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A construction is given of a reflexive operator T acting on a separable Hilbert 
space 2 with the property that the direct sum T@O fails to be reflexive. This 
construction is then used to provide solutions to several other problems which have 
been studied concerning the direct-sum splitting of operator algebras, Scott Brown’s 
technique, the theory of bitriangular operators, and parareflexivity. IF 1990 Academic 

Press. Inc. 

INTRODUCTION 

In the early 1970s a number of results were obtained and some natural 
questions were raised concerning the invariant subspace properties, and 
more generally the reflexivity properties, of certain bounded linear transfor- 
mations acting on a complex infinite dimensional Hilbert space. In this 
article we address one of these questions. We give a construction of a 
reflexive operator T acting on a Hilbert space X with the property that for 
a second Hilbert space X of dimension at least unity the direct sum TCB 0 
of the operator T and the zero transformation of X, acting on the direct 
sum Hilbert space &‘@X, fails to be reflexive. Our solution, together with 
our methods, are then employed to provide answers to some other 
questions which have been studied. One of these concerns the direct-sum 
splitting of operator algebras. Another relates to Scott Brown’s technique 
for constructing invariant subspaces for operators. Additional results relate 
to parareflexivity and to the theory of bitriangular operators recently 
developed by Davidson and Herrero [7]. 
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An operator T is called reflexioe if the closure in the weak operator 
topology of the set of polynomials B(T) in the operator T is completely 
determined by the set of closed subspaces of the underlying Hilbert space 
which are invariant under T. One of the questions that had been posed 
early (Deddens [S]) was whether the direct sum A 0 B of reflexive 
operators A and B acting on Hilbert spaces 2 and X, respectively, is 
necessarily reflexive. The answer is known to be no by a recent result of the 
second author [17]. Before this the answer was known to be yes in many 
cases (e.g., [3,9, 12, 151) in which additional hypotheses were placed on 
one or both summands. However, if B= ,U for some scalar A, and in 
particular, if B = 0 (the present case) the question remained unsettled and 
could not be dealt with by the methods of [ 171. This special case had been 
isolated, and studied, years before by others. (In particular, L. Curnutt [6] 
obtained some interesting partial results.) Thus the setting and techniques 
of the present study are quite different from those in [ 171. 

We note that an early article in the literature [ 1 l] asserted that the 
direct sum of two reflexive operators, one of which is algebraic, is reflexive. 
However, there is a gap in the proof as observed by the second author of 
the present paper and other researchers. The present article shows that this 
gap cannot be filled. 

We wish to thank M. Lambrou for pointing out a mistake in the original 
version of our proof of Lemma 3.5. 

1. PRELIMINARIES 

Let 2 be a complex Hilbert space and let g(s) denote the algebra of 
bounded linear operators acting on 2”. For a linear subspace Y of g(X)), 
let Ref Y= {BEE : BXE [Yx], XEY?‘}. (Here [.I denotes closed 
linear span.) The subspace Y is called rejkxiue if Y = Ref Y. If d c g(X) 
is a set of operators we let Lat d denote the lattice of all closed subspaces 
of X that are invariant under each element of -c4, and if $P is a set of 
closed subspaces of Y? we let Alg Y denote the algebra of all operators 
that leave invariant each element of 9. If d is a unital algebra it is easily 
verified that Ref & = Alg Lat d. 

If A E g(X)), then w(A) will denote the closure in the weak operator 
topology of B’(X) of the set P(A) of polynomials in A, and wO(A) will 
denote the weakly closed principal ideal generated by A. Thus Y&(A) is the 
closure in the weak operator topology of the linear span of the positive 
powers of A, and it may happen that Y&(A) = #‘“(A). So the operator A is 
reflexive if dlr(A ) = Alg Lat A = Ref %‘“(A). The ideal %$(A) can be 
reflexive as a subspace of g(X) even if it is a proper ideal. Also, we will 
use the notation &(A) to denote the ultraweak (weak*, a-weak) closure of 
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B(A), and &(A) for the ultraweakly closed linear span of [A” : n 3 1 ). 
More generally, if 9’ is a set of operators then %&i(Y) and %-(Y) will 
denote the weakly closed algebras generated by .Y and Y u (I}, respec- 
tively. Frequently in this paper Y will be a set of commuting idempotents. 
In this case @G(Y) will be just the weakly closed linear span of the 
elements of 9. 

As usual, we write {Y}’ for the commutant in &9(X) of a set .Y of 
operators. For x, y E X we use the tensor notation x@y to denote the 
rank-l operator z + (z, y) x, ZE 2”. For 1 <,<n < cc, we write E,(X) to 
denote the set of operators in G?(Z) of rank no greater than n. 

We will have occasion to use aspects of the theory of dual algebras and 
the duality theory of subspaces of B(Z) as developed in [2, 3, 133. We 
briefly outline the aspects we use. B’(Z) can be identified as the dual of the 
ideal C,(P) of trace-class operators via the pairing (f, A) = tr(fA) = 
tr(Af), for fE C,(s) and A E@(X). The ultraweak topology (or a-weak 
topology) of L%?(X) coincides with the u * topology under this identifica- 
tion. It is known that a w* closed linear subspace Y of B(X) is reflexive 
in the sense defined above if and only if its preannihilator 9” in C,(X) is 
generated as a closed subspace of C,(X) by rank-l operators. Also, a PV* 
closed subspace Y is closed in the weak operator topology if and only if 
9” is generated by finite-rank operators. If a w* closed subspace Y has the 
property that C,(Z)=YL + F,(X) then Y is called elementary. More 
generally, if C, (2) = 9” + 5,( 2”) for some 1 d n < cc then Y is called 
n-elementary. An elementary reflexive subspace Y is hereditarily reflexive 
in the sense that every M’* closed linear subspace contained in 9 is also 
reflexive. If 9’ is weakly closed and n-elementary for some n then the 
relative weak operator topology concides with the relative pi* topology on 
Y. As is standard procedure, we define an operator A to have a particular 
property if w(A) has that property. 

