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We investigate how geometric properties translate into functional properties in sparse 
networks of computing elements. Specifically, we determine how the eigenvalues of the inter- 
connection graph (which in turn reflect connectivity properties) relate to the quantities, num- 
ber of items stored, amount of error-correction, radius of attraction, and rate of convergence, 
in an associative memory model consisting of a sparse network of threshold elements or 
neurons. 0 1993 Academic Press, Inc. 

1. IN~~DUCTI~N 

In this paper, we consider the ability to recall an item from a partial description 
of its properties. Such an ability is referred to as associative memory or content- 
addressable memory. Of particular interest to us are the models of associative 
memory based on distributed representation of information. A good introduction to 
such distributed models can be found in Hinton and Anderson [7]. 

Models of memory based on distributed systems have been studied by various 
researchers (see Hinton and Anderson [7], Kohonen [lo] and Kohonen [ 111 for 
history and references), and, more recently, by Hopfield [S]. A closely related 
model is studied by Little [14], and Little and Shaw [15]. Both use Hebb’s rule 
[6] of learning through gradual change of correlations. 

We are going to use Hoplield’s model in this paper. We want to emphasize that 
we only intend to make a technical analysis of some properties of the dynamical 
systems involved and do not believe that this has much relevance to actual brain 
functioning. 

We first make some preliminary remarks about systems exhibiting associative 
memory properties. Assume that a dynamical system has a large number of stable 
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states with a substantial domain of attraction around them. That is, the system 
started at any state in the domain of attraction would converge to the stable state. 
We can then regard such a system as an associative memory. In this framework, 
stored items are represented by stable states, nearby states represent partial 
information given a suitable metric. The process of retrieving full information from 
partial information corresponds to a state in the domain of attraction converging 
to the stable state. One can think of associative memory as correcting errors in a 
noisy input. 

Many times, full information is not obtainable. Often, we can relax the 
requirement that a stored item corresponds to a stable state. We merely require 
selected states to have large domains of attraction around them such that if we start 
anywhere in the domain, we will eventually get within a small distance from the 
stored item (residual error in recall). What is important is that we have a significant 
amount of error-correction. 

Another desirable feature of such a system is a learning mechanism, by which the 
system adapts itself to remember new items. With this general picture in mind, we 
now look at the specific details of the Hopheld model. 

The model consists of a system of fdy interconnected neurons or linear 
threshold elements where each interconnection is symmetric and has a certain 
weight. Each neuron in the system can be in one of two states + 1. The state of the 
entire system can be represented by an n-dimensional vector, where n is the number 
of neurons in the system. The components of the vector denote the states of 
the corresponding neurons. The weight of each interconnection is given by real 
numbers wii with wij= wii. 

Each neuron updates its state based on whether a linear form of the current 
states of the other neurons, computed with the weights of the interconnections, 
is above or below its threshold value. We will assume in this paper that all 
thresholds are zero. Hence, with the system in state x, neuron i resets its state to 
sgn(xjzi wiixj), where the function sgn is defined as 

if x20 
otherwise. 

We consider two modes of dynamic operation of the system. In the synchronous 
mode, at every time step, every neuron updates its state simultaneously. In the 
asynchronous mode, at any instance, at most one neuron can update its state with 
each neuron eventually getting its turn. 

A state u is called stable if no transition out of it is possible. More precisely, for 
each i, ui= sgn(xj+i wiiuj). Note that the notion of stability does not depend on the 
mode of operation. 

Hoplield described the (asynchronous) dynamics of the system using an energy 
surface. The energy of the system is given by the negative of the quadratic form 
associated with the weight matrix. More precisely, the energy b(x) of the system in 
state x is given by - $ & wiixixj. 
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Using this energy function, we have, for any two vectors x, v, 

b(x)-B(v)=2 c wiivivj, 
itED 

i$D 

where D is the set of indices where x and v differ. 
If x differs from v only in the ith coordinate then 

B(x)-b(v)=2v, c wiivj. 
i#i 

This shows, on the one hand, that stable states are local minima of the energy 
landscape (&‘(x)-&(u) >O), and on the other hand, that an asynchronous step 
does not increase the energy of the system. This guarantees that the system, when 
operated asynchronously, will eventually reach a stable state. (Note that the delini- 
tion sgn(0) = + 1 guarantees that we cannot get into a cycle.) Such a convergence 
is not guaranteed in the case of synchronous operation. 

Hoplield used the following Hebb type rule to select the weights of the inter- 
connections. To store a vector in the system, we require that each interconnection 
remember the correlation of the states of the two neurons it interconnects. More 
precisely, we set the weights wij = vivj to remember a single vector v = (v, , u2, . . . . v,). 
With this choice of weights, the system has a stable point at state v. 

Moreover, for this choice of weights, when the system is started at a state x 
within a distance n/2 from the stored vector v, it gets into state v in one 
synchronous step. In the asynchronous mode of operation, the state of the system 
converges monotonically to the stable state v. (As is customary, we measure the 
distance between two f 1 vectors or states by their Hamming distance: the number 
of components in which they differ.) It is this attracting nature of the system that 
gives it an error-correcting capability. 

If we wish to store several vectors in the system, we add the corresponding 
weights. More precisely, if we want to store the vectors VI, v2, . . . . 9, the weight wii 
is defined as wii = CT= i vfv;. The hope is that if the stored vectors are sufficiently 
different, such a linear addition of weights would not cause much interference in the 
error-correcting behavior of the system. We call each such stored vector a 
fundamental memory. 

When we store a number of fundamental memories in the system, we expect each 
of them to be stable and to attract all the vectors within a pn distance for some 
constant p > 0. Or more generally, we consider the system to be error-correcting, if 
every vector within a distance pn from a fundamental memory eventually ends up 
within a distance of sn for some E -C p. We call this En residual error. We also 
consider the existence of a domain of attraction around each fundamental memory. 
We say that a state x has a domain of attraction of radius pn if the system started 
in any state y within distance pn from x, would eventualy converge to x (residual 
error is 0). 

