5 mM 3-isobu-
tyl-1-methylxanthine) for 10 min at 37 �C. Trichloroacetic acid
(6%, final concentration) was added to the reaction buffer to termi-
nate the reaction. The amount of cAMP was measured by using a
radioimmunoassay as described elsewhere [21].

2.8. Statistics

The data in the figures are presented as means ± S.E.M. of trip-
licate samples. Each experiment was repeated at least three times.
Unless stated otherwise, statistical analyses were performed using
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Fig. 1. The cytoplasmic localization of HuR is associated with the abnormal activation of AMPK in the spinal cord of ALS patients. Spinal cord sections from ALS patients and
non-ALS controls were immunostained with antibodies against phosphorylated AMPK at Thr172 (AMPK-p, red), a motor neuron marker (ChAT, green), and HuR (light blue).
The white arrows marked motor neurons with nuclear localization of HuR, whereas the yellow arrows denote motor neurons with cytosolic localization of HuR and increased
expression of AMPK-p. Scale bar, 10 lm.

Table 1
Summary of the demographic data, neuropathology, and experimental results of the human subjects.

Case Age (yr) Section area PMI (hr) Sex AMPK activation (in motor neurons) HuR cytosolic localizatiom (in motor neurons)

ALS-1 73 Spinal cord 10 F +++ +++
ALS-2 61 Spinal cord 8 M +++ ++
ALS-3 49 Spinal cord 9 M +++ ++
Non-ALS-1 45 Spinal cord 17 M � �
Non-ALS-2 42 Spinal cord 4 F � �
Non-ALS-3 73 Spinal cord 21 M � �

As shown in Fig. 1, human sections were evaluated by immunofluorescence staining of AMPK-p, ChAT, and HuR. Expression of phosphorylated AMPK-a at Thr172 (AMPK-p)
and of cytosolic HuR (Fig. 1) was detected in the ChAT-positive motor neurons of patients with ALS, but not in those of non-ALS controls. In the spinal cord tissues of each
subject, eight to 15 ChAT-positive neurons were scored in eight different sections. +++, 100% of the scored cells were positive; ++, P80% of the scored cells were positive;�, no
positive cell was detected. PMI, postmortem interval.
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Fig. 2. Activation of AMPK enhances the cytosolic localization of HuR. (A, B) The spinal cord of B6 mice (n = 4–5 per group) was injected with AICAR (30 lg/5 lL/animal) or
0.9% saline (5 lL/animal) for 24 h. The spinal cord tissues were harvested and analyzed using immunohistochemical staining (HuR, green; ChAT, red; nuclei, blue; n = 4–5 in
each group). The white arrows indicate motor neurons with cytosolic localization of HuR. For the spinal cord tissue of each mouse, 20–30 ChAT-positive neurons were scored
in 3–4 different sections. Quantitation is shown in (B). The data represent the means ± S.E.M. aP < 0.05 vs the control. (C and D) NSC34 cells were treated with AICAR (1 mM)
for 24 h to activate AMPK. Cells with nuclear enrichment of HuR were quantified using immunofluorescence staining (HuR, red; nuclei, blue) and are shown in (D). The results
were quantified as the means ± S.E.M. of three independent experiments. At least 50 cells were scored in each experiment. aP < 0.05 vs the control cells. (E) NSC-34 cells were
transfected with the indicated AMPK mutant, followed by treatment with AICAR (1 mM, 24 h). The localization of HuR was determined using immunofluorescence staining
(HuR, red; AMPKa1-T172A-V5 or AMPKa1-T172D-V5, green; nuclei, blue). The white arrows indicate the transfected cells. The number of transfected cells with nuclear
enrichment of HuR was quantified as the means ± S.E.M. in the right panel. aP < 0.05 vs cells transfected with AMPK-a1-T172A-V5. Scale bar, 10 lm.
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one-way analysis of variance followed by the post hoc Student–
Newman–Keuls test. A P-value < 0.05 was considered significant.
3. Results

