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theory, and give some applications to mathematical biology.
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1. Introduction

Impulsive differential equations, that is, differential equations involving an impulse effect, appear as a natural description
of observed evolution phenomena of several real-world problems. It is known that many biological phenomena involving
thresholds, bursting rhythm models in medicine and biology, optimal control models in economics, pharmacokinetics and
frequencymodulation systems, do exhibit impulse effects. Themonographs [1–5] are good sources for the study of impulsive
differential equations and their applications. The recent survey paper [6] provides the oscillation theory of impulsive
ordinary differential equations.
We recall that from the last 40 years delay differential equations have attracted a great deal of attention of researchers

in mathematical, biological, and physical sciences. This is specially due to the fact that the theory of ordinary differential
equations does not carry over to delay differential equations; in fact, often it needs special devices. Among the topics
studied for the delay differential equations, oscillation of the solutions has been investigated the most, and complied in the
monographs [7–10]. However, oscillatory results for the impulsive delay differential equations are scattered all over. Thus,
in this paper we systematically arrange, and modify known oscillatory results and their proofs, for linear and nonlinear
impulsive delay differential equations. Several examples illustrating how easily the theory can be applied in practice are
also included.
The first investigation of the oscillation theory of impulsive differential equations was published in 1989 [11]. In this

paper Gopalsamy and Zhang considered impulsive delay differential equations of the form

x′(t)+ ax(t − τ) =
∞∑
k=1

bkx(t−k )δ(t − tk), t 6= tk, (1.1)

and {
x′(t)+ p(t)x(t − τ) = 0, t 6= tk,
x(t+k )− x(t

−

k ) = bkx(t
−

k ), k ∈ N = {1, 2, . . .} (1.2)
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where p ∈ C([0,∞), [0,∞)), a is a positive real number, τ ≥ 0, bk, k = 1, 2, . . . , are real numbers, 0 < t1 < t2 <
· · · < tk < · · · and limk→∞ tk = ∞. In [11] sufficient conditions are obtained for the asymptotic stability of the zero
solution of (1.1) and the existence of oscillatory solutions of (1.2). This work initiated the oscillation theory of impulsive
delay differential equations. The monographs [12,13] include some oscillation results for the impulsive delay differential
equations. In what follows we shall only consider impulses at fixed times; however, to the best of our knowledge, [14,15]
are the only papers on the oscillation of delay differential equations with impulses at variable times.
The plan of this paper is as follows: Section 2 includes notations, definitions and some theorems needed in the later

sections. In Section 3 we are concerned with the linear impulsive delay differential equations. In the last Section 4 we
deal with the nonlinear impulsive delay differential equations. This section also contains linearized oscillation and some
applications to models in mathematical biology.

2. Preliminaries

In this section,we introduce notations, definitions and somewell-known resultswhich are needed throughout this paper.
Let R+ = [0,∞), J = [t0,∞) for some fixed t0 ≥ 0 and {tk}∞k=1 be a sequence in J such that t0 ≤ t1 < t2 < · · · < tk <

tk+1 < · · · and limk→∞ tk = ∞. Let i(a, b) denote the number of points tk, lying in the interval (a, b). If {ck} is a sequence,
then

∑
a<tk<b

ck and
∏
a<tk<b

ck denote the sum and product of the numbers ck such that tk ∈ (a, b). If i(a, b) = 0, then∑
a<tk<b

ck = 0 and
∏
a<tk<b

ck = 1.
By PLC(X, Y ) we denote the set of all functions ψ : X → Y which are continuous for t 6= tk, and continuous from the

left with discontinuities of the first kind at t = tk. Similarly, PLC r(X, Y ) is the set of functions ψ : X → Y having derivative
ψ (r)
∈ PLC(X, Y ). As usual C(X, Y ) denotes the set of continuous functions from X to Y .
Consider the first order delay differential equation having impulses at fixed moments of the form{

x′(t) = f (t, x(t), x(τ (t))), t 6= tk, t ≥ t0,
1x(tk) = fk(x(tk)), k ∈ N, (2.1)

and the initial condition

x(t) = ϕ(t), t ∈ [T−1, t0], (2.2)

where f ∈ C(J×R×R,R), fk ∈ C(R,R), ϕ ∈ C([T−1, t0],R), τ ∈ C(J,R), τ (t) ≤ t, limt→∞ τ(t) = ∞, T−1 = inft≥t0{τ(t)},
and

1x(tk) = x(t+k )− x(t
−

k )

with x(t±k ) = limt→t±k x(t). For simplicity, it is usually assumed that x(tk) = x(t
−

k ).

Definition 2.1. A function x : [T−1,∞)→ R is said to be a solution of (2.1)–(2.2), if the following conditions are satisfied:

(i) x(t) is absolutely continuous in each interval (tk, tk+1), k ∈ N, x(t+k ) and x(t
−

k ) exist and x(t
−

k ) = x(tk);
(ii) x(t) satisfies the former equation of (2.1) almost everywhere in [t0,∞) \ {tk} and satisfies the latter equation for every
t = tk, k ∈ N;

(iii) x(t) satisfies (2.2) for t ∈ [T−1, t0].

Let x(t) be a solution of some impulsive differential equation.

Definition 2.2 ([12]). The solution x(t) is said to be regular if it is defined in some half line [Tx,∞) and sup{|x(t)| : t ≥ T }
> 0 for all T ≥ Tx.

Definition 2.3. A real-valued function x(t), not necessarily a solution, is said to be oscillatory, if it is neither eventually
positive nor eventually negative. Otherwise, it is called nonoscillatory. A differential equation is called oscillatory if all its
solutions are oscillatory.

For our purposes we now state some well known results for the oscillation of delay differential equations without
impulses.
Consider the delay differential equation

x′(t)+
n∑
i=1

pix(t − τi) = 0, (2.3)

where pi ∈ R and τi ∈ R+ for i = 1, 2, . . . , n.



1650 R.P. Agarwal, F. Karakoç / Computers and Mathematics with Applications 60 (2010) 1648–1685

Theorem 2.1 ([8]).Assume that pi, τi ≥ 0 for i = 1, 2, . . . , n. Then each of the following conditions is sufficient for the oscillation
of all solutions of Eq. (2.3).
(a)

∑n
i=1 piτi >

1
e ;

(b)
(∏n

i=1 pi
)1/n (∑n

i=1 τi
)
> 1
e .

Theorem 2.2 ([8]). Assume that pi, τi ≥ 0 for i = 1, 2, . . . , n. Then(
n∑
i=1

pi

)(
max
1≤i≤n

τi

)
≤
1
e

is sufficient for the existence of a nonoscillatory solution of Eq. (2.3), while(
n∑
i=1

pi

)(
min
1≤i≤n

τi

)
>
1
e

is sufficient for all solutions of Eq. (2.3) to be oscillatory.

Now consider the following delay differential equation

x′(t)+
n∑
i=1

pi(t)x(t − τi(t)) = 0, t0 ≤ t < T , (2.4)

and the delay differential inequalities

y′(t)+
n∑
i=1

qi(t)y(t − τi(t)) ≤ 0, t0 ≤ t < T , (2.5)

and

z ′(t)+
n∑
i=1

ri(t)z(t − τi(t)) ≥ 0, t0 ≤ t < T , (2.6)

where pi, qi, ri, τi ∈ C([t0, T ),R+) for i = 1, 2, . . . , n, and t0 < T ≤ ∞.
Let

t−1 = min
1≤i≤n

{
inf

t0≤t<T
{t − τi(t)}

}
.

Theorem 2.3 ([8]). Assume that qi(t) ≥ pi(t) ≥ ri(t), t0 ≤ t < T , i = 1, 2, . . . , n and x(t), y(t), z(t) are continuous solutions
of (2.4)–(2.6) respectively, such that

y(t) > 0, t0 ≤ t < T ,
z(t0) ≥ x(t0) ≥ y(t0),
y(t)
y(t0)

≥
x(t)
x(t0)

≥
z(t)
z(t0)

≥ 0, t−1 ≤ t < t0.

Then

z(t) ≥ x(t) ≥ y(t), t0 ≤ t < T .

The following well known theorem will also be needed in our paper.

Theorem 2.4 (Lebesgue’s Dominated Convergence Theorem). Let M be ameasurable set and let {fn} be a sequence of measurable
functions such that limn→∞ fn(x) = f (x) a.e. in M, and for every n ∈ N, |fn(x)| ≤ g(x) a.e. in M, where g is integrable on M.
Then

lim
n→∞

∫
M
fndµ =

∫
M
f dµ.

3. Linear differential equations

In this section, we consider the oscillation of first, second and higher order impulsive linear delay differential equations.
We shall also discuss some results on the generic oscillations.
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3.1. First order equations

Let us consider the impulsive delay differential equation{
x′(t)+ p(t)x(t − τ) = 0, t 6= tk,
x(t+k )− x(t

−

k ) = bkx(t
−

k ), k ∈ N, (3.1)

where p ∈ C([0,∞), [0,∞)), τ > 0, bk, k = 1, 2, . . . are real numbers, 0 < t1 < t2 < · · · < tk < · · · and limk→∞ tk = ∞.
It is clear that all solutions of (3.1) are oscillatory if there exists a subsequence {nk} of {n} such that bnk ≤ −1 for all k ∈ N.

So, we assume bk > −1 for all k ∈ N.
There are many papers for the oscillation of Eq. (3.1) and its various extensions [16–25]. The following results were

established in [19].
For convenience, define

α(s, t) =


∏
s<tk≤t

1
1+ bk

, (s, t] ∩ {tk} 6= ∅,

1, (s, t] ∩ {tk} = ∅,
β(s, t) = min {α(u, t) : u ∈ (s, t]} ,
γ (t) = min {τ , tk − t : tk > t} ,

bk = max{0, bk}.

Theorem 3.1 ([19]). Assume that

lim sup
t→∞

β(t − τ , t + γ (t)− τ)α(t + γ (t)− τ , t)
∫ t+γ (t)

t
p(s)ds > 1. (3.2)

Then Eq. (3.1) is oscillatory.

Proof. Let x be a nonoscillatory solution. Without loss of generality, we can suppose that x(t) > 0 for t ≥ t∗, then x(t) is
nonincreasing on intervals of the form (tk, tk+1] for tk > t∗ + τ . From (3.1), we have

x(t + γ (t))− x(t+)+
∫ t+γ (t)

t
p(s)x(s− τ)ds = 0. (3.3)

Since x is nonincreasing, we obtain

inf
t−τ<s<t+γ (t)−τ

x(s) = min {x(t + γ (t)− τ), x(tk) : tk ∈ (t − τ , t + γ (t)− τ ]} .