Another important characteristic of the system is the rate of convergence. 
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It should be emphasized that all the parameters considered so far may depend on 
whether the system is operated synchronously or asynchronously. 

Given any set of m fundamental memories, we would like to store them in the 
system. But this requirement is somewhat at odds with the requirement of error- 
correction. For we cannot expect to store vectors which are too close to each other. 
(Closeness is not the only potential problem. If we require stability of the stored 
vectors, then, even for m = 4, there exist m pairwise distant vectors that cannot be 
stored as fundamental memories, at least not by using the above storage method of 
Hopfield.) A reasonable minimal requirement is that we would like to store almost 
all sets of m vectors. Therefore, we will take a set of m random vectors as our set 
of fundamental memories and expect the system to remember them with probability 
near 1. This randomness is often achieved by coding the input. 

When m = 1, we have already seen that the fundamental memory is a stable state 
of the system which attracts all vectors within a distance n/2 in one synchronous 
step. When we have a number of fundamental memories, the retrieval of a memory 
wil be disturbed by the noise created by the other fundamental memories. Yet, we 
hope that this noise is not overwhelming when the number of fundamental 
memories is not too large. Hence, the main question is to determine the amount of 
error-correction and the rate of convergence as a function of the number m of 
fundamental memories. 

Worst-Case and Random Errors. So far, we have considered the following error- 
correcting behavior: all the vectors within a certain distance of the fundamental 
memory will eventually come closer to the fundamental memory. We can relax this 
requirement and ask that a randomly chosen vector within pn distance from 
the fundamental memory come closer to it. In most applications, correcting such 
random errors may be satisfactory. Yet, it is interesting to find out if stable 
fundamental memories can attract aN the vectors within a distance of pn for some 
positive constant p. In other words, we are interested in establishing a domain of 
attraction of radius pn around each fundamental memory. More generally, it is 
interesting to find out if every state within distance pn from a fundamental memory 
ends up within a distance of En. Such a requirement guarantees that even in the 
worst case, we make a significant error-correction. For dealing with worst-case 
errors, one cannot rely on simulations since simulations (due to the prohibitively 
large number of error patterns) can only reveal the behavior of the system in the 
presence of random errors. 

Moreover, quantitative behavior of the system in the case of worst-case errors is 
different from that of the system in the case of random errors. There cannot be a 
one synchronous-step convergence in the presence of arbitrary pn errors, not even 
for arbitrary & errors. The idea behind this observation is the following: One-step 
convergence would mean, e.g., for each i, xi+ i wiixi yj > 0 for all y close to X. By 
changing the jth bit, we change the quantity xi xi+ i wV yj by 2wVxi yj, which is of 
the order 6. Since xi Ci+i wOxj= O(n), by changing appropriate cn/,,& bits of 
x, we can get a y such that xi c,+ i wii yj < 0 for some i. 

One cannot also have radius of attraction near 4; p > i is already impossible, 
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even when m is very small as shown by Montgomery and Vijaya Kumar [ZO]. 
Thus, one can only hope for a gradual convergence and a domain of attraction of 
smaller radius in the case of worst-case errors. In the following section, we present 
some of the known answers regarding the random error and the worst-case error 
convergence analysis. 

2. PREVIOUS RESULTS 

Several researchers have described and predicted the features of the model 
using simulations and approximate calculations based on some independence 
assumptions. Also, this model is related to models of spin glasses. We refer the 
reader to Hopfield [8], Amit, Gutfreund, and Sompolinsky [2], and Mezard, 
Parisi, and Virasoro [19] for a wealth of information. 

Basic questions about the absolute stability of the global pattern formation in 
dynamical systems have been studied by Grossberg [5] and Cohen and 
Grossberg [3], using Liapunov functions. 

In the following, we survey some of the rigorously proved results in the case when 
the system of neurons is fully interconnected. Let m denote the number of 
fundamental memories. 

McEliece, Posner, Rodemich, and Venkatesh [18] determined the maximum 
number of stable fundamental memories and the convergence properties in the 
presence of random errors: 

l If m < n/(4 log n), then (with probability near 1) all fundamental memories 
will be stable. Also, for any fundamental memory, the system can correct most 
patterns of less than n/2 errors in one synchronous step. 

l If n/(4 log n) < m < n/(2 log n), then still most fundamental memories will be 
stable with the above described capability of correcting most patterns of errors. 

When m is larger than en/log n, in particular, when m = an, the fundamental 
memories are not retrievable exactly, but one still may find stable states in their 
vicinity. This is suggested by the “energy landscape” results of Newman [21]. In 
particular, Newman proves that 

l for all fundamental memories, all the vectors which are exactly at a distance 
of pn from the fundamental memory have energy in excess of at least & above the 
energy level of the fundamental vector. 

Thus, when starting from a fundamental memory, the system cannot wander away 
too far. 

Komlos and Paturi [ 121 addressed the question of worst-case errors and proved 
the following results. 

There are absolute constants a,, tl,, ps, pa < pb such that the following properties 
hold for almost all choices of the fundamental memories: 

. In the synchronous case, if m < a,n and if the system is started anywhere 
within a distance of p,n from a fundamental memory u, then, in about log(n/m) 
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synchronous steps, it will end up within a distance ne-““4m’ from v. In particular, 
when m <n/(4 log n), the system will converge to v in O(log log n) synchronous 
steps. 

l In the asynchronous case, if m G a,n and if the system is started anywhere 
within a distance of p,n from a fundamental memory v, then it will converge to a 
stable state within a distance of ne- n’(4m) from u. In particular, when m -=c n/(4 log n), 
the system will converge to u. 

l For any fundamental memory v, the maximum energy of any state within a 
distance of p,n from v is less than the minimum energy of any state at a distance 
of p,n from v, and there are no stable states in the annuli defined by the radii p,n 
and ne-“lC4”‘) centered at the fundamental memories. 