3.1. Aberrant activation of AMPK evokes the cytoplasmic accumulation
of HuR in motor neurons

HuR is a well-characterized mRNA stabilizer and is mainly
located in the nucleus. Because increased cytoplasmic accumula-
tion of HuR is associated with diseases [10,11], we first assessed
the distribution of HuR in motor neurons. As shown in Fig. 1,
HuR existed in the nuclei of the motor neurons of non-ALS (con-
trol) subjects, whereas it was detected in the cytoplasm of motor
neurons in patients with ALS. Because AMPK controls the cellular
localization of HuR in tumor cells and hepatocytes [22,23], next
we evaluated the activity of AMPK by measuring the level of phos-
phorylated AMPK at Thr172 (AMPK-p) using immunohistochemi-
cal staining. Motor neurons were identified by the expression of
ChAT. The level of AMPK-p in the motor neurons of ALS patients
was significantly higher than that observed in normal controls
(Figs. 1, S1 and Table 1).

To determine whether activation of AMPK is responsible for the
abnormal cellular localization of HuR, we delivered an activator of
AMPK (AICAR) into the spinal cord of B6 wild-type mice via intra-
thecal injection. Consistent with what was observed in human
spinal cords, HuR was mainly enriched in the nuclei of ChAT-posi-
tive motor neurons, with a low level of HuR detected in the cyto-
plasm. Activation of AMPK by AICAR enhanced the cytosolic
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Fig. 3. Importin-a1 functions downstream of AMPK to mediate the cytosolic localization of HuR. NSC34 cells were transfected with the indicated importin-a1 variant for
48 h, followed by treatment with AICAR (1 mM) for an additional 24 h. The localization of HuR was determined using immunofluorescence staining (HuR, red; nuclei, blue;
importin-a1-S105A-V5 or importin-a1-S105D-V5, green). The white arrows indicate the transfected cells. The number of cells with nuclear enrichment of HuR was quantified
as means ± S.E.M. aP < 0.05 vs the importin-a1-S105A group. Scale bar, 10 lm.
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expression of HuR (Fig. 2A and B). More than 60% of the ChAT-posi-
tive motor neurons expressed no HuR in the nucleus after treat-
ment with AICAR, which suggests that AMPK activation leads to
aberrant localization of HuR in motor neurons. Of note, we consis-
tently observed that the AICAR-treated NSC34 cells were slightly
larger than control cells. Although the functional impact of this
morphological change is currently unknown, previous studies sug-
gest that cellular swelling is a hallmark of necrotic cell death
[24,25]. For example, swollen retinal cells were found in SOD1-null
mice and such alteration in morphology subsequently leads to
necrotic cell death [25]. It would be of great interest to further
evaluate whether the AMPK-induced redistribution of HuR would
subsequently cause necrotic cell death of motor neurons.

We further evaluated the hypothesis stated above by treating a
motor neuron cell line (NSC34) with AICAR. Similar to what was
observed in the motor neurons of mice, the activation of AMPK
by AICAR enhanced the cytoplasmic accumulation of HuR in NSC-
34 cells (Fig. 2C and D), supporting a critical role for AMPK in reg-
ulating the distribution of HuR. Such abnormal distribution of HuR
is likely to alter the mRNA stability of its target mRNAs, because
treatment with AICAR reduced the half-life of the VEGF transcript
(which is a downstream target of HuR [9]) in NSC34 cells (Fig. S2B).

The expression of a dominant-positive mutant of AMPK (AMPK-
a1-T172D) [19] also evoked cytoplasmic accumulation of HuR in
NSC34 cells, as did AICAR. Conversely, the expression of a domi-
nant-negative mutant of AMPK (AMPK-a1-T172A) [19] reversed
the AICAR-induced redistribution of HuR (Figs. 2E, F and S2A). Col-
lectively, these findings indicate that activation of AMPK mediates
the aberrant cytoplasmic accumulation of HuR in motor neurons.