Let tk < tk+1 < · · · < tm be impulse points in (t − τ , t + γ (t)− τ ], then

x(tm) =
1

1+ bm
x(t+m ) ≥

1
1+ bm

x((t + γ (t)− τ)+),

x(tm−1) =
1

1+ bm−1
x(t+m−1) ≥

1
1+ bm−1

x(tm)

≥
1

1+ bm−1

1
1+ bm

x((t + γ (t)− τ)+),
. . . ,

x(tk) ≥
1

1+ bk

1
1+ bk+1

· · ·
1

1+ bm
x((t + γ (t)− τ)+).

Thus,

inf
t−τ<s<t+γ (t)−τ

x(s) ≥ β(t − τ , t + γ (t)− τ)x((t + γ (t)− τ)+), (3.4)

and analogously

x((t + γ (t)− τ)+) ≥ α(t + γ (t)− τ , t)x(t+). (3.5)

From (3.3)–(3.5) we have

x(t + γ (t))+ x(t+)
[
β(t − τ , t + γ (t)− τ)α(t + γ (t)− τ , t)

∫ t+γ (t)

t
p(s)ds− 1

]
≤ 0,

which contradicts (3.2). The proof of Theorem 3.1 is complete. �
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Corollary 3.1. Assume that tk+1 − tk ≥ T , k ∈ N, τ ≥ T and the following condition holds

lim sup
k→∞

β(tk − τ , tk + T − τ)α(tk + T − τ , tk)
∫ tk+T

tk
p(s)ds > 1.

Then Eq. (3.1) is oscillatory.

Corollary 3.2. Assume that tk+1 − tk ≥ τ , k ∈ N, and the following condition holds

lim sup
k→∞

1
1+ bk

∫ tk+τ

tk
p(s)ds > 1.

Then Eq. (3.1) is oscillatory.

Corollary 3.3. Assume that tk+1 − tk ≥ 2τ , k ∈ N, and the following condition holds

lim sup
k→∞

∫ tk+2τ

tk+τ
p(s)ds > 1.

Then Eq. (3.1) is oscillatory.

Remark 3.1. Corollary 3.1 is the modification of the first result of Theorem 3.1 in [11] and Corollary 3.2 is the second result
of Theorem 3.1 in [11].

Theorem 3.2 ([19]). Assume that

lim sup
t→∞

∏
t−τ<tk<t

(1+ bk) <∞, (3.6)

and

lim inf
t→∞

∫ t

t−τ
p(s)ds >

1
e
lim sup
t→∞

∏
t−τ<tk<t

(1+ bk). (3.7)

Then Eq. (3.1) is oscillatory.

Proof. Suppose that x is an eventually positive solution, say x(t) > 0 for t ≥ t∗. Since x(t) is nonincreasing on the interval
(tk, tk+1] for tk > t∗ + τ , we have

x(t − τ) ≥
∏

t−τ≤tk<t

1

1+ bk
x(t). (3.8)

On the other hand, from (3.7) for sufficiently large t ,∫ t

t−τ
p(s)ds ≥ c > 0,

where c is a constant. So, there exists a sequence {Tn}which satisfies limn→∞ Tn = ∞ such that∫ Tn

Tn−τ/2
p(s)ds ≥

c
2
and

∫ Tn+τ/2

Tn
p(s)ds ≥

c
2
.

Let tk < tk+1 < · · · < tm be impulse points in (Tn − τ/2, Tn). Integrating (3.1) on [Tn − τ/2, Tn], we find

x
((
Tn −

τ

2

)+)
+ bkx(tk)+ · · · + bmx(tm) ≥

∫ Tn

Tn−τ/2
p(s)x(s− τ)ds.

Notice that

x
((
Tn −

τ

2

)+)
+ bkx(tk)+ · · · + bmx(tm) ≤

m∏
i=k

(1+ bi)x
((
Tn −

τ

2

)+)
,
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and hence∏
Tn−τ/2<ti<Tn

(1+ bi)x
(
(Tn −

τ

2
)+
)
≥

∫ Tn

Tn−τ/2
p(s)x(s− τ)ds

≥ inf
Tn−3τ/2<s<Tn−τ

x(s)
∫ Tn

Tn−τ/2
p(s)ds

≥
c
2
β

(
Tn −

3τ
2
, Tn − τ

)
x
(
(Tn − τ)+

)
≥
c
2

∏
Tn−3τ/2<tk<Tn−τ

1

1+ bk
x
(
(Tn − τ)+

)
.

Thus

x
(
(Tn − τ)+

)
≤
2
c

∏
Tn−3τ/2<tk≤Tn−τ

(1+ bk)
∏

Tn−τ/2<tk<Tn

(1+ bk)x
((
Tn −

τ

2

)+)
. (3.9)

Similarly integrating (3.1) on [Tn, Tn + τ/2] and using (3.9), we get

x
(
(Tn − τ)+

)
≤

(
2
c

)2 ∏
Tn−3τ/2<tk≤Tn−τ/2

(1+ bk)
∏

Tn−τ/2<tk<Tn+τ/2

(1+ bk)x(T+n ). (3.10)

Let

σ = lim inf
t→∞

x(t − τ)
x(t)

.

From (3.6), (3.8) and (3.10), σ is finite and positive. Now from (3.1) for sufficiently large t we have

x′(t)
x(t)
+ p(t)

x(t − τ)
x(t)

= 0.

Integrating the above equality over [t − τ , t]we obtain

x(t − τ)
x(t)

∏
t−τ<tk<t

(1+ bk) ≥ e inf
t−τ<s<t

x(s− τ)
x(s)

∫ t

t−τ
p(s)ds,

which implies that

1
e
lim sup
t→∞

∏
t−τ<tk<t

(1+ bk) ≥ lim inf
t→∞

∫ t

t−τ
p(s)ds,

but this contradicts (3.7). The proof is complete. �

Remark 3.2. The above Theorem 3.2 includes Theorem 3.2 in [11] as a special case when ti+1 − ti > τ, 0 ≤ bi ≤ M, i ∈ N.

Corollary 3.4. Assume that
(i) bk ≤ 0, k ∈ N;
(ii) lim inf

t→∞

∫ t
t−τ p(s)ds >

1
e .

Then Eq. (3.1) is oscillatory.

In [19] the authors also considered the constant coefficient impulsive equation of the form{
x′(t)+ ax(t − τ) = 0, t 6= tk,
x(t+k )− x(tk) = bkx(tk), k ∈ N, (3.11)

and proved the following results.

Theorem 3.3 ([19]). Assume that
(i) aτe < 1;
(ii) −1 < bi ≤ 0;
(iii)

∑
∞

i=1 bi > −∞.

Then Eq. (3.11) has a nonoscillatory solution.
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Theorem 3.4 ([19]). Assume that

(i) ti+1 − ti ≥ T > 0, i ∈ N;
(ii) bi ≤ 0, i ∈ N and limi→∞ bi = 0;
(iii) aτe < 1.

Then Eq. (3.11) has a nonoscillatory solution.

Now we consider the impulsive linear differential equation of the type{
x′(t)+ px(t − τ) = 0, t 6= tk,
1x(tk)+ p0x(tk − τ) = 0,

(3.12)

where p > 0, 0 < p0 < 1, τ > 0. We assume that the following condition holds:
(H) There existsm ∈ N such that

i[t − τ , t) ≡ m, t ∈ R.

When we look for a positive solution of Eq. (3.12) of the form

x(t) = e−λt(1− µ)i[0,t), λ ∈ R, µ < 1,

we obtain the following characteristic system

λ = peλτ (1− µ)−m,
µ = p0eλτ (1− µ)−m.

(3.13)

It is easy to see that the solution (λ, µ) of (3.13) satisfies

µ =
p0
p
λ.

Moreover, the system (3.13) has a solution (λ, µ)with µ < 1 if and only if the characteristic equation

H(λ) ≡ −λ+ peλt
(
1−

p0
p

)−m
= 0 (3.14)

has a solution λ ∈
(
0, pp0

)
.

Theorem 3.5 ([12]). If the condition (H) holds, then the following assertions are equivalent:

(i) The Eq. (3.14) has no solution λ ∈
(
0, pp0

)
;

(ii) The characteristic system (3.13) has no solution (λ, µ) with µ < 1;
(iii) Each regular solution of the Eq. (3.12) is oscillatory.

In [23], authors obtained explicit necessary and sufficient conditions for the oscillation of Eq. (3.12) by applying
Theorem 3.5.

Theorem 3.6. Let the condition (H) be satisfied. Then every solution of Eq. (3.12) oscillates if and only if

−λ1(1− λ1)me
−
p
p0
λ1τ
+ p0 > 0,

where λ1 =
pτ
p0
+m+1−

√(
pτ
p0
+m+1

)2
−
4pτ
p0

2pτ
p0

.

In [20], authors considered the impulsive delay differential equation of the formx′(t)+
n∑
i=1

pix(t − τi) = 0, t 6= tk,

x(t+k )− x(tk) = bkx(tk), k ∈ N,
(3.15)

where pi > 0, for i = 1, 2, . . . , n; 0 < τ1 < τ2 < · · · < τn; bk ∈ R for k ∈ N.
Let the following conditions (C) be satisfied:

(a) For the case n = 1, there exists a positive integerm such that for j = 1, 2, . . . ,m; k ∈ N,

tkm+j = tj + kτ1, and bkm+j = bj;
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(b) For the case n > 1, the quotients τi/τ1 are rational numbers for i = 2, 3, . . . , n, that is, there exist positive integers qi and
ri which are coprime such that τi/τ1 = qi/ri, and there exists a positive integerm such that for j = 1, 2, . . . ,m; k ∈ N,

tkm+j = tj + kT , and bkm+j = bj,

where T = τ1/r and r is the least common multiple of r1, r2, . . . , rn.

A necessary and sufficient condition for the oscillation of (3.15) is that its characteristic equation

F(λ) = λ+
n∑
i=1

piξαie−λτi = 0 (3.16)

has no real roots, where

ξ =

m∏
k=1

(1+ bk), η =

m∏
k=1

(1+ b+k ), αi =
rqi
ri

for i = 1, 2, . . . , n.

Theorem 3.7 ([20]). Assume that conditions (C) hold. Then the following statements are equivalent:

(a) Eq. (3.15) has a nonoscillatory solution.
(b) The characteristic Eq. (3.16) has a real root.

From Theorems 2.1 and 3.7 the following result is immediate.

Corollary 3.5. Assume that conditions (C) hold. Then each of the following conditions is sufficient for the oscillation of all solutions
of (3.15):

(a)
∑n
i=1 piξ

αiτi >
1
e ;

(b)
(∏n

i=1 piξ
αi
)1/n (∑n

i=1 τi
)
> 1
e .

Similarly, from Theorems 2.2 and 3.7 the following result follows.

Corollary 3.6. Assume that conditions (C) hold. Then,(
n∑
i=1

piξαi
)(
max
1≤i≤n

τi

)
≤
1
e

is sufficient for the existence of a nonoscillatory solution of (3.15).