2. SOME REDUCTIONS 

If a Hilbert space operator A is reflexive and elementary then since 
$&(A) is a w* closed subspace of w(A) it is also reflexive. If dim X < cc 
then every singly generated subalgebra of B(X) is elementary and hence 
go(A) is reflexive whenever A is reflexive. A separably acting Hilbert space 
operator A which is not elementary was first constructed by Hadwin and 
Nordgren in [12]. Terminology in that paper was different. However, no 
example was known of a non-elementary reflexive operator A for which 
Y&(A) is not reflexive. Our main example in Section 3 satisfies this 
property. This, together with the following reduction, then answers the 
TO 0 question. 
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PROPOSITION 2.1. Let 2 and X be Hilbert spaces with dim X > 1. Let 
A E W(X), and let 0 denote the zero transformation on Xx. Then: 

(i) A@0 is reflexive if and only if $&(A) is reflexive. 

(ii) If A is reflexive, then A @ 0 fails to be reflexive if and only if 
Z$ W;(A) but ZE Ref(wO(A)). 

ProojI We begin with (i). Suppose first that WO(A) is reflexive. Let 
BE Ref(%‘“(A @ 0)) be arbitrary. Since (Ref(%‘“(A))) 0 (CZ) is a reflexive 
algebra containing A 00, it follows that B= B, 0 (AZ) for some 
B, E Ref(?V(A)) and 1” EC. We will show that B, - AZE %$(A), and hence 
that (B, -IZ)OOE W,(A)@O. Since W(A@O)= -tlr,(A@O) + C(Z@Z) 
and wO( A @ 0) = wO( A) @ 0, this will prove that BE W(A @ 0), as required. 

Fix a nonzero vector y E X. Let XE X be arbitrary. Since 
B E Ref(%‘“(A @ 0)), there exists a sequence of polynomials { p,}, depending 
on x. such that 

lim(p,(AOO))(xOy)=(B,O(~Z))(xOy) n 
= (B,x)O (JOY). 

Sincep,(A@O) =p,(A)@ (p,(O) I), we must havep,(O) + 1 andp,(A) x -+ 
B,(x). Let q,, =p,, -p,(O). Then q,,(O) = 0 and q,(A) x + (B, -AZ) x. Thus 
(B, -AZ) x E [%$(A) x]. Since x was arbitrary, this shows that B, -LIE 
Ref( Y&(A)) = %$(A), as needed. 

For the converse, suppose A @ 0 is reflexive. If C E Ref( “w,( A)), then 

=Ref(~O(AOO))~Ref(?Y(AOO))=?Y(A@O) 

= %$(A 0 0) + C(Z0 Z). 

It follows that CE %$(A), as required. 
Item (ii) follows from (i). Assume that A is reflexive. We have 

W,(A) c Ref(-llr,(A)) c Ref(w(A)) = W(A) = %$(A) + CZ. From this it is 
clear that the only way in which AOO, and hence Y&(A), can fail to be 
reflexive is if Z$ +&(A) but ZE Ref(Y&(A)). 1 

If A and B are operators we say that W(A @ B) splits if W(A 0 B) = 
W(A) 0 W(B), and we say that Lat(A 0 B) splits if Lat(A @ B) = 
Lat(A) @ Lat(B). For the special case B = 0, we have W(B) = @I, and 
Lat(B) is the set of all closed subspaces of X. The splitting characteriza- 
tions associated with Proposition 2.1 take the following form. 
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PROPOSITION 2.2. Let A E f?( 3’ ). Thm: 

(i) Lat(A @ 0) .splits ~f’und only lf Zcz Ref( %,( A)). 

(ii) %‘(A@O) splits (fad only if ZE %;(A). 

Proqfi Observe that Lat(A @ 0) splits if and only if every cyclic 
invariant subspace of A 00 splits (i.e., has the form NOM for closed 
subspaces N c 2, ME X). For x E X”, y E X, consider &Ye.,, = 
C{(A@OY (~0~1 :n>O}]=[x@y, {(A”x)@O:n~l}]. The subspace 
dl rO.r splits if and only if it contains 00~. This is true if and only if there 
exist polynomials {p,} with p,(O) = 0 so that p,(A) x + x. It follows that 
Lat(A 00) splits if and only if ZE Ref(wO(A)). This verifies (i). For (ii), 
write W(A@O)= (WO(A)@O)+C(ZOZ) and note that W(A@O) splits if 
and only if ZOO E -1y-(A @ 0), and this is true if and only if ZE WO(A). 

3. THE MAIN EXAMPLE 

Fix an orthonormal basis {e, } ;” for an infinite dimensional separable 
Hilbert space 2”. View each operator A ~9?(%‘) as an infinite matrix 
A=(Ajdj,k>t. Let E,k be the matrix unit which has a 1 as its (j, k)-element 
and all other elements 0. Let J& = [e,, . . . . e,] and let P, be the orthogonal 
projection onto A,,. For each k b 1, let 

and 

Qzk = P2k + 4k’%k.,k + I. 