3.2. Importin-a1 functions downstream of AMPK to mediate the
AMPK-evoked cellular accumulation of HuR

Next, we investigated the mechanism that mediates the
enhanced redistribution of HuR to the cytoplasm by AMPK. Because
the nucleus-to-cytoplasm transport of HuR is mediated by impor-
tin-a1, and because AMPK phosphorylates importin-a1 at Ser105
[20], we overexpressed a phosphomimetic mutation of importin-
a1 (importin-a1-S105D) that mimics the AMPK-mediated phos-
phorylated form of importin-a1 in NSC34 cells. As shown in Figs. 3
and S3A, expression of importin-a1-S105D markedly reduced the
nuclear enrichment of HuR. Most importantly, the expression of
an importin-a1 variant (importin-a1-S105A), which cannot be
phosphorylated by AMPK, reduced the effect of AICAR on the
abnormal cellular distribution of HuR. Exogenous expression of
wild-type importin did not alter the distribution pattern on HuR
(Fig. S3B). These findings suggest that phosphorylation of importin-
a1 at Ser105 by AMPK mediates the subcellular redistribution of HuR.

3.3. Inhibition of AMPK using an A2A adenosine receptor agonist
prevented the cytosolic localization of HuR

We demonstrated previously that the activation of protein
kinase A via the stimulation of the A2A adenosine receptor (A2AR)
inhibits AMPK and has a beneficial effect in Huntington disease
[19]. This is of great interest because the activation of A2AR in
the spinal cord exerts protective effects [26,27], and the expression
of A2AR in spinal cord motor neurons is greatly enhanced by stres-
ses [27]. Consistent with a beneficial effect of A2AR activation,
chronic uptake of caffeine, which is an inhibitor of A2AR, markedly
shortened the life-span of mice with ALS [28]. Therefore, we eval-
uated whether the activation of A2AR affected the abnormal cellu-
lar distribution of HuR in NSC34 cells. As shown in Fig. 4B, NSC34
cells were treated with an A2AR agonist (T1–11, [29]) to stimulate
AC activity. The addition of an A2AR antagonist (Sch58261) mark-
edly reduced the T1–11-induced AC activity, which demonstrated
that this enhanced AC activity was mediated by A2AR. Most impor-
tantly, treatment with T1–11 significantly reduced the AICAR-
evoked activation of AMPK, as assessed by the level of phosphory-
lation of AMPK at Thr172 (Fig. 4C and D). Moreover, Sch58261
eliminated the effect of T1–11 on AMPK activation, supporting
the contention that T1–11 suppresses AMPK activation via A2AR.
Consistent with the finding that activation of AMPK is associated
with the increase in the cytosolic localization of HuR (Figs. 1 and
2), treatment with T1–11 normalized the AICAR-evoked aberrant
cellular localization in an A2AR-dependent manner (Fig. 4E and
F). Sch58261 or H89 alone did not produce any effect on HuR dis-
tribution (Fig. S4). In addition, the effects of T1–11 on AMPK acti-
vation and the cytosolic accumulation of HuR were both
sensitive to a PKA inhibitor (H89, Fig. 4C–F), which demonstrated
that PKA mediates the function of T1–11 in controlling the proper
localization of HuR. Therefore, the A2AR/PKA pathway might be an
important therapeutic target for ALS.