The impulsive delay differential equation of the form{
y′(t)+ a(t)y(t)+ p(t)y(t − τ) = 0, t 6= tk,
y(t+k )− y(tk) = bky(tk), k ∈ N (3.17)

was examined in [26,27]. In [27], authors also considered the impulsive delay differential inequalities{
y′(t)+ a(t)y(t)+ p(t)y(t − τ) ≤ 0, t 6= tk,
y(t+k )− y(tk) = bky(tk), k ∈ N, (3.18)

{
y′(t)+ a(t)y(t)+ p(t)y(t − τ) ≥ 0, t 6= tk,
y(t+k )− y(tk) = bky(tk), k ∈ N, (3.19)

where

(A1) a, p : J → R are locally summable functions, τ is a positive constant,
(A2) bk > −1 are constants for k ∈ N.

They also dealt with the following delay differential equation and inequalities

x′(t)+ a(t)x(t)+ P(t)x(t − τ) = 0, a.e. t ≥ t0 + τ , (3.17′)

x′(t)+ a(t)x(t)+ P(t)x(t − τ) ≤ 0, a.e. t ≥ t0 + τ , (3.18′)

x′(t)+ a(t)x(t)+ P(t)x(t − τ) ≥ 0, a.e. t ≥ t0 + τ , (3.19′)

where P(t) =
∏
t−τ≤tk<t

(1+ bk)−1p(t), t ≥ t0 + τ , a, p, τ , and {bk} satisfy the same as (A1)–(A2).
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Theorem 3.8 ([27]). Assume that (A1)–(A2) hold. Then the following hold:

(i) Inequality (3.18) has no eventually positive solutions if and only if (3.18′) has no eventually positive solutions;
(ii) Inequality (3.19) has no eventually negative solutions if and only if (3.19′) has no eventually negative solutions;
(iii) All solutions of (3.17) are oscillatory if and only if all solutions of (3.17′) are oscillatory.

Proof. Since (ii) and (iii) follow from (i), it is sufficient to prove (i).
Let y(t) be an eventually positive solution of (3.18). Then there exists a T ≥ 0 such that y(t) > 0 and y(t−τ) > 0, t ≥ T .

Set x(t) =
∏
T≤tk<t

(1 + bk)−1y(t). Clearly x(t) > 0, x(t − τ) > 0 for t ≥ T . Since y(t) is absolutely continuous on each
interval (tk, tk+1], in view of y(t+k ) = (1+ bk)y(tk), it follows for t ≥ T

x(t+k ) =
∏
T≤tj≤tk

(1+ bj)−1y(t+k ) = x(tk),

and for all tk ≥ T

x(t−k ) =
∏

T≤tj≤tk−1

(1+ bj)−1y(t−k ) = x(tk).

Moreover, we have

x′(t)+ a(t)x(t)+ P(t)x(t − τ) =
∏
T≤tk<t

(1+ bk)−1y′(t)+ a(t)
∏
T≤tk<t

(1+ bk)−1y(t)

+ P(t)
∏

T≤tk<t−τ

(1+ bk)−1y(t − τ)

=

∏
T≤tk<t

(1+ bk)−1(y′(t)+ a(t)y(t)+ p(t)y(t − τ))

≤ 0,

which implies that x(t) is a positive solution of (3.18′).
Conversely, let x(t) be an eventually positive solution of (3.18′) and x(t) > 0 and x(t − τ) > 0 for t ≥ T ≥ t0. Set

y(t) =
∏
T≤tk<t

(1+ bk)x(t). For every tk ≥ T , we have

y(t+k ) =
∏
T≤tj≤tk

(1+ bj)x(tk) and y(tk) =
∏
T≤tj<tk

(1+ bj)x(tk).

Thus for every tk ≥ T , k ∈ N, we find y(t+k ) = (1 + bk)y(tk). On the other hand since x(t) is absolutely continuous on
[T ,∞), y(t) is absolutely continuous on each interval (tk, tk+1], tk ≥ T and for almost everywhere t ∈ [σ ,∞),

y′(t)+ a(t)y(t)+ p(t)y(t − τ) =
∏
T≤tk<t

(1+ bk)x′(t)+ a(t)
∏
T≤tk<t

(1+ bk)x(t)+ p(t)
∏

T≤tk<t−τ

(1+ bk)x(t − τ)

=

∏
T≤tk<t

(1+ bk)(x′(t)+ a(t)x(t)+ P(t)x(t − τ))

≤ 0.

So, y(t) is a positive solution of (3.18). The proof of Theorem 3.8 is complete. �

The following theorem improves and generalizes Theorem 3.2 in [11] and Theorem 5 in [26].

Theorem 3.9 ([27]). Assume that (A1)–(A2) hold and p(t) ≥ 0 for t ≥ t0. If

lim inf
t→∞

∫ t

t−τ

∏
s−τ≤tk<s

(1+ bk)−1p(s) exp
(∫ s

s−τ
a(σ )dσ

)
ds >

1
e
,

then Eq. (3.17) is oscillatory.

Theorem 3.10 ([27]). Assume that (A1)–(A2) hold and p(t) ≥ 0 for t ≥ t0. If

lim sup
t→∞

∫ t

t−τ

∏
s−τ≤tk<s

(1+ bk)−1p(s) exp
(∫ s

s−τ
a(σ )dσ

)
ds > 1,

then Eq. (3.17) is oscillatory.

Theorem 3.10 generalizes Corollaries 3.2 and 3.3.
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Now we introduce the following conditions:

(A3) There exists an integerm such thatm(tk+1 − tk) ≥ τ for all k ∈ N;
(A4) There exists a constantM > 0 such that 0 ≤ bk ≤ M for all k ∈ N.

The following two results are corollaries of Theorems 3.9 and 3.10, respectively.

Corollary 3.7. Assume that (A1), (A3), (A4) hold and p(t) ≥ 0 for t ≥ t0. If

lim inf
t→∞

∫ t

t−τ
p(s) exp

(∫ s

s−τ
a(σ )dσ

)
ds >

(1+M)m

e
,

then Eq. (3.17) is oscillatory.

Corollary 3.8. Assume that (A1), (A3), (A4) hold and p(t) ≥ 0 for t ≥ t0. If

lim sup
t→∞

∫ t

t−τ
p(s) exp

(∫ s

s−τ
a(σ )dσ

)
ds > (1+M)m,

then Eq. (3.17) is oscillatory.

The following result provides a sufficient condition for the existence of a nonoscillatory solution of (3.17).

Theorem 3.11 ([27]). Assume that (A1)–(A2) hold and p(t) ≥ 0 for t ≥ t0. If there exists T ≥ t0 such that for all t ≥ T∫ t

t−τ

∏
s−τ≤tk<s

(1+ bk)−1p(s) exp
(∫ s

s−τ
a(σ )dσ

)
ds ≤

1
e
,

then (3.17) has a nonoscillatory solution on [T ,∞).

Impulsive differential equations with variable delays were dealt in [28–32]. Particularly, in [32], authors considered the
impulsive delay differential equations{

x′(t)+ p(t)x(g(t)) = 0, t 6= tk,
1x(tk) = Ik(x(tk), x(g(tk))), k ∈ N, (3.20)

and {
x′(t)+ q(t)x(t)+ p(t)x(g(t)) = 0, t 6= tk,
1x(tk) = Ik(x(tk), x(g(tk))), k ∈ N. (3.21)

We need the following conditions:

(H1) p ∈ PLC(R+,R+);
(H2) g ∈ C(R+,R), g(t) < t, g ′(t) ≥ 0, limt→∞ g(t) = ∞;
(H3) Ik ∈ C(R2,R), uIk(u, v) < 0 for uv > 0, u, v ∈ R, k ∈ N;
(H4) q ∈ PLC(R+,R).

Theorem 3.12 ([32]). Let the following hold:

(i) Conditions (H1)–(H3) are satisfied;
(ii) There exist constants Mk(0 < Mk < 1) such that |Ik(u, v)| ≥ Mk |u| for u 6= 0, v ∈ R, k ∈ N and

lim sup
t→∞

∏
g(t)≤tk<t

(1−Mk) > 0;

(iii)

lim inf
t→∞

∫ t

g(t)
p(s)ds >

1
e
lim sup
t→∞

∏
g(t)≤tk<t

(1−Mk).

Then Eq. (3.20) is oscillatory.
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Proof. Without loss of generality we may assume that x(t) > 0 and x(g(t)) > 0 for t ≥ t0. Denote

w(t) =
x(g(t))
x(t)

, t ≥ t0.

From (3.20), (H1) and (H3), it follows that x′(t) ≤ 0 and 1x(tk) ≤ 0 for t, tk ≥ t0. Thus x(t) is a nonincreasing function on
[t0,∞) andw(t) ≥ 1 for t ≥ t0. We shall prove that the functionw is bounded above for t ≥ t0. Denote

lim sup
t→∞

∏
g(t)≤tk<t

(1−Mk) = L.

From (iii), there exists t∗ ∈ (g(t), t) such that∫ t∗

g(t)
p(s)ds ≥

L
2e

and
∫ t

t∗
p(s)ds >

L
2e
.

Integrating (3.20) from t∗ to t , we obtain

x(t∗) ≥ −
∑
t∗≤tk<t

Ik(x(tk), x(g(tk)))+ x(g(t))
∫ t

t∗
p(s)ds > x(g(t))

L
2e
. (3.22)

Similarly, integrating (3.20) from g(t) to t∗, we obtain

x(g(t)) ≥ x(g(t∗))
L
2e
.

From the above inequality and (3.22) it follows that

x(t∗) > x(g(t∗))
(
L
2e

)2
.

Therefore the functionw is bounded from above for t ≥ t0. Dividing (3.20) by x(t) and integrating from g(t) to t , we obtain
from (ii)

ln

[
w(t)

∏
g(t)≤tk<t

(1−Mk)

]
≥ w0

∫ t

g(t)
p(s)ds,

wherew0 = lim inf
t→∞

w(t). It is clear that 1 ≤ w0 <∞. Thus

lim inf
t→∞

∫ t

g(t)
p(s)ds ≤

1
e
lim sup
t→∞

∏
g(t)≤tk<t

(1−Mk),

which contradicts (iii). The proof is complete. �

Theorem 3.13 ([32]). Let the following hold:

(i) Conditions (H1)–(H3) are satisfied;
(ii) There exist constants Lk > 0 such that |Ik(u, v)| ≥ Lk |v| for uv > 0, u, v ∈ R, k ∈ N;
(iii)

lim sup
t→∞

[∫ t

g(t)
p(s)ds+

∑
g(t)≤tk<t

Lk

]
> 1.

Then Eq. (3.20) is oscillatory.