3. GENERAL INTERCONNECTIONS-SUMMARY 

The previous models seem to rely on their dense interconnections for associative 
memory properties. Neither the physiological data nor the VLSI technology 
support such dense interconnections. In this paper, we consider models in which 
the neurons are less densely interconnected. We try to determine the properties of 
the underlying interconnection graph that are responsible for the emergence of 
associative memory. 

Below, we try to indicate how the geometry of the interconnections influences the 
degree of error-correction and the rate of convergence. For contrast, first we recall 
some features of fully interconnected systems: 

l When storing only one fundamental memory, one can retrieve it even in 
the presence of n/2 errors. Furthermore, this error-correction takes only one 
synchronous step. 

l When storing as few as two vectors, there is already enough noise to 
slow down the system to a log log n convergence. But, as we showed in [12], 
this log log n convergence time is retained even when we have cn fundamental 
memories. 

When the system is not fully interconnected, storing even one vector introduces 
new problems: 

l If the graph does not have sufficiently good connectivity properties, then, 
for a d-regular interconnection graph, as few as d/2 errors can make full retrieval 
impossible (see Examples 1 and 2). 

l Even if the graph does have good connectivity properties, the one-step error 
correction found in fully interconnected graphs gives way to a more gradual error 
correction. In fact, convergence time is roughly equal to the diameter of the graph. 

When storing several fundamental memories, the main difficulty in the fully inter- 
connected case was in showing that the noise introduced by the combined Hebb 
weights of the other fundamental memories would not completely destroy the error- 
correction capabilities observed in the simple case of storing one vector, even 
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though the presence of noise slowed convergence down. In the case of general 
connections, in addition to the connectivity properties that ensure good error- 
correction in the one-vector case, we need a graph that is not too sparse. It can be 
seen (Example 3) that 

l If we store at least two vectors, then mere stability of these vectors requires 
that every neuron be connected to more than log n other neurons. 

It turns out that the requirements mentioned above are sufficient in the general 
case: 

l When we have several fundamental memories, good connectivity and 
large degrees give us convergence; in fact, the convergence time is bounded by the 
sum of the diameter and log log n. 

So far, we have tacitly assumed that the system has not exceeded its memory 
capacity. We now address the question of capacity. We distinguish between full 
capacity, the maximum number of fundamental memories that can be stored such 
that they are fully retrievable, and partial capacity, the maximum number of 
fundamental memories that can be stored such that a large fraction of the bits can 
be retrieved with few residual errors. 

In the case of fully interconnected systems, the residual error is given by 
n~“‘(~~)=ne-“(~~), where n is the number of neurons, m is the number of 
fundamental memories stored, and tl = m/n. Hence, the full capacity is O(n/log n), 
and the partial capacity is linear in n. 

In the case of general connections (with good connectivity properties and 
sufficiently large degrees), the residual error is governed by a similar formula with 
ct = m/d. Hence, 

l the full capacity is O(d/log n), and the partial capacity is linear in d. 

This phenomenon of diminished capacity has been observed before by other 
researchers (McClelland, [ 171, Kinzel [9]), But, fortunately, the degree of error 
correction does not decrease. 

l If the graph is highly connected, one can still recover the fundamental 
memories in the presence of arbitrary error patterns, and the number of errors 
allowable is still proportional to n. 

Also, the decrease of errors is so rapid that terminating the synchronous algorithm 
after a small number of steps leaves negligibly few errors in the retrieval. 

It is, of course, necessary to explain what we mean by good connectivity proper- 
ties in all the above statements. The key parameter we will work with is the ratio 
of the second eigenvalue to the first (see the next section for technical definitions). 
This ratio was shown by Alon and Milman [ 11 to reflect connectivity properties. 

EXAMPLE 1. Let G be the d-dimensional hypercube, where d is an odd integer. 
We assume, without loss of generality, that we want to store the vector of all ones. 
Let I be a set of neurons which form a rd/2]-dimensional subcube. It is easy to see 
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that if the system is initiated with negative ones for the neurons in Z and positive 
ones for the remaining neurons, the state remains unchanged. This shows that we 
cannot even correct 242 = &z worst-case errors in a hypercube. As we will see later, 
this inability to correct errors is due to the fact that the largest two eigenvalues of 
the hypercube graph (equal to d and d- 2) are too close to each other, which 
reflects a low degree of connectivity. 

EXAMPLE 2. Assume that the interconnection graph has a clique of size d/2 + 1, 
and we store the vector of all ones. When the system is initiated with negative ones 
for the neurons corresponding to this clique, the neurons in the clique will never 
change their state. 

EXAMPLE 3. It is easy to see that two stable states cannot be identical in the 
neighbourhood of a vertex i and yet different at i. Now, let the interconnection 
graph be d-regular. The probability that two randomly selected fundamental 
memories have unequal values at i, but equal values at i’s neighbours, is 2--(d+ ‘). 
Thus, if n 9 2d+ ‘, then the probability that both fundamental memories are stable 
is near zero. 

The structure of the remainder of the paper is the following. First, we introduce 
the required graph-theoretical notions. Then, we state the precise results; we first 
consider the simple case of storing one vector to gain an understanding of the 
connectivity properties required for error-correction followed by the general case of 
storing many fundamental memories. Finally, we present the proofs of our 
theorems. 

4. SPECTRA OF GRAPHS 

In this paper, we use the graph spectrum to capture the connectivity structure of 
G, thus bringing the techniques of linear algebra into play. In the following, we 
introduce some notation to deal with graphs and linear spaces. We then present the 
basic facts concerning the spectrum of a graph. For more information, we refer 
the reader to Lancaster and Tismenetsky [13], or Lo&z [16]. 

We use the undirected graph G = ( V, E) to represent the symmetric interconnec- 
tions among the neurons. The set V of vertices represents the collection of neurons, 
and the set E of unordered pairs represents the symmetric interconnections among 
them. N(j) stands for the neighbourhood of vertex j, and d(j) = IN(j)1 denotes the 
degree of j. The average degree in G is 6(G) =cje y d(j)/] VJ = 2 jEj/l VI. 