4. Discussion

The modulation of RNA metabolism is one of the key machiner-
ies for gene regulation and contributes to the cellular responses to
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various external stimuli (including oxidative stress, nutrient depri-
vation, and UV radiation [30–32]). Abnormal RNA metabolism has
been documented in ALS [2]. For example, the alteration in the
cellular distribution of several RNA-binding proteins (e.g., TDP-
43) may change the stability of the RNAs to which they bind, thus
causing abnormal functions that contribute to the pathogenesis of
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ALS [5]. We recently demonstrated that AMPK activation causes the
mislocalization of TDP-43 in NSC34 cells and mouse spinal motor
neurons, and is associated with ALS pathogenesis [33]. TDP-43
has recently been demonstrated to mediate many important RNA-
processing functions, including pre-mRNA splicing, microRNA gen-
esis, and gene transcription [3,4,34]. Mislocalization of TDP-43 is
expected to cause the loss of nuclear function and alterations in cel-
lular RNA metabolism, which may contribute significantly to the
pathology of ALS. In the present study, we demonstrated that acti-
vation of AMPK caused the abnormal localization of HuR via phos-
phorylation of importin-a1. Importantly, AMPK activation also
induced an abnormal subcellular distribution of FUS (fused to sar-
coma), which is an RNA-binding protein that functions as a compo-
nent of the hnRNP complex and pre-mRNA splicing (Fig. S5) [34].
Given that importins control the movement of many proteins from
the cytoplasm into the nucleus by binding to their nuclear localiza-
tion signals, our findings support the importance of the AMPK-med-
iated impairment of importin in ALS, as well as the critical role of
RNA metabolism in this disease. Although under AICAR treatment,
the distributions of TDP-43 and HuR in NSC34 cells were both
altered (Fig. S6), some of the immuno-signals appeared to be over-
lapped, some were not. It is likely that when the importin-mediated
transport is impaired by AMPK activation, abnormal distributions
of these importin substrates would occur, likely independently of
each other. Further experiments are needed to characterize the
potential interaction among these importin substrates.

In addition to the well-characterized TDP-43 and the fused in
sarcoma (FUS) protein [35,36], HuR is another key player in RNA
metabolism that has been implicated in ALS, as it is sequestered into
intracellular inclusions by an ALS-associated mutant superoxide
dismutase 1 (SOD1) in the spinal cord of mice expressing mutant
SOD1 [9]. Although the AMPK-mediated mislocalization of HuR
has been reported in liver cells [22], its role in motor neuron dis-
eases has not been explored. In the present study, we showed for
the first time that HuR is aberrantly accumulated in the cytoplasm
of motor neurons of patients with ALS (Fig. 1). It should be pointed
out that multiple pathogenic pathways occur in ALS, which is a
chronic disease that takes years to develop. To validate the causal
relationship between the activation of AMPK and the mislocaliza-
tion of HuR, we confirm the abovementioned finding in mice treated
with AICRA intrathecally for 24 h (Fig. 2), suggesting that a short
duration of AMPK activation is sufficient to trigger the aberrant dis-
tribution of HuR. Using a motor neuron cell line (NSC34), we further
demonstrated that such abnormal localization of HuR in motor neu-
rons may be mediated by the activation of AMPK (Figs. 2 and S6). In
addition, we demonstrated that importin-a1 acts downstream of
AMPK to control the cellular distribution of HuR (Fig. 2), supporting
the contention that abnormal nuclear protein import in motor neu-
rons is an important pathogenic pathway in ALS [37]. We also
showed that suppression of AMPK by ectopic expression of a dom-
inant variant of AMPK (AMPK-a1-T172A) and a small molecule
(T1–11) [29] that activates A2AR effectively normalized the AMPK-
evoked cytoplasmic accumulation of HuR (Figs. 2E, 4, and 5). These
findings are important, particularly for neurodegenerative diseases,
because AMPK is a key energy sensor that can be profoundly regu-
lated in response to various cellular stresses (such as oxidative
stress, [38]). Abnormal activation of AMPK has been observed in var-
ious neurodegenerative diseases, including Huntington’s disease,
Alzheimer’s disease, and ALS [16,17,19,38,39]. Our study provides
much-needed evidence that suggest that the abnormal activation
of AMPK in motor neurons imbalances RNA metabolism and con-
tributes to the pathogenesis of ALS.

Despite the tremendous efforts that have been devoted to the
development of treatments for ALS, the availability of therapeutic
interventions for ALS patients remains very limited. The results
of our study suggest that stimulation of PKA is an effective means
to normalize the overactivation of AMPK and its pathogenic conse-
quences. Further investigations are needed to assess whether
cAMP-elevating reagents (including agonists of A2AR) might be
used to enhance the sustainability of motor neurons against stres-
ses and to delay the progression of ALS.
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