Theorem 3.14 ([32]). Let the following hold:

(i) Conditions (H1)–(H4) and condition (ii) of Theorem 3.12 are satisfied;
(ii)

lim inf
t→∞

∫ t

g(t)
p(s)e

∫ s
g(s) q(u)duds >

1
e
lim sup
t→∞

∏
g(t)≤tk<t

(1−Mk).

Then Eq. (3.21) is oscillatory.
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Theorem 3.15 ([32]). Let the following hold:

(i) Conditions (H1)–(H4) and condition (ii) of Theorem 3.13 are satisfied;
(ii)

lim sup
t→∞

[∫ t

g(t)
p(s)e

∫ s
g(s) q(u)duds+

∑
g(t)≤tk<t

Lke
∫ tk
g(tk)

q(u)du

]
> 1.

Then Eq. (3.21) is oscillatory.

In [32], the authors also considered the nonhomogeneous impulsive differential equation{
x′(t)+ p(t)x(g(t)) = b(t), t 6= tk,
1x(tk) = Ik(x(tk), x(g(tk))), k ∈ N, (3.23)

with the following conditions:

(H5) There exists a functionw ∈ C1(R+,R+) such thatw′(t) = b(t);
(H6) There exist two sequences

{
t ′k
}∞
k=1 ,

{
t ′′k
}∞
k=1 ⊂ R+ and two constants q1 > 0, q2 > 0 such that limk→∞ t ′k =

limk→∞ t ′′k = ∞, w(t
′

k) = q1 ≤ w(t) ≤ q2 = w(t
′′

k ), k ∈ N, t ∈ R+.

Theorem 3.16 ([32]). Assume that conditions (H5)–(H6) and hypotheses of Theorem 3.12 are satisfied. Then Eq. (3.23) is
oscillatory.

Theorem 3.17 ([32]). Assume that conditions (H5)–(H6) and hypotheses of Theorem 3.13 are satisfied. Then Eq. (3.23) is
oscillatory.

The Sturmian Comparison Theory for the impulsive differential equation with deviating argumentsx′(t)+
m∑
i=1

ai(t)x[ri(t)] = 0, t 6= tk,

x(t+k ) = αkx(t
−

k ), k ∈ N

was investigated in [33]. For these results we also refer to the book of Bainov and Simeonov [12].
In [34], authors considered the impulsive differential equation with a distributed delayy′(t)+

∫ t

−∞

y(s)dsR(t, s) = 0, t > t0, t 6= τj,

y(τj + 0) = Bjy(τj), j ∈ N,
(3.24)

with the initial function

y(t) = ϕ(t), t < t0, (3.25)

under the following assumptions.

(a1) R(t, .) is a left continuous function of bounded variation and for each s its variation on the segment [t0, s], P(t, s) =
var[t0,s]R(t, .) is a locally integrable function in t .

(a2) R(t, s) = R(t, t), t ≤ s.
(a3) ϕ : (−∞, t0)→ R is a Borel measurable bounded function.
(a4) For each t1, there exists s1 = s(t1) ≤ t1 such that R(t, s) = 0 for s < s1, t > t1 and limt→∞ s(t) = ∞.
(b1) t0 < τ1 < τ2 < · · · < τk < · · · satisfy limj→∞ τj = ∞.
(b2) Bj > 0, j ∈ N.

They also considered the nonimpulsive differential equation

x′(t)+
∫ t

−∞

x(s)dsT (t, s) = 0, t > t0, (3.26)

where

T (t, s) =
∏
s≤τj<t

B−1j R(t, s).

Theorem 3.18 ([34]). Suppose (a1)–(a4) and (b1)–(b2) hold. Then Eqs. (3.24)–(3.25) is oscillatory (nonoscillatory) if and only
if (3.26)–(3.25) is oscillatory (nonoscillatory).
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Proof. Let y be a solution of (3.24)–(3.25). Then x(t) =
∏
t0≤τj<t

B−1j y(t) is continuous and y(t) =
∏
t0≤τj<t

Bjx(t). From
(3.24), we obtain

x′(t)+
∫ t

t0
x(s)

∏
s≤τj<t

B−1j dsR(t, s) = x
′(t)+

∫ t

−∞

x(s)dsT (t, s) = 0.

Conversely, if x(t) is a solution of (3.26)–(3.25), then y(t) =
∏
t0≤τj<t

Bjx(t) is a solution of (3.24)–(3.25). Since Bj > 0, it is
clear that x and y are oscillatory (nonoscillatory) at the same time, which completes the proof. �

Corollary 3.9. Let ak be locally essentially bounded functions, hk(t) be Lebesgue measurable functions, and hk(t) ≤ t, k ∈ N,
limt→∞ hk(t) = ∞. Then the equationy′(t)+

m∑
k=1

ak(t)y(hk(t)) = 0, t 6= τj,

y(τj + 0) = Bjy(τj), j ∈ N,

is oscillatory (nonoscillatory) if and only if

x′(t)+
m∑
k=1

ak(t)
∏

hk(t)≤τj<t

B−1j x(hk(t)) = 0

is oscillatory (nonoscillatory).

Oscillatory properties of the following impulsive delay differential equationwith continuously distributed type deviating
argumentsx′(t)+ a(t)x(t)+ b(t)x(t − τ)+

∫ t

t−δ
b(t, s)x(s)ds, t 6= tk, t ≥ 0,

x(t+k )− x(t
−

k ) = bkx(t
−

k ), k ∈ N,

have been addressed in [35].
Now we consider the impulsive delay differential equation of the type

x′(t)+ a(t)x(t)+ b(t)x([t − 1]) = 0, t 6= n, (3.27)

x(n+)− x(n−) = dnx(n), n ∈ N ∪ {0}, (3.28)

where a, b : R+ → R are continuous functions, dn ∈ R − {1}, n ∈ N ∪ {0}, x(n+) = limt→n+ x(t), x(n−) = limt→n− x(t),
and [·] denotes the greatest integer function. Recently, in [36], the authors have obtained some results on the oscillation,
nonoscillation and periodicity of the solutions of Eqs. (3.27)–(3.28).

Definition 3.1. The function x : R+ ∪ {−1} → R is a solution of (3.27)–(3.28) provided:

(i) x(t) is continuous on R+ with the possible exception of the points [t] ∈ R+;
(ii) x(t) is right continuous and has a left-hand limit at the points [t] ∈ R+;
(iii) x(t) is differentiable and satisfies (3.27) for any t ∈ R+, with the possible exception of the points [t] ∈ R+ where

one-sided derivatives exist;
(iv) x(n) satisfies (3.28) for n ∈ N ∪ {0}.

The following interesting result gives the existence and uniqueness of the solutions.

Theorem 3.19 ([36]). For any fixed x0, x−1 ∈ R the Eq. (3.27)–(3.28) has a unique solution x : R+ ∪ {−1} → R satisfying the
initial conditions x(−1) = x−1, x(0) = x0. Moreover for n ≤ t < n+ 1, n ∈ N, x has the form

x(t) = exp
(
−

∫ t

n
a(s)ds

)[
y(n)− y(n− 1)

∫ t

n
b(u) exp

(∫ u

n
a(s)ds

)
du
]
,

where y(n) = x(n) and the sequence {y(n)}n≥−1 is the unique solution of the difference equation

y(n+ 1) =
1

1− dn+1
exp

(
−

∫ t

n
a(s)ds

)[
y(n)− y(n− 1)

∫ n+1

n
b(u) exp

(∫ u

n
a(s)ds

)
du
]

(3.29)

with the initial conditions

y(−1) = x−1 and y(0) = x0. (3.30)
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Remark 3.3. If a(t) ≡ a, b(t) ≡ b and dn = d for n ∈ N ∪ {0}; a, b, d are real constants, d 6= 1, then we get the constant
coefficient difference equation

(1− d)y(n+ 1)− e−ay(n)+
b
a
(1− e−a)y(n− 1) = 0, n ≥ 0. (3.31)

If we look for a solution of (3.31) of the form y(n) = kλn, we find the characteristic equation

(1− d)λ2 − e−aλ+
b
a
(1− e−a) = 0. (3.32)

Assume that the roots of (3.32), λ1 and λ2, are different. Then the solution of (3.31)–(3.30) is

y(n) =
1

λ1 − λ2

[
λn+11 (x0 − λ2x−1)− λn+12 (x0 − λ1x−1)

]
.

If λ1 = λ2, then

y(n) = λn1[x0(n+ 1)− λ1x−1n].

Theorem 3.20 ([36]). Let x : R+ ∪ {−1} → R be a solution of the problem (3.27)–(3.28) with x(−1) = x−1 and x(0) = x0.
Then the following hold:

(α) If the solution {yn}n≥−1 of (3.29)–(3.30) is oscillatory, then x is also oscillatory;
(β) When the solution {yn}n≥−1 of (3.29)–(3.30) is nonoscillatory, then x is nonoscillatory iff there exists a N ′ ∈ N such that

y(n)
y(n− 1)

>

∫ t

n
b(u) exp

(∫ u

n
a(s)ds

)
du, n ≤ t < n+ 1, n > N ′.

Theorem 3.21 ([36]). If b(t) > 0 and

lim sup
n→∞

(1− dn)
∫ n+1

n
b(t) exp

(∫ t

n−1
a(s)ds

)
dt > 1, t ≥ 0,

then all solutions of (3.29) are oscillatory.

Corollary 3.10. Under the hypotheses of Theorem 3.21, all solutions of (3.27)–(3.28) are oscillatory.

Theorem 3.22 ([36]). If 1− dn > M > 0, n ∈ N ∪ {0}, and

lim inf
n→∞

exp
(∫ n+1

n
a(s)ds

)
lim inf
n→∞

∫ n+1

n
b(u) exp

(∫ u

n
a(s)ds

)
du >

1
4M

, (3.33)

then all solutions of (3.29) are oscillatory.

Corollary 3.11. Under the hypotheses of Theorem 3.22, all solutions of (3.27)–(3.28) are oscillatory.

Now consider the equation{
x′(t)+ ax(t)+ bx([t − 1]) = 0, t 6= n,
x(n+)− x(n−) = dx(n), n ∈ N ∪ {0} (3.34)

where a, b, d are real constants, a 6= 0, b 6= 0, d 6= 1.

Remark 3.4. If a, b and d are real constants, then condition (3.33) reduces to

b >
ae−a

4M(ea − 1)
. (3.35)

If d = 0, then 0 < M < 1 and condition (3.35) reduces to

b >
ae−a

4(ea − 1)
,

which is a sharp condition for the corresponding nonimpulsive equation as stated in [37].

Corollary 3.12. If 1− d > M > 0 and (3.35) is satisfied, then all solutions of (3.34) are oscillatory.
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Let λ1 and λ2 be the roots of (3.32), and when they are different we assume that λ2 < λ1.