For X, YC I’, we use G{X, Y} to denote the subgraph of G determined by the 
edges with one endpoint in X and the other in Y. We use E(X, Y} to denote 
the set of edges in G{X, Y} and e{X, Y} to denote the cardinality of E(X, Y}. 

In contrast with the set E{X, Y} of unordered pairs, we denote by E(X, Y) 
the set of ordered pairs E(X, Y) = {(x, y); x~X, yc Y}. 
If Z is a set of vertices, we let Z denote the set V- Z of vertices not in I. 

We regard A, the adjacency matrix of the graph G, as a linear transformation on 



358 KOMLbSAND PATURI 

the real space R”. For vectors X, YER”, we use (x, y) = (,v, X) to denote the inner 
product of x and y. The lZ norm of a vector x E R” is 1x1= (x, x)‘/~. 

The spectrum of a graph G is defined to be the spectrum of its adjactxcy matrix A, 
that is, the set of eigenvalues (or characteristic values) or A. Here, we present some 
elementary facts about the eigenvalues and eigenvectors of a matrix. In particular, 
we concentrate on real symmetric non-negative matrices, as adjacency matrices of 
undirected graphs enjoy these properties. 

An n x n symmetric real matrix has 12 (not necessarily distinct) real eigenvalues. 
In fact, a symmetric real matrix has an orthonormal basis of real eigenvectors. 
Let xi, x2, . . . . x, be an orthonormal basis of eigenvectors corresponding to the 
eigenvalues A, > /2,2 . . . 2 A,. The matrix U consisting of these orthonormal 
eigenvectors as columns, diagonalizes the matrix A; UAU-’ = D, where D is the 
diagonal matrix with Dii=li. 

We use the following principle of Rayleigh to determine the eigenvalues of a 
matrix A. Let “y; be the subspace of R” spanned by the vectors xi, .x2, . . . . xi. 

RAYLEIGH PRINCIPLE. Let A be a real-symmetric matrix. Then, the largest eigen- 
value 1, is given by 

and, for i > 2, the i th largest eigenvalue is given by 

In the case of non-negative matrices, the Perron-Frobenius theory [13] provides 
more information about the eigenvalues. The largest eigenvalue of a non-negative 
matrix is non-negative, and there is a non-negative eigenvector belonging to it. 
It also has the maximum absolute value among all eigenvalues. 

If a graph G is connected, then its largest eigenvalue 1,(G) has multiplicity 1, and 
there is a strictly positive eigenvector belonging to it. Also 1, satisfies 

average degree < ii < maximum degree. 

In particular, if G is d-regular, we have Ai = d, and the vector 1 is a corresponding 
eigenvector. 

The largest eigenvalues of subgraphs of G behave monotonically. More 
specifically, if H is a subgraph of G, we have that 1, (H) < R,(G). 

In addition to the largest eigenvalue A,, the second largest eigenvalue reveals 
important connectivity properties of the graph. For example, if a d-regular graph is 
disconnected, then ;1, occurs with multiplicity more than one (that is, &=;1,). In 
fact, the multiplicity of il, gives us the number of connected components of the 
graph, A large difference between the two largest eigenvalues corresponds to a high 
degree of connectivity of the graph. (For a complete graph on n vertices, II, = n - 1, 
and Ai = - 1, 2 < i < n.) We will also use the quantity p = maxi2 z /11,/. 



CONNJXTIWTY IN ASSOCIATIVE MEMORY 359 

Remark. We will always assume that the interconnection graph G is d-regular, so 
that Iz, = d. This assumption is technical. For non-regular G, the standard technique 
is to consider the eigenvalues of the matrix Q rather than those of the adjacency 
matrix A. Here Q = D - A, where D is the diagonal matrix containing the degrees 
of G in the diagonal. Q is positive (semi)definite, and has smallest eigenvalue zero 
with eigenvector (1, 1, . . . . 1). The second smallest eigenvalue J. (equal to I, - A2 for 
regular graphs) is critical for expanding properties. For more information, see Alon 
and Milman [ 11. 

We also use the following additional notations in this paper: 

Cl, c2, ... denote absolute constants. 

For 0 <p < 1, we use the entropy function h(p) defined as 
h(p)=~log(ll~)+(1-p)log1/(1-p). 

log refers to the natural logarithm, but we truncate it from below, so that its 
value is always at least one. 

We define the function x on truth values as x(TRUE)= + 1 and 
I( FALSE) = - 1. 

5. RESULTS 

Let G = ( V, E) be the undirected graph that represents the interconnections 
among the neurons, and let A be the adjacency matrix of G. We will assume that 
G is a d-regular graph, so that 1, = d. 

One Vector Case. Without loss of generality, we will assume that we want to 
remember the vector of all ones. In this case, the synchronous algorithm amounts to 
each neuron resetting its state to the majority state among its adjacent neurons. Let 
x be a vector which has pn - l’s and (1 - p)n l’s in it. Let Zc V be the set of the 
pn neurons with the state - 1. For the system in state x to improve itself and 
converge to the vector of all l’s, we need that many neurons be adjacent to more 
neurons outside of Z than inside of 1. This seems to imply that G should have good 
expansion properties, which, in turn, are related to the eigenvalues. In fact, it is 
clear from Examples 1 and 2 that graphs which have a small subset of vertices with 
many of their incident edges concentrated within the subset may have trouble 
correcting errors. We measure this concentration using the average degree of sub- 
graphs in relation to their size. Since the average degree of any graph is bounded 
from above by its largest eigenvalue, measuring the concentration is reduced to 
finding upper bounds on the largest eigenvalues of subgraphs of G. We find several 
such bounds in Lemma 2. 

The importance of concentration was noted earlier by Pippenger [22], and 
Dwork, Peleg, Pippenger, and Upfal [4] in the construction of fault-tolerant 
networks. 



360 KOMLdSANDPATURI 

We will relate now eigenvalues of the graph to convergence properties of the 
system. 