Set Q0 = 0. Observe that each Q, is an idempotent of rank n and that range 
(Qn)crange(Q,+,). Also, if m<n, then QntQ,=QnQm=Qm. For kal, 
Set Tk=Qk-Qkp,. Each T, is a rank-one idempotent, and 7”Tk = 0 if 
i # k. We have 

T, =E,, +4-G,, 

TZk~,=-4k~1E2k~2,2k~~,+E2k~t.2k-,+4kE2k,Zk-, for k32, 

Tzc = -4kEwk - t + ‘%k,,k + 4k-%,k + t for k> 1. 

Thus Tzk ~ 1 has nonzero entries only in the 2k - 1 column and Tzk has 
nonzero entries only in the 2k row. 
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LEMMA 3.1. The series 

453 

converges in norm to a compact operator T. We have 

Proof: Forka2wehave IITSkP,112=1+42k-2+42k,andfork>1 we 
have I/ T,, I( * = 1 + 2(4”‘). So )I T, II < 2”+ ’ for all n. Thus II 4-“T,, II < 2’ pn, 
and so C II 4-“T, II < co. Thus CT 4-“T,, converges in norm to an operator 
T which is compact, since each T, has finite rank. (In fact, T is of trace 
class.) Also, TE %‘J { T,} 7). 

Since the operators T,, are idempotents with T,, T, = 0, n #m, we have 
for each k > 1, 

(4T)“= T, +f (41-“)k T,,. 
2 

Since k(n- l)>k+n-2 for n>2, k> 1, we have 

II ~(4’~“)LT~~i~~(4’~.)*llT.ll 
2 

<(41-*)f’4’-” IIT,II. 

This expression tends to 0 as k increases. Hence, T, E wO( T). 
Now 

16(4T-T,)=T2+f4*-“T,. 
3 

As above, we have 

[16(4T- T,)]“ = T2 + f (42--n)k T,,, 
3 

and 

II f(42-“)kT, G(41-k)f42-“l,T,li, 
3 II 3 

so 

[ 16(4T- T,)]“ + T, as k+co. 
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Continuing in this way, one sees that Tk E “&i(T) for all k > 1. Thus 
%({Td)=%XT). S’ mce Tk = Qk - Qk , and Q,, = Cy T,, we also have 
%W’d;)=%({Qd;)~ I 

We note that in the above lemma T,, is just the Riesz idempotent for T 
corresponding to the isolated point {4-“) of a(T). 

In some ways the operator T behaves like a cyclic compact diagonal 
operator. In fact it is not hard to see that T is quasisimilar to such an 
operator. (See [ 11.) However, T has some exceptional properties. We 
break the proof of our main Theorem 3.7 into live lemmas 3.2 through 3.6. 
In Section 4 we will show that a slight modification in the construction of 
T yields a closely related operator T for which TOO is reflexive, unlike T. 
This operator F has properties which answer two questions in [7]. It fails 
the next lemma, which points out the delicacy of that step. 

LEMMA 3.2. ZE Ref wO( T). 

Proof Fix a vector x = C 7 xkek in 2. We must show x E [VO( T) x]. 
Since {P,,} converges in the strong operator topology to Z, we have 
P,x+x. For k> 1 we have 

Hence, if the sequence of numbers {4k~zk _ , }T=, has 0 as a cluster point, 
then some subsequence of { Q2k _ 1 x} converges to x, and so x E [?&e(T) x]. 
Thus we reduce to the case where there is a 6 > 0 and a positive integer K 
so that 

4”(x 2k -I 126 Qk>K. (1) 

For each k > K, consider the equation 

CQ2k-,X+dQ2kX=P2,X. (2) 

We will show that, for infinitely many k, (2) has a solution (c,, dk). It then 
follows that XE [%$({Q,>~)x]. 

We proceed by way of contradiction. Suppose that there is a K’ 2 K so 
that for k2 K’, (2) has no solution. Now (2) is equivalent to the system of 
2k scalar equations 

cx,+dx,=x,, n < 2k, 

c4kX,,-, + d(Xzk + dkX,, + ,) = X2k. 
(3) 

BY (11, xzk ~, # 0, so our assumption is that the pair of scalar equations 

c+d= 1 

C(4kX,k ~ I ) + db2k + 4kX2k + , ) = X2k 
(4) 
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has no solutions. But this means that 

Thus 

dkX2k _, = X2k + dkX,, + 1 for all k 3 K’. (5) 

X2k f 1 = X2k ~ 1 - X2k/4k, 

so 

X2k+2 X2k 
X2k+3=X2k+L--=X 

X2k+2 
qk+l 2k-I---- 

4k qk+l ’ 

Repeating the above steps j times gives 

X2k+2 X -+...+S 
qk+l 4k +i (6) 

Fix k 2 K’ so that 

i,F;.’ 

2 

’ > 

112 6 

x21 <-. 
4 

Now 

Thus lim, X2k + 2j + I #O, our contradiction. 1 

LEMMA 3.3. T is a reflexive operator, and W(T) = XI(T). 

Proof For every n 2 1 we have 

TTn=(x4-kTk) T,,=4-“T,,. 

Thus ran T, is a one-dimensional eigenspace for T for the eigenvalue 
4-“. Also, Q2n=T,+Tz+ . ..+T.,, so that A2n=ranQ,,=ranT,+ 
ran T2 + . . + ran T2” is in Lat T. Since TI kx2U has 2n distinct eigenvalues 
it is similar to a cyclic diagonal operator. In particular, TJ,&& is reflexive. 

SW92/2-10 
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That is, the algebra % ‘( TI ,,,:” ) is reflexive. Since . &2,z is a finite dimensional 
invariant subspace for T, we have 

Moreover, since Wi(T)=WJ{T,};) and Qz,z=T,+ . . . +T,,, it 
follows that WO(Tl,,J contains Z,H2n and hence 

Furthermore, since Tk I ,1/2n = 0 for k > 2n, we have 

“(Tl.,,,)=~~(TI,.~,~)=~({~,I.N~n}~~,). 