Theorem 3.23 ([36]). If any of the following hypotheses is satisfied, then Eq. (3.34) has nonoscillatory solutions:

(i) b < 0, d < 1 and x0 − λ2x−1 6= 0;
(ii) 0 < b < ae−a/4M(ea − 1) and 0 < 1− d < M;
(iii) b = ae−a/4M(ea − 1) and 1− d = M > 0.

Theorem 3.24 ([36]). If b < 0, d < 1 and x0 − λ2x−1 = 0, then every solution of (3.31) is oscillatory.

Corollary 3.13. Every solution of (3.34) is oscillatory iff either

(i) b > ae−a/4M(ea − 1) and 1− d > M > 0; or
(ii) b < 0, d < 1 and x0 = λ2x−1.

The following theorems provide sufficient conditions for the existence of periodic solutions.

Theorem 3.25 ([36]). A necessary and sufficient condition for the solution of the Eq. (3.34) with the conditions x(−1) =
x−1, x(0) = x0 to be periodic with period k, k ∈ N, is y(k) = y(0) and y(k − 1) = y(−1), where {y(n)}n≥−1 is the solution
of (3.31) with the initial conditions y(0) = x0, y(−1) = x−1.

Theorem 3.26 ([36]). Assume that b > 0 and 1− d > M > 0. A necessary and sufficient condition for every oscillatory solution
of (3.34) to be periodic with period k is

b =
aea(1− d)
ea − 1

and a = − ln
(
2(1− d) cos

2πm
k

)
,

where m and k are relatively prime and m = 1, 2, . . . , [(k− 1)/4].

Theorem 3.27 ([36]). Assume that b < 0, d < 1 and x0 = λ2x−1. A necessary and sufficient condition for every oscillatory
solution of (3.34) to be periodic with period 2 is

b = −
a(1+ (1− d)ea)

ea − 1
.

Example 3.1. Let us consider the impulsive differential equation with piecewise constant argument
x′(t)+ (ln 2)x(t)− 2(ln 2)x([t − 1]) = 0, t 6= n,

x(n+)− x(n−) =
1
2
x(n), n ∈ N ∪ {0},

x(0) = x0, x(−1) = −x0.

(3.36)

Here, the hypothesis (ii) of Corollary 3.13 holds. So, the solution of (3.36) is oscillatory. Moreover, since the conditions of
Theorem 3.27 are satisfied, this oscillatory solution is periodic with period 2.

Example 3.2. Now consider the following equation
x′(t)+ (ln 3)x(t)+

√
2
4
(ln 3)x([t − 1]) = 0, t 6= n,

x(n+)− x(n−) =
6−
√
2

6
x(t), n ∈ N ∪ {0}.

(3.37)

For this equation, the hypothesis (i) of Corollary 3.13 is satisfied, and for k = 8 the conditions of Theorem 3.26 are satisfied.
Hence, every oscillatory solution of (3.37) is periodic with period 8.

3.2. Second and higher order equations

Oscillation of second order linear impulsive delay differential equations has been investigated by many authors
[34,38–44]. First, we consider the following equation

(r(t)y′(t))′ −
n∑
i=1

pi(t)y(t − hi) = 0, t 6= τk, k ∈ N,

1y′(τk) = y′(τk + 0)− y′(τk − 0) = βky(τk),
1y(τk) = y(τ+k )− y(τ

−

k ) = 0,

(3.38)
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with the initial conditions
y(t) = ϕ(t), t ∈ [−h, 0], h = max{hi : i ∈ Nn},
y′(0) = ϕ′(0) = y′0.

Here, Nn = {1, 2, . . . , n}; {βk}∞k=1 is a sequence of positive numbers; hi, i ∈ Nn, are positive constants; y′(τ−k ) = y
′(τk); r ∈

PLC(R+,R+ − {0}), r(τ+k ) > 0, k ∈ N; pi ∈ PLC(R+,R+ − {0}), i ∈ Nn;ϕ ∈ C2([−h, 0],R).
The following results provide sufficient conditions for the oscillation of bounded solutions of Eq. (3.38).

Theorem 3.28 ([38]). Let the following conditions hold:
(i) limt→+∞ R(t) = +∞, where R(t) =

∫ t
0
ds
r(s) ;

(ii)
∫
∞ R(s)

∑n
i=1 pi(s)ds = +∞.

Then all bounded solutions of Eq. (3.38) either tend to zero as t →+∞ or oscillate.

Theorem 3.29 ([38]). Let the following conditions hold:
(i)
∫
∞

0
dt
r(t) = +∞;

(ii) lim sup
t→+∞

1
r(t)

∫ t
t−h(s− t + h)

∑n
i=1 pi(s)ds > 1,

where h = min{hi : i ∈ Nn}. Then all bounded nontrivial solutions of Eq. (3.38) are oscillatory.

In [39], the authors considered the impulsive delay differential equationx
′′(t)+

m∑
k=1

ak(t)x(gk(t)) = 0, t ≥ 0,

x(τj) = Ajx(τ−j ), x′(τj) = Bjx′(τ−j ), j ∈ N,
(3.39)

under the following conditions:
(a1) 0 = τ0 < τ1 < τ2 < · · · < · · · are fixed points, and limj→∞ τj = ∞;
(a2) ak, k = 1, 2, . . . ,m, are Lebesgue measurable and locally essentially bounded functions on R+, Aj, Bj ∈ R, j =

1, 2, . . .;
(a3) gk : R+ → R are Lebesgue measurable functions, gk(t) ≤ t, limt→∞ gk(t) = ∞, k = 1, 2, . . . ,m.

They studied nonoscillation of the Eq. (3.39) and the corresponding differential inequality, positiveness of the
fundamental function, existence of a solution of a generalized Riccati inequality, comparison theorems; and obtained the
following explicit conditions for the nonoscillation and oscillation. In these results Aj > 0, Bj > 0, and a+ = max{a, 0}.

Theorem 3.30. Suppose for some t0 > 0, 0 < q < 1, r > −1,m > 0,M > 0 at least one of the following conditions holds:

(i) supt≥t0

∣∣∣∏t0<τj≤t
Bj/Aj − 1

∣∣∣ ≤ q, supt≥t0 t2∑m
k=1

∏
gk(t)<τj≤t

A−1j a
+

k (t)
[
gk(t)
t

](1−q)/2
≤

(1−q)2

4 ;

(ii) mt r ≤ supt≥t0
∏
t0<τj≤t

Bj/Aj ≤ Mt r , sup t2
t≥t0

∑m
k=1

∏
gk(t)<τj≤t

A−1j a
+

k (t) ≤
m(1+r)2

4M .

Then Eq. (3.39) has a positive solution for t > t0 with a nonnegative derivative.

Corollary 3.14. Suppose

ak(t) ≤ 0, mt r ≤ sup
t≥t0

∏
t0<τj≤t

Bj/Aj ≤ Mt r ,

r > −1, m > 0, M > 0.

Then Eq. (3.39) has a positive solution for t > t0 with a nonnegative derivative.

Example 3.3. Consider the impulsive delay differential equation
x′′(t)+

1
2t2
x(t − δ) = 0, t 6= j,

x(j) =
j
j+ 1

x(j−), x′(j) = x′(j−), j ∈ N.
(3.40)

Since

t ≤
∏
t0<τj≤t

Bj/Aj ≤ t + 1 ≤ t
(
1+

1
t0

)
,

Eq. (3.40) satisfies condition (ii) of Theorem 3.30 for r = 1,m = 1,M = 1+ 1/t0. So, Eq. (3.40) is nonoscillatory.
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Now let

b(t) =
m∑
k=1

∏
τj≤t

Aj/Bj
∏

gk(t)<τj≤t

A−1j a
+

k (t).

Theorem 3.31. Suppose
∏
t1≤τj≤t

Bj/Aj ≤ 1. If for t > t1 there exists a positive solution of the nonimpulsive ordinary differential
equation

x′′(t)+ b(t)x(t) = 0,

then for t > t1 there exists a positive solution of Eq. (3.39).

Theorem 3.32. Suppose ak(t) ≥ 0 and there exist M > 0, δ > 0 such that

sup
t≥0

∏
τj≤t

Bj/Aj ≤ M, t − gk(t) ≤ δ.

If for some k, k = 1, 2, . . . ,m,∫
∞∏
τj≤t

Aj/Bj
∏

gk(t)<τj≤t

A−1j ak(t)dt = ∞, and
∫
∞∏
τj≤t

Bj/Ajdt = ∞,

then Eq. (3.39) is oscillatory.

Example 3.4. Consider the impulsive delay differential equation
x′′(t)+

1
4t2
x(t − δ) = 0, t 6= j,

x(j) =
j+ 1
j
x(j−), x′(j) = x′(j−), j ∈ N.

(3.41)

Eq. (3.41) satisfies the conditions of Theorem 3.32, and hence all solutions of Eq. (3.41) are oscillatory.

Next consider the following delay differential equation without impulses

x′′(t)+
m∑
k=1

∏
gk(t)<τj≤t

A−1j ak(t)x(gk(t)) = 0. (3.42)

Theorem 3.33. Suppose ak(t) ≥ 0, Aj = Bj > 0. Then Eq. (3.39) is oscillatory (nonoscillatory) if and only if Eq. (3.42) is
oscillatory (nonoscillatory).

For higher order linear equations we refer to papers [45,46]. In [45], the authors considered the impulsive delay differ-
ential equation{

x(n)(t)+ p(t)x(t − τ) = 0, t ≥ t0, t 6= tk,
x(i)(t+k ) = a

(i)
k x

(i)(tk), i = 0, 1, . . . , n− 1, k ∈ N,

where n is a natural number with n ≥ 2. The authors improved the known results for the oscillation of ordinary differential
equations. They separately dealt with the cases n even and n odd.
In [46], the following delay differential equations are consideredx

(m)(t)+ a(t)x(m−1)(t)+
n∑
i=1

pi(t)x(gi(t)) = 0, t ≥ t0, t 6= tk,

x(j)(tk)− x(j)(t−k ) = αkx
(j)(t−k ), j = 0, 1, 2, . . . ,m− 1,

(3.43)

and

y(m)(t)+ a(t)y(m−1)(t)+
n∑
i=1

pi(t)
∏

gi(t)<tk≤t

(1+ αk)−1y(gi(t)) = 0, t ≥ t0, (3.44)

where 0 ≤ t0 < t1 < · · · < tk < · · · are fixed points with limk→∞ tk = ∞; a, pi ∈ C(R+,R), i = 1, 2, . . . , n, are
Lebesgue measurable and locally essentially bounded functions; gi ∈ C(R+,R), i = 1, 2, . . . , n, are Lebesgue measurable
functions, gi(t) ≤ t and limt→∞ gi(t) = ∞; {αk} is a sequence of constants and αk > −1. For any fixed t0 ≥ 0, we define
t0 = min1≤i≤n inft≥t0 gi(t).
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Theorem 3.34 ([46]).