LEMMA 1. Zf G has pn < 42 errors, then at most p’n errors remain after one 
synchronous step, where 

P2 p’=c,p 2 . 0 

Thus, in the one vector case, we see that even a bounded degree graph with good 
connectivity properties (small p/d) guarantees the recovery of the memory in the 
presence of a constant fraction of errors. In fact, it takes O(log n/log(d/p)) steps for 
synchronous convergence. 

Let us see now how the error-correction behavior and the rate of convergence 
will be modified when we store a number of fundamental memories. 

General Case. Let us choose m fundamental memories, u’, u2, . . . . urn, 
independently from a uniform distribution. Write LX = m/d, where d is the degree of 
the graph. Let w’, i= 1, 2, . . . . m, be the weight matrices corresponding to vi, 

WjkZ “0:“: 
i 

(j,k)EE 
otherwise 

for j, k = 1, 2, . . . . n. The weight matrix of the system is W= Cy= L W’. 
We define the energy of the system at state x as 8(x) =x7!, d’(x) = 

-4 CyY i (x, W’x). The term 8’ represents the energy component due to the ith 
fundamental memory. It can be seen easily that an asynchronous step never 
increases the energy. This fact guarantees asynchronous convergence in any system 
with symmetric weights. 

Now we present our results in a precise form for systems with arbitrary inter- 
connections. Note their similarity to the results in the fully interconnected case: 
B,, /I,, pS, pa, pb are absolute constants. Let 

D=(m+pYd=a+W), E = e - 4B, 

The parameter p plays an analogous role to that of the parameter cx = m/n in the 
case of fully connected systems. E measures the residual error in the recall proce- 
dure. 

THFKXEM 1. The following statement hola5 with probability 1 - o( 1) (as n + co). 
In the synchronous case, ifm + ,u < /I,d, and if the system is started within a distance 
of p,n from a fundamental memory, then, in 

w l/&l 
log log(l’E) + log[d/(p log( l/s))] 
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synchronous steps, it will end up within a distance En from the fundamental memory; 
that is, it will get within distance En of the fundamental memory, and then it will 
remain (forever) within that distance. When m + u= c,d/Iog n, the system will 
converge to the fundamental memory in time 

In addition, if u = O(d’ - C, (which is the case with 5 = 3 for most d-regular graphs), 
andd>(logn) , 2+q then the system will converge to the fundamental memory in time 

(1) 

Note that in the case d = n - 1, the last formula gives back our earlier result [ 121 
of a log log n synchronous convergence. 

THEOREM 2. The following statement holds with probability 1 - o( 1). In the 
asynchronous case, zfm + u < /I,d, and if the system is started within a distance of pa 
from a fundamental memory, then it will converge to a stable state within a distance 
of En from the fundamental memory. In particular, when m + u = c,d/log n, the 
system will converge to the fundamental memory. 

THEOREM 3. The following statement holds with probability 1 - o(1). For any 
fundamental memory v, the maximum energy of any state within a distance of pan 
from v is less than the minimum energy of any state at a distance of p,n from v, and 
there are no stable states in the annuli defined by the radii p,n and En centered at the 
fundamental memories. 

6. PROOFS 

An important step in proving our theorems is to characterize the error-correction 
dynamics of the system. Let us first consider the synchronous case. Let x be a vector 
at a distance of pn < p,n from some fundamental memory. In one synchronous step, 
the system, started at state x, will move to a state x’, which is at a distance of p’n 
from that fundamental memory. Our goal is to find the relationship between p and 
p’; we describe it in the main lemma. This relationship will completely determine 
the behaviour of the synchronous algorithm. It turns out that the convergence in the 
synchronous case is monotone. 

In the asynchronous case, we establish energy barriers for vectors within a 
distance of p,n from a fundamental memory. We use these barriers to show that the 
system cannot go too far from the fundamental memory, and consequently, it 
converges near or to the fundamental memory, since the main lemma guarantees 
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the existence of an annulus centered at the fundamental memory, which is free of 
stable states. Here, we use the simple fact that in any symmetrically interconnected 
system asynchronous convergence is guaranteed. 

In proving these lemmas, we face the task of estimating the sum of m - 1 
independent quantities of the form S = CCi. ij E En( yi, rj), where y, are independent 
random vectors with uniform distribution, and H is a subgraph of G with E, as its 
set of edges. For this purpose, we derive an upper bound on the moment generating 
function of S. This will show that the tail of the distribution of S is governed by 
the largest eigenvalue of the subgraph H. Hence, we also need estimates on the 
eigenvalues of the subgraphs of G. In the following section, we derive these 
combinatorial tools. In the subsequent sections, we present the main lemma and the 
energy-barrier lemma, and finally prove the theorems stated in the earlier section. 

6.1. Moment Generating Function 

The theorem below is crucial in extending our results from the one vector case 
to the general case. We think it is interesting on its own right. 

Let G be a simple graph with n vertices and N edges. We assign independent 
random variables Xi to the vertices of G, each taking the values + 1 with equal 
probabilities. We define the sum 

s= c xixj 
(i, j}isan 
edge of G 

(thus ES = 0 and C* = Var(S) = N). 
Let K, = $N, and for r > 3, let K, denote the number of simple cycles of length 

r in G. 
The following theorem gives an estimate on the Laplace transform of the 

distribution of S. 

THEOREM 4. The moment generating function EefS of S can be bounded as 

Ee-‘S~Ee’S~e~,~2~,“~ee(1/*)~~2/(1--~f) for O<ttl1/1,. 

The theorem says that EetS<ecN’* as long as (t( < l/1,. Thus, ,4, determines the 
behaviour of the tail of the distribution of S. Namely, S/a(S) behaves 
approximately as standard normal in the range 1x1 4 a/l,. 