By the construction, we have 

Now let SE Alg Lat( T) be arbitrary. Then 

so there exists a unique set of complex numbers { ck}F=, with 

211 

St .X2” 
=,c, 

ck Tk 1 ,#2n = ,c, Ck@k-Qk-dn/z,. 

It is easy to see that the coefficients ck do not depend on n. Indeed, since 
the operators T,, and hence Tk I,KZn, are idempotents, and T,T, = 0 for 
i#j, for each k the subspace ran Tk is a one-dimensional invariant 
subspace for S, so is contained in an eigenspace Nk for S. It is clear that 
the eigenvalue of S corresponding to N, is precisely ck. 

The operator T is contained in the tridiagonal CSL algebra represented 
by the diagram 

r * * * * * Y * . ..I * 
which is known to be reflexive. So the operator S must have this general 
tridiagonal form. The above paragraph shows that S must in fact have liner 
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structure. Let 9 denote the linear span (no closure) of the basis vectors 
{e,} ;^. Then 9 is invariant under S, and the series 

converges pointwise on 9 to S 1 9. This gives the matrix form of S. 
(However, this series need not converge in the weak operator topology. In 
particular, if S= Z, then Lemma 3.5 will show that the series cannot 
converge weakly. For the case S = I one has ck = 1 for each k.) 

If we write S = (S,,), then for all k > 1, we have S,, = ck, S,,+ I = 
(czkP r - cZk) 4k and S2k,2k +, = (C2k - c2k+ r) 4k. Every other element of 
(Slk) is 0. In particular, we have 

for each k. Thus 

(7) 

ii: ICI--c/+11 
/= I 

converges, and hence the sequence {c,) converges. Let i = Lim, c,. We 
have 

( 
n-l 

I=c,-lim 1 (c,-cl+,) . 
n 

I= 1 > 

Let S = S - II. Then SE Alg Lat (T), and S has the formal series 

kz, ek(Qk - Qk- 11, 

pointwise convergent on 9 to $1 P, where ?k = ck - 1. for each k. From (7) 
we have 

Ii,-P,+,1<2 

for all 12 1. So since Lim 2, = 0, we have 

le2ki = f tC,Ff,+,) 
/=2k 

I II g II 

<2(4~k)ll~Il. (8) 
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For each n we have 

Tk Pz,, = T, for 1 <k62n- 1, 

Tz,, Pz,, = Tz,, - 4”&,. 2,, + 1 

and 

so 

T,P,,=Q for k32n+ 1. 

From (8), the sequence {4’tzn} is bounded, and hence the sequence 
{4’%&,,2n+ I> converges in the weak * topology to 0. Also, since {PSn} 
converges weak * to I the sequence { JP2,,] converges weak * to 3. Hence 
the sequence of partial sums 

converges weak * to 3. Since Tk E dO( T), 1 d k < CXX, this shows that 
SE J&(T). Hence SE d( T). We have proven that Alg Lat( T) = d(T). 
Hence also G?‘(T)= W(T). 1 

We note that it follows easily from the proof of the above lemma that 
W(T) = {T}‘. 

LEMMA 3.4. Let 2 = Oj q be the countable direct sum of Hilbert 
spaces { 3). Suppose that fj E [F,(q), j = 1, 2, . . . . and that 1 11 f Ij j < CO. Then 
there is an operator f E F,(Z) such that P, f I&, =fi for each j, where Pi is 
the projectidn of X onto q. 

Proof: For each j, write f, = wj @ vi, where I( wj I/ = (I uj I( = /I S, 11 ‘12. Then 
w,, u,E~. Let w  = 0, wj and u = ojv,. Then w, UEX, since I/w iI2 = 
/I u 11 2 = C 11 f, 11 < co. Let f = w 0 0. Then PifPj= P,w 0 P,v so that 
P,.flx,= wj@ vI =fi, as desired. 1 

LEMMA 3.5. T is 2-elementary. The relative weak operator topology coin- 
cides with the relative weak * topology on W(T). 
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Proof. We must show that C,(X) = W(T). + IF,(S). Let f= (&) E 
C,(X) be arbitrary. Then 

2k ~ I 

tr(&-If)= c ~j++kf2kW,2k Vkal (9) 
/=I 

and 

tr(Q,kf)= f f)j+4kf2k+1,2k Vka 1. 
j= 1 

Since each of the diagonals of a trace class operator is absolutely 
summable, we have 

k!, IfkkI<cQ f If2k&1,2kl <co, 
k=l 

and 

f if2k+1,2ki<03. 
k=l 

Let g = ( gii) be the operator defined in terms of its coordinate elements 
by gll =C,Z~IJ;j~ and 

g4,~1,4k=f4k~l,4k- 
(c,m_ 4&j) 

42k 
for k = 1, 2, . . . . 

g4k+1,4k- 4k+1,4k- -f 
(c,?4k+ lhj) 

42k 

with g, = 0 otherwise. Then g E C,(X). Similarly, define h = (h,) E C,(2) 
by setting 

h -f 

(x,F4kp2&j) 

4k-3,4kp2- 4k-3,4kp2- q2k- 1 

h -f 
(C,E4kp Ifi,) 

4kp1,4k-2- 4kp1,4kp2- 42k-1 

for k = 1, 2, . . . . and setting all other coordinate elements equal to 0. This 
choice of g and h yields, using (9) that tr(f) = tr(g + h) and that 
tr(Qr f) = tr(Q,(g + h)) for all I > 1. Since w(T) = d(T) and since d(T) is 
the weak * topology closed linear span of Z together with {Q,: 1 < I < cc }, 
it follows that f - (g + h) E YY( T),. Thus the problem is reduced to 
verifying that g + h E W(T), + lF,(X). 