(i) If y is a solution of (3.44) on [t0,∞), then x(t) =
∏
t0<tk≤t

(1+ αk)y(t) is a solution of (3.43) on [t0,∞).
(ii) If x is a solution of (3.43) on [t0,∞), then y(t) =

∏
t0<tk≤t

(1+ αk)−1x(t) is a solution of (3.44) on [t0,∞).

The proof of Theorem 3.34 is similar to that of Theorem 3.8. We also note that from Theorem 3.34 the following result is
immediate.

Theorem 3.35. All solutions of (3.43) are oscillatory (nonoscillatory) if and only if all solutions of (3.44) are oscillatory
(nonoscillatory).

In our next result we letm to be an even integer and g(t) = min1≤i≤n gi(t).

Theorem 3.36 ([46]). Assume that the following conditions hold:

(A1) pi(t) ≥ 0, i ∈ N;
(A2)

∫
∞

t0
1
r(s)ds = ∞, where r(t) = exp

(∫ t
0 a(s)ds

)
;

(A3) gi has an absolutely continuous derivative g ′i on (t0,∞) and g
′

i ≥ 0;
(A4)

∫
∞

t0
sm−1r(s)

∑n
i=1 pi(t)

∏
gi(s)<tk≤s

(1+ αk)−1 = ∞;
(A5) there exists G > 0 such that r(t) < G.

Then all bounded solutions of (3.43) are oscillatory.

3.3. Generic oscillation

The concept of generic oscillation was first introduced in [47] for delay differential equations. Later, in [48–50], the
authors generalized this theory to impulsive delay differential equations.
Consider the second order impulsive delay differential equationx

′′(t)+
m∑
j=1

qjx′(t − σj)+
n∑
i=1

pix(t − τi) = 0, t ≥ t0, t 6= tk,

x(t+k )− x(tk) = bkx(tk), x′(t+k )− x
′(tk) = bkx′(tk), k ∈ N,

(3.45)

and the delay differential equation

y′′(t)+
m∑
j=1

qjβjy′(t − σj)+
n∑
i=1

piαiy(t − τi) = 0, (3.46)

with the initial conditions

x(t) = φ(t), x′(t) = ψ(t), t ∈ [t0 − r, t0], and x′(t0) = ξ, (3.47)

where we assume that the following conditions are satisfied:

(A1) 0 ≤ t0 < t1 < t2 < · · · < tk < · · · are fixed points and limk→∞ tk = +∞;
(A2) bk ∈ (−1,∞) are constants for k ∈ N, pi, qj ∈ R, αi =

∏
t−τj≤tk<t

(1+ bk)−1,
βj =

∏
t−σj≤tk<t

(1+ bk)−1 for i = 1, 2, . . . , n, j = 1, 2, . . . ,m, t ≥ t0;
(A3) Let r1 = max1≤i≤n{τi}, r2 = max1≤j≤m{σj}, r = max{r1, r2}, φ, ψ ∈ PLC([t0 − r, t0],R).

In what follows we let PC = PLC([t0 − r, t0],R)× PLC([t0 − r, t0],R).

Definition 3.2. The solutions of (3.45), (3.47) ((3.46), (3.47)) are called generically oscillatory, if the set of all (φ, ψ) ∈ PC ,
for which the corresponding solution x(φ,ψ)(y(φ,ψ)) of (3.45), (3.47), ((3.46), (3.47)) is nonoscillatory, is nowhere dense in PC .

Definition 3.3. The solutions of (3.45), (3.47), ((3.46), (3.47)) are called generically nonoscillatory, if the set of all (φ, ψ) ∈
PC , for which the corresponding solution x(φ,ψ)(y(φ,ψ)) of (3.45), (3.47), ((3.46), (3.47)) is oscillatory, is nowhere dense in PC .

We note that, if the condition

(A4) bk ≡ b, tk+1 − tk = ω, k ∈ N, and σj = cjω, τi = diω, cj, di are integers for i = 1, 2, . . . , n, j = 1, 2, . . . ,m,
holds, then the characteristic equation of (3.46) is

λ2 +

m∑
j=1

qjβjλe−λσj +
n∑
i=1

piαie−λτi = 0. (3.48)
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Definition 3.4. It is said that the characteristic Eq. (3.48) has a real leading root x0, if x0 is a root of (3.48) and all other roots
of (3.48) lie in the half plane {Re z < x0}. It is said that (3.48) has complex leading roots x0 ± iy0 (y0 6= 0), if x0 ± iy0 are
roots of (3.48) and all other roots of (3.48) lie in the half plane {Re z < x0}.

In [48], the authors established that generic oscillation (generic nonoscillation) of solutions of (3.45) can be reduced to
generic oscillation (generic nonoscillation) of solutions of the corresponding delay differential equation (3.46).

Theorem 3.37 ([48]). Assume that (A1)–(A3) hold.

(a) If y(t, t0, φ) is a solution of (3.46), then x(t, t0, φ) =
∏
t0≤tk<t

(1+ bk)y(t, t0, φ) is a solution of (3.45).
(b) If x(t, t0, φ) is a solution of (3.45), then y(t, t0, φ) =

∏
t0≤tk<t

(1+ bk)−1x(t, t0, φ) is a solution of (3.46).

Corollary 3.15. Assume that (A1)–(A3) hold. Then Eq. (3.45) is oscillatory if and only if Eq. (3.46) is oscillatory.

Corollary 3.16. Assume that (A1)–(A3) hold. Then Eq. (3.45) is generically oscillatory if and only if Eq. (3.46) is generically
oscillatory.

Corollary 3.17. Assume that (A1)–(A4) hold.

(a) If (3.48) has a real leading root, then (3.45) is generically nonoscillatory;
(b) If (3.48) has complex leading roots, then (3.45) is generically oscillatory.

Letm = 1, σ1 = 0, β1 = 1 in (3.45), then we have the following equationx
′′(t)+ qx′(t)+

n∑
i=1

pix(t − τi) = 0, t ≥ t0, t 6= tk,

x(t+k )− x(tk) = bkx(tk), x′(t+k )− x
′(tk) = bkx′(tk), k ∈ N.

(3.49)

Theorem 3.38. Assume that (A1)–(A4) hold, q > 0, pi ∈ R, i = 1, 2, . . . , n, and there exists β0 < 0 such that β20 + qβ0 +∑n
i=1 |piαi| e

−β0τi < 0. Then Eq. (3.49) is generically nonoscillatory.

Theorem 3.39. Assume that (A1)–(A4) hold, q > 0, piαi ≥ 0, i = 1, 2, . . . , n. Then Eq. (3.49) is generically nonoscillatory if
and only if there exists β0 < 0 such that β20 + qβ0 +

∑n
i=1 piαie

−β0τi ≤ 0.

Theorem 3.40. Assume that (A1)–(A4) hold, q < 0, pi ∈ R, i = 1, 2, . . . , n, and there exists β0 > 0 such that β20 + qβ0 +∑n
i=1 |piαi| e

−β0τi < 0. Then Eq. (3.49) is generically nonoscillatory.

Theorem 3.41. Assume that (A1)–(A4) hold, q < 0, piαi ≥ 0, i = 1, 2, . . . , n. Then Eq. (3.49) is generically nonoscillatory if
and only if there exists β0 > 0 such that β20 + qβ0 +

∑n
i=1 piαie

−β0τi ≤ 0.

Theorem 3.42. If q = 0, n = 1, then

(a) If pα > 0, Eq. (3.49) is oscillatory,
(b) If pα < 0, Eq. (3.49) is generically nonoscillatory.

Example 3.5 ([48]). Consider the equation
x′′(t)+ 4x′(t)+ 8x(t − 1)− εx(t − 2) = 0, t 6= tk,

x(t+k ) = (1/2)x(tk), x′(t+k ) = (1/2)x
′(tk),

tk+1 − tk = 1, k = 1, 2, . . .

(3.50)

It can be shown that the characteristic equation of the corresponding nonimpulsive equation has complex leading roots.
Thus, from Corollary 3.17, Eq. (3.50) is generically oscillatory.

4. Nonlinear differential equations

In this section, we consider the oscillation of first, second, and higher order nonlinear equations. Moreover, linearized
oscillation and applications to mathematical biology are also discussed.
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4.1. First order equations

Consider the impulsive differential equation and inequalities{
x′(t)+ a(t)x(t)+ p(t)f (x(t − h1), x(t − h2), . . . , x(t − hm)) = 0, t 6= τk,
1x(τk) = bkx(τk), k ∈ N, (4.1){
x′(t)+ a(t)x(t)+ p(t)f (x(t − h1), x(t − h2), . . . , x(t − hm)) ≤ 0, t 6= τk,
1x(τk) = bkx(τk), k ∈ N, (4.2){
x′(t)+ a(t)x(t)+ p(t)f (x(t − h1), x(t − h2), . . . , x(t − hm)) ≥ 0, t 6= τk,
1x(τk) = bkx(τk), k ∈ N, (4.3)

with the initial function

x(t) = ϕ(t), t ∈ [−h, 0],

where ϕ ∈ C([−h, 0],R), h = max{hi : i ∈ Nm},Nm = {1, 2, . . . ,m}.
In [51], authors examined Eq. (4.1) and the inequalities (4.2)–(4.3) under following conditions:

(H1) a ∈ Cloc(R+,R+ − {0});
(H2) p ∈ Cloc(R+,R+ − {0});
(H3) f ∈ Cloc(Rm,R), f (u1, u2, . . . , um)u1 > 0 for u1 6= 0 and sgn u1 = sgn u2 = · · · = sgn um;
(H4) There exist constants L > 0 and α1, α2, . . . , αm, αi ≥ 0, i ∈ Nm, such that

∑m
i=1 αi = 1 and

|f (u1, u2, . . . , um)| ≥ L |u1|α1 |u2|α2 · · · |um|αm ;

(H5) There exist constants l1 and l2 such that limk→∞(τk − kl1) = l2;
(H6) There exists a constantM > 0 such that for any k ∈ N, 0 < bk < M;
(H7) τk+1 − τk ≥ T > h for k ∈ N.

Let us construct the new sequence

{ti}∞i=1 = {τi}
∞

i=1 ∪ {τis}
∞

i=1 ,
m
s=1,

where τis = τi + hs, i ∈ N, s ∈ Nm and ti < ti+1, i ∈ N.

Theorem 4.1 ([51]). Let the following hold:
(i) Conditions (H1)–(H6)are satisfied;
(ii)

lim inf
t→∞

∫ t

t−h
a(s)ds ≥ k > 0,

where k is a constant, h = min{hi : i ∈ Nm};
(iii)

lim inf
t→∞

∫ t

t−h
p(s)ds >

(1+M)2l

Lek
max

{
1
e
, 2(1+M)l[(1+M)l − 1]

}
.

Then inequality (4.2) has no positive solutions.