Remark. The proof below will actually show that the above inequality 

~-‘S~Ee’S~e”‘2’“2’2”1-11f) for O<rtl/1, (2) 

holds for S=Ci<i<j<n aqXiXj, where A = (aii} is an arbitrary non-negative 
symmetric matrix, 1, is the largest eigenvalue of A, and N was replaced in general 
by e2 = CiCj a:, the variance of S. As a matter of fact, A could even have negative 
entries, but then A, should be defined as the largest eigenvalue of the matrix, whose 
entries are the absolute values of the corresponding entries of A. 
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COROLLARY 1. For any y>O, 

Proof of Theorem 4. We start with the identity 

Eel’= c E(tS)k/k! = 1 + 1 E(tS)“/k!. 
k00 k32 

Now, a product term in Sk has a zero expectation, unless the edges involved cover 
every vertex an even number of times. 

Such a collection of edges is a union of cycles (a two cycle is defined as an 
edge taken twice). Thus, if C(k) denotes the number of ways to select an ordered 
sequence of k edges such that they form a union of cycles, then (writing C(0) = 1) 

EefS = C C(k) tk/k!, 

the exponential generating function of the sequence C(k). 
Using standard counting techniques, we first show that 

: C(k)tk/k! ,< exp (3) 

Indeed, let us say that a partition of a set into non-empty parts is of type 
(T,, T2, T,, . ..) if the number of parts of size r is T,.. Then, the number of partitions 
of the integers { 1, 2, . . . . k} of type (T,, T,, T,, . ..) is equal to 

Pk(TI, T,, . ..)=k! n [(r!)” T,!]: 
i r>l 

where, of course, C rT, = k. Given a partition of k of type (0, T,, T3, . ..). we can 
generate an ordered collection of edges which is a union of cycles by assigning to 
each part of size r an ordered collection of edges which form a simple cycle of 
length r. This can be done in nra2 (K,r!)Tr ways. Since each element of C(k) is 
generated this way at least once, we therefore have, 

where the sum is extended for all r > 2, T, 2 0 such that C, p 2 rT, = k. Thus, 

c C(k)tk/k! < n c (K,t’)=/T!=exp 
k rh2 TPO 

proving the first part of (3). 

57114712.9 
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For the second part, we use the inequality 

K, d $ trace(d’). (4) 

Indeed, trace(d’) counts the number of closed walks of length r in G, and simple 
cycles are counted 2r times (for r = 2, we actually have equality in (4)). Thus, 

1 K,t’< 1 
r>2 

L trace((tA)‘) 6: C i (Ajt)’ 
+22r r,2 j=l 

=; ,i nft’,(l Ajt),a i $t2/(1 -&t) 
J=l J=l 

=~F;a:1t2/(l -1,t)=+‘/(l -AIt). 

TO prove the corollary, select t =y/(a2 + A, v) in the theorem and use the inequality 

6.2. Estimates of Eigenvalues 
To apply Theorem 4 to subgraphs of G, we need to bound the largest eigenvalues 

of subgraphs of G. Also, the largest eigenvalue is useful in bounding the number of 
edges in a graph, since the average degree in a graph is bounded from above by the 
largest eigenvalue of that graph. In the following lemma, we give upper bounds on 
the largest eigenvalue of, and the number of edges in, a subgraph. It is a standard 
application of linear algebra, and some of these simple inequalities have been used 
before. 

For a subgraph H of G, we define the neighbourhood graph N(H) of H as the 
graph determined by those edges of G (and the implied vertices) which are incident 
to at least one vertex in H. The largest eigenvalue of a subgraph H of G is denoted 
by 4 W). 

LEMMA 2. If H is a subgraph of G with pn vertices, then the maximal eigenvalue 
of H satisfies 

A(H)GP~(G)+(~ -pP,(G). (5) 

Consequently, the number of edges in H is at most $[p21, (G) + pl,(G)]n. Also, 

(6) 

In general, tf the matrix B is obtained from A (the adjacency matrix of G) by keeping 
only pn rows and yn columns, and replacing all other elements of A with O’s, then, for 
any vector u of unit length, 

lB4 ~~WQ+U -&MA) (7) 
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or, which is the same, for any two vectors x and y, 

lb, BYI G c&G 4 + Cl- fi)Pl I4 IYI. 

Consequently, if I and J are two subsets of the vertex set of G with )I( = pn, (JI = yn, 
then the number of (directed) edges going from J to I is at most 

and the largest eigenvalue of the graph H determined by the (undirected) edges of G 
going from J to I is bounded as 

;(1(H)d2C~R,(G)+(l-~)~(G)l. (8) 

Proof We start with some inequalities. Write v for the eigenvector corre- 
sponding to A 1, and 

x=x+(x’v 
b12 ’ y=j+$L, 

where X and j are orthogonal to v. Then, 

and we have the inequalities 

I(4 u)l’ 
(x, Ax) G A2 lx12 + (A1 - 12) 2 

IVI 

and 

Indeed, 

(9) 

(10) 
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We can clearly assume that H is a spanned subgraph of G, since adding edges 
can only increase the largest eigenvalue (for it has a non-negative corresponding 
eigenvector.) 

Let u be an arbitrary real unit vector and I the set of rows (and columns) to 
which the matrix A is restricted to obtain B, the adjacency matrix of H. 

Write uI for the vector obtained from u by replacing with 0 all coordinates u,, 
i$ I. Then, by (9), 

I(UI? u)l’ 

Using the last inequality for v = 1, we get 

W)=E~; (u,Bu)GA2+(4-J2)~ ” 
which proves (5). 

To get an -estimate on the number of edges in H, it remains to use the fact that 
the average degree in H not more than the largest eigenvalue of H; or, a direct 
proof, lEHl = f(l[, Bl,) 6 ii,(B) [l,l’= ~l,(B)pn. 

If we write B for the matrix obtained from A by keeping only the intersection of 
rows with indices in J and columns with indices in Z, and replace all other entries 
by 0, then, by (IO), 

Using the last inequality for v = 1, we get 

lb, &)I G I.4 Ix CP + (4 -PU) &I 

which proves (7). In particular, 

jEJ 

= CPYA, +JPYPln. 