Fork3 1 let Rk be theorthogonalprojectiononto [e&- 1, e4k,e4k+ r, e4k+2]. 
Let k,=proj[e,, e2]. From the construction of g we see that R,gR, has 
rank 1 for each k, and, moreover, g = C,“=, R,gR, with convergence in 
trace class norm. We have 
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By Lemma 3.4 there is a rank one operator G with RkGR, = RkgR, for all 
k. Since g has nonzero coordinate elements only in the columns 
1, 4, 8, 12, we may assume that G also has this property by multiplying 
G on the right by proj[el, e4, e,, e,?, . . . ] if necessary. Then Eqs. (9) show 
that G-g annihilates each Q, (and has trace 0) so G -g E w;‘( 7’)_. 

We must also construct an operator HE IF, with H-h E W”(T), . For 
k 3 0 let Sk be the projection onto [e,, + , , edk + z, edk + 3, edk + 4]. From the 
construction of h, the operators S,hS, have rank 1 and we have 

h= 2 S,hSk, Ilhll, = c /IS,hSkII. 
k=O k=O 

Apply Lemma 3.4 to obtain an operator HE [F, with Sk HSk = S,hS,, 
k = 0, 1, 2, . . . . Since h has nonzero coordinate elements only in the columns 
2, 6, 10, . . . we may assume that H also has this property. As above, Eq. (9) 
yield that H-hs W(T),. 

We have g+h=(g-G+h-H)+(G+H)EW(T)L+F2. Thus W-(T) 
is 2-elementary. Hence the weak operator and weak * topologies coincide 
on @“(T)=&(T) (cf. [2 or 33). I 

LEMMA 3.6. We(T) does not contain I. 

Proof. By Lemma 3.5, wO( T) is the weak * closure of the linear span of 
the idempotents {Qk}F=, Let h = (h,) be the operator defined in terms of 
its coordinate elements by 

hkk = 2 k 

/2kI \ 

for all k z 1 and all other elements 0. Then h E C,(X), since it is supported 
on finitely many (three) diagonals and each diagonal is absolutely 
summable. It is easily verified using Eqs. (9) that tr(Qkh) = 0 for all 12 1. 
So h E we(T), . Also, tr(h) = 1. This shows that Z$ we(T). 1 

THEOREM 3.7. T is reflexive, but TOO is not reflexive. 

Proof: It was shown in Lemma 3.3 that T is reflexive. On the other 
hand, Lemmas 3.2 and 3.6 show that wo( T) is not reflexive, so by Proposi- 
tion 2.1, T@ 0 is not reflexive. 

Remark. Since the operator 0 is trivially reflexive and elementary, 
Theorem 3.7 shows that the direct sum of two reflexive operators need not 
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be reflexive even under the hypothesis that one is elementary and the other 
is 2-elementary. We note that the direct sum of two reflexive elementary 
operators is reflexive [ 121. Also, TO 0 is the first known example of a non- 
reflexive operator for which the Hilbert space on which it acts is the closed 
linear span of eigenvectors for the operator. 

We now discuss briefly some additional questions which can be answered 
using the above sequence of lemmas. 

In [S], J. Deddens raised the following question: If Lat(A @ B) = 
Lat(A) @ Lat(B), must -Ilr(A @B) = -Iy-(A) @ w(B)? (See also the article of 
Conway and Wu [5].) The answer is no. 

COROLLARY 3.8. Lat( T@ 0) = Lat TO Lat 0, hut YV( T@ 0) # W(T) 0 

*w(O). 

Proof: This is immediate from Lemmas 3.2 and 3.6 together with 
Proposition 2.2. 

Remark. An operator A was given in [ 17, Example 1 ] with the 
property that w(A) is properly contained in {A}‘nAlgLat(A). The 
operator TOO shares this property. This follows from the fact that 
Alg Lat( TOO) = w(T) 0 CZG { TOO}’ together with the fact that 
w( T@ 0) is properly contained in Alg Lat( TO 0). The operator A in [ 171 
was an extension of a triangular operator but was not triangular. The 
operator T@O is triangular, and is in fact bitriangular, as is easily seen. 
(An operator A is called bitriangulur [7] if both A and A* are triangular 
with respect to perhaps different orthonormal bases for 2.) We note that 
T is triangular with respect to the ordering {e,, e,, e4, e3, e6, e5, . ...} of 
the basis {e,} and T* is triangular with respect to the ordering 

{e I, e3, e2, es, e4, . . . }. So T is bitriangular, hence TOO is bitraingular. 

The above results yield the first known example of a reflexive operator 
A and an operator B contained in w(A) = Alg Lat(A) for which 
Lat(A) = Lat(B) and yet for which W(B) is properly contained in w(A). 

COROLLARY 3.9. Lat(T@O)=Lat(T@(21)) and T@OEW(T@(~Z)), 
but W(T@O) is properly contained in W”( T@ (21)). Also, T@ (21) is 
reflexive. 