Corollary 4.1. Let the conditions of Theorem 4.1 hold. Then:
1. The inequality (4.3) has no negative solutions.
2. All solutions of Eq. (4.1) are oscillatory.

Theorem 4.2 ([51]). Let the following hold:
(i) Conditions (H1)–(H4) and (H7)are satisfied;
(ii) bk > −1, k ∈ N;
(iii)

lim sup
k→∞

1
1+ bk

∫ τk+h

τk

p(s)
(
exp

∫ s

s−h
a(u)du

)
ds >

1
L
.

Then the following hold:

1. All solutions of Eq. (4.1) are oscillatory.
2. The inequality (4.2) has no positive solutions.
3. The inequality (4.3) has no negative solutions.
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Proof. We shall prove the Assertion 1. The proof of Assertions 2 and 3 is similar. Let x be a nonoscillatory solution of Eq. (4.1).
Without loss of generality we may assume that x(t) > 0 for t ≥ t1 ≥ 0. It is clear that x(t − hi) > 0, i ∈ Nm, and
f (x(t − h1), . . . , x(t − hm)) > 0 for t ≥ t1 + h = t2. Then from (4.1) it follows that x is a nonincreasing function in the set
(t2, τs) ∪ [∪∞i=s(τi, τi+1)], where τs−1 < t2 < τs.

Set z(t) = x(t) exp
(∫ t
T a(s)ds

)
. Then from (4.1), we obtain

z ′(t)+ p(t) exp
(∫ t

T
a(u)du

)
f
(
z(t − h1) exp

(
−

∫ t−h1

T
a(u)du

)
, . . . ,

z(t − hm) exp
(
−

∫ t−hm

T
a(u)du

))
= 0, t 6= τk,

∆z(τk) = bkz(τk).

(4.4)

Integrating (4.4) from τk to τk + h, k ≥ s, we obtain

z(τk + h)− z(τ+k )+ L
∫ τk+h

τk

p(s) exp
(∫ s

s−h
a(u)du

) m∏
i=1

zαi(s− hi)ds ≤ 0. (4.5)

Moreover, since z is nonincreasing in the interval [s− hi, s− h], s ∈ [τk, τk + h], from (H4) it follows that
m∏
i=1

zαi(s− hi) ≥ z(s− h).

From (4.5) and the last inequality, we have

z(τk + h)− z(τ+k )+ L
∫ τk+h

τk

p(s) exp
(∫ s

s−h
a(u)du

)
z(s− h)ds ≤ 0.

Using impulse conditions, we find

1
1+ bk

∫ τk+h

τk

p(s) exp
(∫ s

s−h
a(u)du

)
ds ≤

1
L
.

The last inequality contradicts (iii). This completes the proof. �

Corollary 4.2. Let the following hold:

(i) Conditions (H1)–(H4), (H6) and (H7) are satisfied;
(ii)

lim sup
k→∞

∫ τk+h

τk

p(s) exp
(∫ s

s−h
a(u)du

)
ds >

1+M
L

.

Then the following hold:

1. The inequality (4.2) has no positive solutions.
2. The inequality (4.3) has no negative solutions.
3. All solutions of Eq. (4.1) are oscillatory.

Corollary 4.3. Let the following hold:

(i) Conditions (H1)–(H4), and (H7) are satisfied;
(ii) bk > −1, k ∈ N;
(iii)

lim inf
k→∞

∫ τk

τk−h
a(u)du ≥ s > 0, s = const.;

(iv)

lim sup
k→∞

1
1+ bk

∫ τk+h

τk

p(u)du >
1
Les
.

Then the assertions of Corollary 4.2 are valid.
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Theorem 4.3 ([51]). Let the following hold:
(i) Conditions (H1)–(H6)are satisfied;
(ii)

lim sup
k→∞

∫ τk+h

τk

p(s)
(
exp

∫ s

s−h
a(u)du

)
ds >

(1+M)2l

L
.

Then the following hold:
1. The inequality (4.2) has no positive solutions.
2. The inequality (4.3) has no negative solutions.
3. All solutions of Eq. (4.1) are oscillatory.

Corollary 4.4. Let the following hold:
(i) Conditions (H1)–(H3), and (H7) are satisfied;
(ii) bk > −1, k ∈ N;
(iii) lim inf

k→∞

∫ τk
τk−h
a(u)du ≥ s > 0, s = const.;

(iv) lim sup
k→∞

∫ τk+h
τk

p(s)ds > (1+M)2l

Les .

Then the assertions of Theorem 4.3 are valid.

Eq. (4.1) together with inequalities (4.2)–(4.3) were also considered in [52] under the following conditions:
(A1) a, p ∈ (R+,R) are locally summable functions, p ≥ 0, and 0 < h1 < h2 < · · · < hm are positive constants;
(A2) bk ∈ (−1,∞) are constants;
(A3) f ∈ Cloc(Rm,R) and satisfies

when ui > 0, i = 1, 2, . . . ,m, f (u1, u2, . . . , um) > 0,
when ui < 0, i = 1, 2, . . . ,m, f (u1, u2, . . . , um) < 0;

(A4) there exist a constant L > 0 and nonnegative constants α1, α2, . . . , αm such that
∑m
i=1 αi = 1 and

|f (u1, u2, . . . , um)| ≥ L
m∏
i=1

|ui|αi .

Now consider the following nonimpulsive equation and inequalities for t ≥ t0 + hm:

y′(t)+ a(t)y(t)+ P(t)
m∏
i=1

|y(t − hi)|αi sgn (y(t)) = 0, a.e., (4.6)

y′(t)+ a(t)y(t)+ P(t)
m∏
i=1

|y(t − hi)|αi sgn (y(t)) ≤ 0, a.e., (4.7)

y′(t)+ a(t)y(t)+ P(t)
m∏
i=1

|y(t − hi)|αi sgn (y(t)) ≥ 0, a.e., (4.8)

where P(t) = Lp(t)
∏m
i=1
∏
t−hi≤τk<t

(1 + bk)−αi , t ≥ t0 + hm, and a, p, αi, i = 1, 2, . . . ,m, L and {bk} satisfy (A1), (A2)
and (A4).
The proof of the following result is similar to that of Theorem 3.8.

Theorem 4.4. Assume that (A1)–(A4) are satisfied. Then the following hold:
(i) Inequality (4.2) has no eventually positive solutions if inequality (4.7) has no eventually positive solutions.
(ii) Inequality (4.3) has no eventually negative solutions if inequality (4.8) has no eventually negative solutions.
(iii) All solutions of Eq. (4.1) are oscillatory if all solutions of Eq. (4.6) are oscillatory.

The following result improves Theorem 4.1 and Corollary 4.1.

Theorem 4.5 ([52]). Assume that conditions (A1)–(A4) are satisfied, and

lim inf
t→∞

m∑
i=1

αi

∫ t

t−hi
p(s) exp

(
m∑
i=1

αi

∫ s

s−hi
a(r)dr

)
m∏
i=1

∏
s−hi≤τk<s

(1+ bk)−αids >
1
Le
. (4.9)

Then the following hold:
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(i) Inequality (4.2) has no eventually positive solutions;
(ii) Inequality (4.3) has no eventually negative solutions;
(iii) All solutions of Eq. (4.1) are oscillatory.

Proof. We shall only prove (i). Suppose that x(t) is an eventually positive solution of (4.2). By Theorem 4.4, (4.7) also has an
eventually positive solution y(t). Then there exists T ≥ t0 + hm such that for t ≥ T ≥ t0 + hm, y(t) > 0, y(t − hi) > 0, i =
1, 2, . . . ,m. Set

z(t) = y(t) exp
(∫ t

T
a(s)ds

)
, t ≥ T .

Then (4.7) reduces to

z ′(t)+ P1(t)
m∏
i=1

[z(t − hi)]αi ≤ 0, a.e. for t ≥ T , (4.10)

where

P1(t) = Lp(t) exp

(
m∑
i=1

αi

∫ t

t−hi
a(s)ds

)(
m∏
i=1

∏
t−hi≤τk<t

(1+ bk)−αi
)
≥ 0. (4.11)

By (4.9), without loss of generality, we can assume that αm > 0. Hence, there exists a positive constant C and T1 ≥ T such
that

lim inf
t→∞

αm

∫ t

t−hm
P1(s)ds > C > 0.

Thus for any t ≥ T1, there exists a t∗ > t such that

αm

∫ t

t∗−hm
P1(s)ds >

C
2
and αm

∫ t∗

t
P1(s)ds ≥

C
2
. (4.12)

Integrating (4.10) from t − hm to t , and using the monotonicity of z(t), we get

z(t − hm)
z(t)

≥

m∏
i=1

[
z(t − hm)
z(t)

]α ∫ t

t−hm
P1(s)ds.

Since z(t − hi) ≥ z(t), i = 1, 2, . . . ,m, it follows from (4.10) that for t ≥ T1,

− z ′(t)(z(t))αm−1 ≥ P1(t) [z(t − hm)]αm , a.e. (4.13)

Integrating (4.13) from t∗ − hm to t and using (4.12), we find[
z(t∗ − hm)

]αm
− [z(t)]αm ≥ αm

∫ t

t∗−hm
P1(s) [z(s− hm)]αm ds

≥ αm [z(t − hm)]αm
∫ t

t∗−hm
P1(s)ds

≥
C
2
[z(t − hm)]αm . (4.14)

Next integrating (4.13) from t to t∗ and using (4.12), we obtain

[z(t)]αm − [z(t∗)]αm ≥
C
2

[
z(t∗ − hm)

]αm
. (4.15)

Therefore from (4.14) and (4.15), we have

[z(t)]αm ≥
C2

4
[z(t − hm)]αm for t ≥ T1.

Let

u(t) =
m∏
i=1

[
z(t − hi)
z(t)

]αi
, t ≥ T1.
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Then u(t) is continuous on [T ,∞) and

1 ≤ u(t) =
m∏
i=1

[
z(t − hi)
z(t)

]αi
≤

m∏
i=1

[
z(t − hm)
z(t)

]αi
=
z(t − hm)
z(t)

≤

(
4
C2

)1/αm
.

Hence

lim inf
t→∞

u(t) = u0 <∞. (4.16)

Dividing (4.10) by z(t) and integrating from t − hi to t , we obtain for t ≥ T1∫ t

t−hi
P1(s)u(s)ds ≤ ln

z(t − hi)
z(t)

.

Multiplying the above inequality by αi and summing from 1 tom, we get

m∑
i=1

αi

∫ t

t−hi
P1(s)u(s)ds ≤

m∑
i=1

αi ln
z(t − hi)
z(t)

= ln u(t), t ≥ T1. (4.17)

From (4.16) and (4.17), for any sufficiently small ε, 0 < ε < u0, there exists Tε ≥ T1 such that for all t ≥ Tε ,

(u0 − ε)
m∑
i=1

αi

∫ t

t−hi
P1(s)ds ≤ ln u(t).