Equation (6) easily follows from (7). 1 
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6.3. Error Correction Lemma 

In this section, we present the lemma that determines the dynamics of the system 
in the synchronous case. 

MAIN LEMMA. Let p,>O and 

The following holds with probability 1 - o( 1): Let x be a vector at a distance of pn 
from a fundamental memory, where E < p < pS. Let x’ be the resulting state after one 
step of the synchronous algorithm, given that the system is started in state x. Then, 
the distance of x’ from the fundamental memory is at most f (p)n, where f (p) is given 
by 

(11) 

COROLLARY 2. The number of residual errors in the synchronous case is at most 
en. 

This lemma brings out the two key parameters: the ratio p/d that governs the 
convergence, and the number of fundamental memories m = ad, which together 
with p/d determine the number of remaining errors. It is not hard to see that the 
parameter ZJ could actually be replaced by 1, here and throughout the whole paper. 

Proof of the Main Lemma. For notational convenience, let us assume that the 
fundamental memory in question is VI. (This assumption will later be removed by 
multiplying the probabilities with m.) We specify x by the set of co-ordinates Z, 
111 = pn, in which x and v1 differ. Let x’ be the vector resulting after one step of the 
algorithm, and let .Z, j.Z] = p’n =f(p)n, be a set of co-ordinates in which x’ and vi 
differ. In other words, J is a set of components j such that v? ( WX)~ < 0, where W 
is the weight matrix of the system. This implies T= cjeJ v) ( WX)~ GO. Since W 
is the sum of IPi the contribution of the ith fundamental memory, we write 
T=C’“=, T’=Cy=“=,C. ,EJ vj ( W’X)~. We consider each of the terms T’. 

If pS is chosen sufficiently small, x tends to be closer to v1 than to other 
fundamental memories, and consequently T’, the “tendency” towards vi, will be the 
dominating term. Indeed, 

T’= 1 v~(W’X)~= c c vkx,= c (e(j,Z)-e(j,Z)} 
jsJ joJ kcN(j) jeJ 
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Here e(J, V) = d JJJ, since the graph G of interconnections is d-regular. We estimate 
e(J, I) using Lemma 2. We then get 

ud+,/fip)=dp’ 
n 

n(1-2p-2&s) 

2 c6 dp’ n 

if p’ satisfies 

(12) 

(13) 

(14) 

For the other terms T’, i>2, we have 

T’= c ,;(Wi,)j= 
/sJ 

(j 

Let 24; = vi’ I$. for j= 1, 2, . . . . n. From now on, we will consider the vector u1 fixed, 
although we will not indicate this conditioning in our notations. The estimates we 
get on moment generating functions and probabilities will not depend on the choice 
of u’, so we get the same estimates for the unconditional probabilities (or moment 
generating functions). 

Given the vector u’, the numbers u;, 2 < i,<m, 1 <j<n, are (conditionally) inde- 
pendent and uniformly distributed f 1 random variables, since the fundamental 
memories are chosen independently and uniformly. We then have 

Ti=C ( c i i c UjUk - 24; #h) 

jEJ (j.k)EE(j,i) (i. k) E E(j, I) 

= c u;u; -2 1 u;u;. 
(j.k)EECJ, Y) lj, k)E E(J, 1) 

Each one of the sums above is a sum over ordered pairs of vertices. We rewrite 
these sums as sums over unordered pairs, resulting in 

T’= c u;u:-2 c i i 
UjUk 

{i,k}EE{J. VI {~.k}eE{J.I) 

+ c 
X(jBZnJork4ZnJ)u:~:rS;+2S:+S:. 

{j,k)EE(J.J) 

The term T’, for i> 2, represents the tendency of x to go towards the ith 
fundamental memory. We want to show that, with a large probability, the 
combined tendency, C, 3 2 T’, towards the other fundamental memories, is no more 
than the tendency T’ towards the fundamental memory ul. For this purpose, we 
use the moment generating function derived in Thorem 4. Given the vector u’, the 
terms Ti, i> 2, are conditionally independent, thus, the (conditional) moment 



CONNECTIVITY IN ASSOCIATIVE MEMORY 369 

generating function of the sum Cipz Si is obtained by taking the product of the 
(conditional) moment generating functions of each of the Sg. We will then show 
that each Cia2 Si is bounded from below by a constant fraction - yk T’ of the 
main term T’. 

Let yi, yi, ys >, 0 be such that y1 + 2y, + y3 = 1. We observe that the selection of 
yk affects only the constants involved. In the following, we will estimate each of the 
quantities xi, 2 Sh separately. 

From the corollary to Theorem 4, it follows that the probability of Xi22 S; < 
-y, T’ is at most 

with G, = G{ J, V}, the subgraph determined by the edges incident upon J. 
There are m possible ways to choose our fundamental memory (which was 

assumed to be u1 only to simplify notation), and there are (,:,) ways to choose the 
set J. Furthermore, (,[;,) <exp{h((J(/n)nj = exp(h(p’)nj. Therefore, the probability 
that there exists a fundamental memory and a set J, (J( = p’n, such that xi, 2 S; < 
-y, T’, is o(l) if 

1 (YI T’)’ 
2 y1 T’I1,(G,)+e{J, V}m 

> h(p’)n + log m + d(n), (15) 

where d(n) is any unboundedly increasing functmn of n. Note that p’ > l/n implies 
h(p’)n + log m + d(n) < 3h(p’)n. 

To simplify the above condition, we use the estimates (Lemma 2): 

~GMJI;;~+P)~ e(J, V} <e(J, V)=d IJI =dp’n. 