Proo$ We have a(T)={4~k:k>l}u{O}, so a(T) and a(21) are 
contained in disjoint disks. Thus (see [S], for example) we have 
?V( T @ (21)) = ?V( T) @ “K(2Z) and Lat( T 0 (21)) = Lat( T) @ Lat(2Z). 
Since the direct sum of two reflexive algebras is reflexive, this shows that 
T@ (21) is reflexive and that TOOE W(T0 (21)). Corollary 3.8 now 
completes the proof. 1 



462 LARSON AND WOCiEN 

We next give an application of our work to the theory of dual algebras. 
(See [3,4].) A dual algebra A is a weak* closed unital subalgebra of 
&9(Z). The dual algebra generated by an operator A is .&(A). The key idea 
in the Scott Brown technique for constructing invariant subspaces for A 
can be described as follows: One attempts to find a nonzero weak* 
continuous complex homomorphism n : ,&‘(A) + @ with the additional 
property that A is spatial. This means that there exist vectors x and 4’ in 
~-9 with the property that n(B) = (Bx, 4’) for all BE .&‘(A). The difficulty 
usually lies in proof of spatiality of a known A. If this can be done, then 
[(ker A) x] is a proper invariant subspace for A. So general results proving 
spatiality of functionals ii can yield invariant subspace results. Up to this 
time no example delimiting the theory was known of a non-spatial weak* 
continuous complex homomorphism of a singly generated dual algebra. 
Next we show that our example T accomplishes this. 

COROLLARY 3.10. There is a weak *-continuous complex homomorphism 
of W(T) which is not spatial. 

Proojl Let h be the trace class operator constructed in the proof of 
Lemma 3.6. Define a linear functional A on W(T) by A(A)= tr(Ah), 
A E ^llr( T). Then /i is weak *-continuous, and ker YI = -W,(T), which is a 
maximal ideal in W(T). Also, n(Z) = 1. So n is a homomorphism. 
Suppose, by way of contradiction, that n is spatial. Then there are vectors 
x, YE X with A(A) = (Ax, y) VA E ?V( T). By Lemma 3.2, IE Ref(%$( T)), 
so there exists a sequence {B,,} c WO(T) with B,x -+ x. We have 
(B,,x,y)=A(B,)=O, so (x,~)=Lim(B,x,~)=O. However, (X,-Y)= 
A(Z) = 1, a contradiction. 1 

The next corollary answers a question that had been posed several years 
ago (personal communication) to the first author by J. Erdos. 

COROLLARY 3.11. There is a linear subspace .4” G g( SF ) which is weak * 
generated by rank one operators yet for which ref(Y) is not weak * 
generated by rank one operators. 

Proof: Let T be the operator considered above and let Y = wO( T). 
Then Y is weak * generated by the rank one operators {T, : n 3 1 }, and 
ref Y = W(T). If A is any operator in ?V( T) then, as in the proof of 
Lemma 3.3, A has a representation as a formal series C c, T, which is 
pointwise convergent on a dense Y&‘+(T)-invariant domain 9. From the 
construction it follows that if A is of rank 1 then A is a scalar multiple of 
T, for some n, so A E Y&(T). Since W(T) # wOo( T), the conclusion 
follows. 1 
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4. SOME RELATED RESULTS 

The focus of Section 3 was to show that the operator T constructed in 
that section has the property that it is reflexive yet TOO fails to be 
reflexive. We next show that TOO is, in an essential way, nearly reflexive. 

If d is a unital subalgebra of B(X)), let Lat ,i2 r;4 denote the lattice of 
invariant operator ranges for d. Thus ME Lat ,,* &’ if M= ran S for some 
SE B( 2 ) and AM g M for all A E d. Given a family 9 of operator ranges 
let Alg .Y denote the algebra of operators in 99(X’) that leave every 
element of 9’ invariant. An algebra d is said to be parareflexioe if 
d = Alg Lat,,, d. We note that parareflexive algebras are typically not 
closed in any operator topology. For example, if S is an operator which is 
not algebraic, then the algebra of entire functions of S is parareflexive [lo]. 
In fact, Ong in [ 161 posed the question of whether weakly closed unital 
parareflexive algebras are always reflexive. For the operator TOO of 
Section 3 with the second direct summand space one-dimensional, we will 
show that d = w( T@ 0) is parareflexive. Since JY is not reflexive, this 
yields a counterexample to Ong’s question. 

THEOREM 4.1. Let T be the operator constructed in Section 3. Then 
W( T@ 0) acting on 8 @ @ is pararejlexive. 

Proof: We have 

w(T@O)cAlg Lat,,, W(T@O) 

cAlgLat(T@O)c%‘“(T)@CZ. 

Also, W(T@O) has codimension one in w(T)@ @I. Thus to show that 
YY( TOO) is parareflexive, it suffices to show that Alg Lat,/, w( TO 0) # 
Alg Lat( T@ 0). Since 

Alg Lat( TO 0) = Alg Lat( T) 0 CZ, 

it is enough to find an M in Lat& TO 0) so that M does not split. 
Consider the operator V in w(T) with formal series 

From the description of W(T) in the proof of Lemma 3.3, we see that 
V=(V,) satisfies V,,=2-‘, V2k,Zk-l=(2-2k+1-2~2k).22k=1, and 
V 2k,Zk+, =(2P2k-222k-1).22k=f, k= 1, 2, . . . . All other coordinate 
entries of (V,) are 0. 
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Let .Y = C,:=, n ‘c>~,~. Then x is not in ran V, for solving the equation 
I’(C h,e,,) =x would give h,, = 2’“jn. Let M be the (unclosed) linear span 
of x@ 1 and ran V@ 0. Then A4 does not split, since x is not in the range 
of V. It remains to show that ME Lat 1/Z %*( TOO). 