It is now easy to see that the inequalities p’ >/E = e-czdi(m+lc) and T’ 2 c6 dp’n 
imply the above condition (15). Similarly, xi> 2Si < - y2 T’ holds only with a 
probability not exceeding 

where G2 = G{J, I), the subgraph determined by the edges from J to I. Since we 
have at most m( ,I,: rJ,) ways to select the fundamental memory and the sets I and 
J, the probability that there exists a fundamental memory and sets Z, 111 =pn and 
J, (JI =p’n such that Ciaz $6 -yzT’ is o(l) if 

1 (YZ T’12 
?y2T’R,(Gz)+e{J,.I)m 

2 h(p + p’)n + log m + d(n). (16) 
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Using the estimates A,(G,)<2(md+~) and e{J,I]<(PP’d+m@)n, from 
Lemma 2, we get that condition (16) will be satisfied if 

(19) 

(20) 

To estimate Si, we observe that we have a bound on the moment generating 
function of Si,, which in turn is bounded from above by the moment generating 
function of the sum C(i,kjEEIJ,JJJ ~$6. Hence, the probability that Ci,* S\ < 
-y3 T’ is at most 

’ 

where G3 = G{.I, .J>, the subgraph induced by .I. Thus, the probability that there 
exists a fundamental memory and a set J, (J( = p’n, such that Ciaz S: < -y3 T’ is 
o(1) if 

1 hT’)* 
~Y3T’11(G3)+e(J, J}m 

2 h(p’)n + log m + d(n). (21) 

From Lemma 2, we get A,(G,) <p’d+p, and e{J, J} <&‘d+p)~‘n. Then, the 
assumptions p’ 2 E = e -c2dl(~+m) and T' > cg dp’ n are sufficient to satisfy (21). 

Finally, we observe that the conditions (14) and (17x20) are satisfied with the 
value off@) as given in the lemma. Hence, the lemma is proved. 1 

6.4. Energy-Barrier Lemma 

In the following, we give bounds for the energy of the system in the vicinity of 
a fundamental memory. 

ENERGY-BARRIER LEMMA. With probability 1 - o( 1 ), for all p, E < p < pb , and all 
vectors x at a distance pn from a fundamental memory, 

I&(x) -d(u) - 2e(I, I)/ < dp n, (22) 

@here I, ) II = pn, is the set of co-ordinates in which x and v differ. 
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COROLLARY 3. The following holds with probability 1 -o(l): For all p,, p2, 
E fp, < pz < pb, p, -c p&I, and for every fundamental memory v, the energy of any 
state within a distance of p,n from v is less than the energy of any state at a distance 
of p2n from v. 

Proof of the Energy-Barrier Lemma. As before, let us assume that the 
fundamental memory in question is VI. (We will later remove this condition by 
multiplying the probability with m.) 

Let v, and vf be such that u,-+ v,= v and vi-v,= x (thus, v, is obtained from u 
by replacing all coordinates outside I with 0). Then, the difference of energy at x 
and u1 is 

gP(x)-g(vl)= $lI((Vi+ Vf), W(Vi+ VI))- ((Vi-v~), W(Vr- Vf))] 

= 2(V,, WVi) 

since W is symmetric. Furthermore, we have 

(VI, WV,) = (VI, W’Vi) + C (ut, W’VT) 
it2 

= c vf(vfu;)v:+ c c 
(i, k) e E(L f) [ u; (L+i,)u~ 

ib2 (j,k)c(I,J) 1 
(u;v;)(v~v~) . 1 

Given vl, the numbers (0; vJ), 2 ,( i < m, 1 <j < n, are (conditionally) independent 
and uniformly distributed + 1 random variables. As in the main lemma, we use the 
moment generating function derived in Theorem 4 to estimate the second term. 
Given a fundamental memory, there are at most ($) < ehtp)” possible choices for x. 
Thus, the probability that there exists a fundamental memory and a set Z, IZI =pn, 
such that 2 ICj,2 [Ccj,k)EE(,,f) (v,fu~)(v~v~)11 ay, is o(l) as long as 

1 Y2 
2e{Z,I}m+iZ,(G4)y 

2 h(p)n + log m f d(n), (23) 

where G, = G{Z, f), the subgraph determined by the edges from I to 1 We use the 
estimate 12, (GJ < 2(& d+ p) from Lemma 2, and we bound e{Z, 1) by dpn. It can 
then be easily verified that the above condition (23) holds for the value of y = dpn 
given in the lemma. Hence, the lemma is proved. 1 

To prove the corollary, use the idendity e{Z, I} = dpn - 2e(Z, Z}, together with 
the bound 2e{ Z, I} < (pd+ p)pn from Lemma 2. 
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6.5. Proofs of the Theorems 

To prove Theorem 1, we use the main lemma repeatedly until we are at a 
distance en from the fundamental memory. To analyze the time complexity of this 
process, we need to analyze the recurrence relation 

(24) 

given in the main lemma. We consider each of the two terms in this relation 
separately. The first term gives us O(log(l//?)) = O(log log(l/s)) time steps. To 
analyze the contribution of the second term, we use the following lemma. 

LEMMA 3. Let a, be defined by the recurrence 

where q < 1. Zf y is such that q < y < 1, then we have a, Q e-liv for t 2 l/( y log( y/q)). 

ProojI We observe that a ,+k<qqka, I-I::; [log(l/a,)+ ilog(l/q)l and the 
lemma follows. fi 

From the lemma, we get that the contribution by the second term is 
0(1/(/I log(gd/p)). Hence, the time complexity is at most the sum of these two 
contributions, as given in the theorem. 

To prove Theorem 3, we take pb =pS, the synchronous radius of convergence. 
We take p,, the asynchronous radius of convergence, to be equal to p,/4. Hence, 
from the corollary to the energy-barrier lemma, it follows that the maximum energy 
of any state within a distance of p,n from a fundamental memory is less than the 
minimum energy of any state at a distance of p,n from that fundamental memory. 

Furthermore, the asynchronous process, when started from within a distance of 
p,n from a fundamental memory, will converge to a stable state, and in the process 
the energy keeps on decreasing monotonically. Thus, it can never leave the region 
with radius p,n = psn. In addition, Theorem 1 guarantees that there are no stable 
states in the annuli defined by p,n and En around the fundamental memories. 
Hence, the stable state that the system converges to must be within En of the 
fundamental memory. Thus, Theorem 2 follows from Theorem 1 and Theorem 3. 
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