Define A EB(X@C) as follows: for all =E @, let A(O@z) =O. Let 
A(x@O) = x0 1. Let U be an isometry from {x}’ onto %, and for 
.YE {+> let A(y@O)=(VUy)@O. Then ranA=C(x@l)+(ran V)@ 
0 = M. This shows that M is an operator range. 

We now show that M is invariant for -llr( T@ 0). If SE %‘“( T@O), then 
S = S, @ 3, for some S, E ?V( T) and 3, E C. For each element Vy of ran V, 
we have (s,on)(VyOO)=S,V?,OO= VS,,v@OEran VOOEM. That 
is, S(ran V@ 0) z M. To show that S(x@ 1) E M, note that S - E-Z= 
(S, - AZ) @ 0 E Y&( T 0 0), so S, - AZ E wO( T). From the proof of 
Lemma 3.3 it follows that S, - >,I has the formal series C,“=, C, T,, for some 
sequence {c,} of numbers such that { 2” ( c, I > is bounded. Hence the series 
I,“=, (22nc2n/n) e,, converges in norm to a vector U’E X. A computation 
yields (S, -AZ) x = C,“= i (c,,/n) e2,, = VW E ran V. So 

as required. The proof is complete. 1 

Next, we consider a slight modification of the example of Section 3. This 
leads to answers to two questions appearing in the paper [7] of Davidson 
and Herrero. In this paper the authors show that each bitriangular 
operator A is quasisimilar to a direct sum of Jordan blocks. This leads to 
information on the invariant and hyperinvariant subspaces of A. 

We begin with a lemma. This should be compared with Proposition 2.1 
and Lemma 3.2. 

LEMMA 4.2. Suppose that {G, } ,“= , is a sequence of rank one idempotents 
which is algebraically orthogonal (that is, G, G, = 0 if m # n) and such that 
[{ranG,:n>l}]=X. Then ZERef%$((G,},“=,) ifand only iffor each 
MELat({G,}) wehaveM=[{ranG,:ranG,EM)]. 

Proof: We have ZE Ref ?V$( { G, } ) if and only if for each x E ~8 we have 
XE C%({G,))xl= CiGn x : G,x #O}]. Thus if M, denotes the cyclic 
subspace for ?V( { G,}) generated by x, then ZE Ref ?&( { G, >) if and only 
if for each x, M, = [ {G,x : G,x ZO}]. This proves the lemma. 1 

Now we modify our main example. Let Q0 = 0, and for k 2 1, set 

and 
02k ~ I = P2k I + 22k ~ ‘&k,,k I 

D,k = P2k + 22kE2k.2k + I. 
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Let ??,,=Qn-&-i for n> 1, and let T=Cc=, 4-“T”. Note that Q,,-, 
has been obtained from Qzk _ , by changing the coefficient of EZk,2kp i from 
22k t0 22k- i, and Qzk = Qzk. We leave to the reader the verification that 
Lemmas 3.1 and 3.3 carry over with only trivial modifications. Thus we 
have 

LEMMA 4.3. The operator F is reflexive and s&‘(T) = W(T) = { p}‘. 

Let ~,=e,+2e,,~,,~,=-22”~2e2n~,+e,,_,+22”-1e2,forn>1, and 
for n 3 1. Also let $2n ~ i = e2n ~, and $2n = -22”p ‘ezn _ i + e2,, + 

,,+,fornbl.Then ~~=(.,~n)~n=~nO~nforn~l. 

LEMMA 4.4. 

Proof. We will construct a vector x=x;” x,e, in Y?, x # 0, so that 
x I d2n ~, and x I tj2,, for all n 2 1. It is necessary and sufficient that such 
a vector satisfy 

x,+2x2=0 (1) 

-2=“-‘X2n_,+X2n+2=~X2n+1=0, nbl (2) 

-2=n~2X2n_2+X2n~1+22n~1X2n=0, n > 2. (3) 

Set xi = 1 and apply (1) to obtain x2 = - 4. Then iteratively apply (2) and 
(3) to determine the remainder of the sequence. An argument by induction 
shows that for all n 3 1 both I xZn-, 1 and 1 x2,, 1 are less than or equal to 
(1 - 2-“) 22-“. Thus (x,) E 12, and thus the series for x converges in 2. 1 

We are now in a position to provide an answer to Problem 6.10 of [7]. 
This problem asks if [{ker(S-A)“:n>l, AE~}] and [{ker(S*-X)“: 
n > 1, 2 E C\f }] are complementary (necessarily orthogonal) subspaces for 
every bitriangular operator S and every subset r of @. The authors showed 
that many bitriangular operators have this strong structural property. The 
operator T which we have constructed is clearly bitriangular (as is T) 
and _gJf) = {4-” : n > 1 }. A computation shows that for all k > 1, 
ker(T-4-“)k=ker(T-4p”)=ran Fn:,= Cd,,], and ker(T*-4-“)k= 
ker(T*-4-“)=ran T,*= [$,,I. Thus Lemma4.4, with r= {4-(2”-1): 
n 2 1 }, shows that this problem has a negative answer. 

LEMMA 4.5. rfx~[{#~~- I:n31}u($2,:n>l}]i, then xl[WO(T)x]. 

Proof: The condition x I $m implies Fz,,x = 0 while x I & _, implies 
T&ix=O. Thus f or all n > 1, either T,,x= 0 or T,*x=O, hence 
(~H,x,x)=(~,~~x)=O,n>l.ThusxI[%$(~)x]. 1 
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Lemma 4.5 together with Proposition 2.1 shows that T@O i.r reflexive, 
unlike the operator TOO. This indicates that the condition in Section 3 is 
quite delicate. 

We can now answer another problem posed in [7]. Problem 6.11 asks if 
every hyperinvariant subspace M of a bitriangular operator S satisfies 
M= [ {Mnker(S-i.)” : n> 1, i. E a,(S)}]. Since I$ Ref %Q&F), Lemma 4.2 
shows that [(ran pH : ran F,,, G M] # A4 for some ME Lat F. Since 
{ T}’ = %“(F), A4 is hyperinvariant. Finally, ran F,,, = ker( p- 4 ‘I). 

We note that the results of this section are closely related to some 
interesting results of Marcus [ 143. In fact his Example 3.1” provides 
another answer to Problem 6.10 of [7]. 

While the results and proofs in this article are for a specially constructed 
single operator, they really concern properties of a special unbounded 
Boolean algebra of idempotents (or a special biorthogonal system of 
vectors). It is possible that our present results may become absorbed in a 
more general theory. With this in mind, some natural questions arise. If 

u3 ;C is an algebraically orthogonal sequence of idempotents in g(X), is 
W( ( Ti} 7 ) always reflexive ? Is it always true that W({T~})=.d({ T,!,))? 
Does the relative weak operator topology always coincide with the 
relative weak * topology on YV( { T,!,})? When is I contained in %‘i( { T,;})? 
IfZ$“&,({T,~}), when is IERef%J{TAj)? 

Note added in prooJ We wish to point out that the construction in this paper can be used 
to answer three additional open questions. We give only brief outlines of the solutions: 

1. If A and B are reflexive operators. is A @B reflexive? The answer is no. Let A be our 
main example T and let B be a rank one projection on a two-dimensional Hilbert space. Then 
A @ B is equivalent to T@I 0, which is not reflexive. 

2. Consider the following question of W. E. Longstaff: if Z. is a completely distributive 
subspace lattice, is the algebra generated by the rank one operators in Alg Y dense in Alg 9 
in the strong operator topology? The reader may wish to consult S. Argyros, M. Lambrou, and 
W. E. Longstaff (“Atomic Boolean Subspace Lattices and Applications to the Theory of 
Bases,” Memoirs AMS, to appear) for definitions, references, and a discussion of the above 
question and related questions, The answer to this question is no--even for an atomic 
Boolean subspace lattice. Let Y be the subspace lattice generated by {ran T,: n > 1). 
Lemma 4.2 shows that 9’ is a complete atomic Boolean algebra, so in particular, 9’ is com- 
pletely distributive. Then Lemma 3.6 shows that I is not in the strong operator closure of the 
algebra generated by the rank one operators in Alg 9. 

3. At the end of this paper we raised this question. If { T,}F is an algebraically 
orthogonal sequence of idempotents in a(%‘), is W( { r,} ;“) always reflexive? The answer is 
no. Consider the family ( T. 0 0) 7 v {O @ T,} 7 in 9Y(P 0 m). Denote this family by 8. It 
is not hard to see that 100 E Ref W(9) but I + 0 4 W(9): thus, #/(8) is not reflexive. 



REFLEXIVITY PROPERTIES OF T @ 0 467 

REFERENCES 

1. C. APOSTOL, Operators quasisimilar to a normal operator, Proc. Amer. Math. Sot. 53 
(1975), 104106. 

2. E. A. AZOFF, On finite rank operators and preannihilators, Mem. Amer Math. Sot. 64 
(1986). 

3. H. BERCOVICI, C. FOIAS, AND C. PEARCY, Dual algebras with applications to invariant 
subspaces and dilation theory, CBMS Regional Conference Series, Vol. 56, Amer. Math. 
Sot., Providence, RI, 1985. 

4. S. BROWN, Some invariant subspaces for subnormal operators, Integral Equations 

Operator Theory 1 (1978), 31G333. 
5. J. B. CONWAY AND P. Y. Wu, The splitting of A( T, @ r,) and related questions, Indiana 

Uniu. Math. J. 26 (1977) 41-56. 
6. L. CURNUTT, unpublished work, personal communication, 1971-1972. 
7. K. R. DAVIDSON AND D. A. HERRERO. The Jordan form of a bitriangular operator, 

J. Funcr. Anal., to appear. 
8. J. DEDDENS, Reflexive operators, Indiana Unia. Murh. J. 20 (1971) 8877889. 
9. J. DEDDENS AND P. A. FILLMORE, Reflexive linear transformations, Linear Algebra Appl. 

10 (1975), 89-93. 
10. R. G. DOUGLAS AND C. FOIAS, Infinite dimensional versions of a theorem of Brickman- 

Fillmore, Indiana Univ. Math. J. 25 (1976) 315-320. 
11. A. FEINTUCH, On direct sums of reflexive operators, Proc. Amer. Math. Sot. 55 (1976), 

65568. 
12. D. W. HADWIN AND E. A. NORDGREN, Subalgebras of reflexive algebras, J. Operator 

Theory 7 (1982) 3-23. 
13. D. R. LARSON, Annihilators of operator algebras, “Operator Theory: Advances and 

Applications,” pp. 119-130, Birkhauser, Berlin, 1982. 
14. A. S. MARCUS, Problems of spectral synthesis for operators with point spectra, Izo. Akad. 

Nuuk. SSSR, Ser. Mat. 34 (1970) 662-688. 
15. R. F. OLIN AND J. THOMSON, Algebras of subnormal operators, J. Funct. Anal. 37 (1980), 

271-301. 
16. S. ONG, A note on parareflexivity of algebras of operators, Rev. Roumaine Muth. Pures 

Aj’pl. 32 (1987), 551-553. 
17. W. R. WOCEN, Some counterexamples in nonselfadjoint algebras, Ann. of Math. 126 

(1987), 415427. 