Taking liminf on both sides of the last inequality, we obtain

(u0 − ε)C1 ≤ ln u0, (4.18)

where C1 = lim inf
t→∞

∑m
i=1 αi

∫ t
t−hi
P1(s)ds. From (4.18), it follows that

C1 ≤
ln u0
u0
≤
1
e
,

which contradicts (4.9). This completes the proof of Theorem 4.5. �

Now we consider the following condition which is a special case of (A4).

(A4′) There exist a constant L > 0 and nonnegative constants α1, α2, . . . , αm such that
∑m
i=1 αi = 1 and

|f (u1, u2, . . . , um)| ≡ L
m∏
i=1

|ui|αi .

Theorem 4.6. Assume that (A1)–(A3) and (A4′) are satisfied. Then the following hold

(i) Inequality (4.2) has no eventually positive solutions if and only if inequality (4.7) has no eventually positive solutions.
(ii) Inequality (4.3) has no eventually negative solutions if and only if inequality (4.8) has no eventually negative solutions.
(iii) All solutions of Eq. (4.1) are oscillatory if and only if all solutions of Eq. (4.6) are oscillatory.

Theorem 4.7. Assume that (A1)–(A3) and (A4′) hold, and there exists T ≥ t0 + hm such that for all t ≥ T ,

m∑
i=1

αi

∫ t

t−hi
p(s) exp

(
m∑
i=1

αi

∫ s

s−hi
a(r)dr

)
m∏
i=1

∏
s−hi≤τk<s

(1+ bk)−αids ≤
1
Le
. (4.19)

Then Eq. (4.1) has a positive solution on [T ,∞).

Proof. Consider the setW of all nonnegative continuous functionsw satisfying the conditions

W = {w ∈ C([T − hm,∞),R+) : 1 ≤ w(t) ≤ e for every t ≥ T − hm}

and a mapping F onW

(Fw)(t) =

exp
(
m∑
i=1

αi

∫ t

t−hi
P1(s)w(s)ds

)
, t ≥ T ,

(Fw)(T ), T − hm ≤ t < T ,
(4.20)

where P1(t) is defined in (4.11).
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Observe that (Fw)(t) : [T − hm,∞)→ R+ is continuous, and that (4.20) defines an increasing mapping F : W → W .
Here, the increasing character of F is considered with respect to the usual pointwise ordering in W ; that is, for any
w1, w2 ∈ W , w1(t) ≤ w2(t) implies (Fw1)(t) ≤ (Fw2)(t). By combining (4.19) and (4.20) we find 1 ≤ (Fw)(t) ≤ e
for all t ≥ T − hm. Hence, Fw is uniformly bounded onW .
Consider the increasing sequence {un}∞n=0 of functions onW defined by u0(t) ≡ 1 and un(t) = (Fun−1)(t), n = 1, 2, . . . ,

and set u(t) = limn→∞ un(t) pointwise on [T −hm,∞). Then by using the Lebesgue dominated convergence theorem, from
(4.20), we obtain

u(t) =

exp
(
m∑
i=1

αi

∫ t

t−hi
P1(s)u(s)ds

)
, t ≥ T ,

(Fu)(T ), T − hm ≤ t < T .

Let

Z(t) = exp
(
−

∫ t

T
P1(s)u(s)ds

)
.

It can be shown that Z(t) is a positive solution of

Z ′(t)+ P1(t)
m∏
i=1

|Z(t − hi)|αi sgn Z(t) = 0, a.e. t ≥ T .

Nowset y(t) = Z(t) exp
(
−
∫ t
T a(s)ds

)
, t ≥ T . Clearly, y(t) is a positive solution of (4.6) on [T ,∞). But then by Theorem4.6,

(4.1) has a positive solution x(t) =
∏
T≤τk<t

(1+ bk)y(t), t ≥ T . This completes the proof. �

Corollary 4.5. Assume that (A4′) and the following condition hold:

(A) τk+1 − τk = δ > 0, bk ∈ (−1,∞), k ∈ N, a(t) ≡ a ∈ R, p(t) ≡ p > 0, hi > 0 and
∏
t−hi≤τk<t

(1 + bk)−αi = ri, i =
1, 2, . . . ,m, are constants.

Then the conclusions of Theorem 4.5 are valid if and only if

Lp
m∑
i=1

αihi exp

(
a
m∑
i=1

αihi

)(
m∏
i=1

ri

)
>
1
e
.

Example 4.1. Consider the differential equation{
x′(t)+ ax(t)+ p |x(t − h)|1/3 |x(t − 2h)|2/3 sgn (x(t)) = 0,
x(τ+k )− x(τk) = bx(τk), k ∈ N,

(4.21)

where p > 0, h > 0, b ∈ (−1,∞) are constants, τk = kh, k ∈ N.

For (4.21), we have∏
t−h≤τk<t

(1+ b)−1/3
∏

t−2h≤τk<t

(1+ b)−2/3 = (1+ b)−5/3.

Thus by Corollary 4.5 if

5
3
ph exp

(
5
3
ah
)
(1+ b)−5/3 >

1
e
,

then all solutions of (4.21) are oscillatory. If

5
3
ph exp

(
5
3
ah
)
(1+ b)−5/3 ≤

1
e
,

then (4.21) has a nonoscillatory solution.
Finally, we remark that first order nonlinear equations have also been addressed in [53–57].
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4.2. Linearization and applications to mathematical biology

In this section, we present linearized oscillation theory for impulsive delay differential equations. We shall also consider
some impulsive models from mathematical biology, and provide sufficient conditions for the oscillation of their positive
solutions about the steady state.
Linearized oscillation of nonimpulsive delay differential equations has been investigated in [8]. In this theory, the main

goal is to show that oscillations of nonlinear equations are equivalent to those of corresponding linear equations. Linearized
oscillation of impulsive delay differential equations is addressed in [58,59].
Consider the nonlinear impulsive delay differential equationx′(t)+

n∑
i=1

pi(t)fi(x(t − τi(t))) = 0, t 6= tk,

x(t+k )− x(tk) = Ik(x(tk)), k ∈ N,
(4.22)

and the associated linear equations and inequalitiesx′(t)+
n∑
i=1

pi(t)x(t − τi(t)) = 0, t 6= tk,

x(t+k )− x(tk) = Ik(x(tk)), k ∈ N,
(4.23)

x′(t)+
n∑
i=1

pi(t)x(t − τi(t)) ≤ 0, t 6= tk,

x(t+k )− x(tk) = Ik(x(tk)), k ∈ N,
(4.24)

x′(t)+
n∑
i=1

pi(t)x(t − τi(t)) ≥ 0, t 6= tk,

x(t+k )− x(tk) = Ik(x(tk)), k ∈ N,
(4.25)

x′(t)+
n∑
i=1

pi(t)x(t − τi(t)) = 0, t 6= tk,

x(t+k )− x(tk) = bkx(tk), k ∈ N.
(4.26)

In what follows we shall assume that some of the following conditions are satisfied.

(A1) 0 ≤ t0 < t1 < t2 < · · · < tk < · · · are fixed points with limk→∞ tk = ∞,
(A2) pi, τi ∈ C(J,R+), limt→∞{t − τi(t)} = ∞, i = 1, 2, . . . , n,
(A3) Ik(x) ∈ C(R,R), Ik(0) = 0, k ∈ N;
(A4) |Ik(x)| ≤ bk |x|,
(A5) bk ≥ 0, k ∈ N, and

∏
1≤k<∞(1+ bk) <∞,

(A6)
∫
∞

t

∑n
i=1 pi(s)ds = ∞,

(A7) fi(µ)µ > 0 for µ 6= 0,
(A8) Ik(x) is not decreasing, k ∈ N.

For any σ ≥ t0, we shall also need to define rσ = min1≤i≤n inft≥σ {t − τi(t)}.
First we prove the following lemmas which are modeled after [58].

Lemma 4.1. Assume that (A1)–(A3) and (A8) hold. If (4.24) has an eventually positive solution x(t), then (4.23) and (4.25) have
eventually positive solutions y(t) and z(t), which satisfy x(t) ≤ y(t) ≤ z(t) for sufficiently large t.

Proof. We assume that x(t) is an eventually positive solution of (4.24), then there exists a k such that x(t) > 0 and
t − τi(t) ≥ t0 for t ≥ tk − rσ , i = 1, 2, . . . , n. Set

z(t) = y(t) = x(t), tk − rσ ≤ t ≤ tk.

Then y(t+k ) = x(t
+

k ) and z(t
+

k ) = x(t
+

k ). From Theorem 2.3, we have

z(t) ≥ y(t) ≥ x(t), tk < t ≤ tk+1,

and

y(t+k+1) = y(tk+1)+ Ik+1(y(tk+1)) ≥ x(t
+

k+1).

Similarly, we have z(t+k+1) ≥ y(t
+

k+1). Thus, by induction,

z(t) ≥ y(t) ≥ x(t), t ∈ (tm, tm+1], and z(t+m ) ≥ y(t
+

m ) ≥ x(t
+

m ), m ≥ k.
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Hence,

z(t) ≥ y(t) ≥ x(t) for t ≥ tk.

This completes the proof of Lemma 4.1. �

Lemma 4.2. Assume that (A1)–(A4) and (A8) hold. If (4.24) has an eventually positive solution x(t), then (4.26) has an eventually
positive solution y(t), which satisfies y(t) ≥ x(t).

The proof of Lemma 4.2 is similar to that of Lemma 4.1.

Lemma 4.3. If (A1)–(A6) hold, then every nonoscillatory solution of (4.22) tends to zero as t →∞.

Proof. Without loss of generality, we assume that z(t) is an eventually positive solution of (4.22). Take a sequence {t∗k } from
{tj}∞j=1 such that Ik(z(t

∗

k )) > 0 and choose the corresponding sequence {b
∗

k} from {bj}
∞

j=1. Then, there exists a sufficiently
large T ≥ t0 such that

z(t) > 0 and z ′(t) ≤ 0, for t ≥ T , t 6= tk. (4.27)

Moreover, it can be seen that z(t) is decreasing in (t∗k , t
∗

k+1] for t
∗

k ≥ T , k ≥ m. Hence, for t ≥ t
∗

k ,

z(t) ≤ z(t∗
+

k ) ≤ (1+ b
∗

k)z(t
∗

k ) ≤ · · · ≤ (1+ b
∗

k)(1+ b
∗

k−1) · · · (1+ b
∗

m)z(t
∗

m).

In view of (A5) and the last inequality, there exists a constant M > 0 such that z(t) < M for t ≥ T . Now we claim
that lim inf

t→∞
z(t) = 0. Otherwise, set lim inf

t→∞
z(t) = l > 0, then there exists T2 ≥ T1 ≥ T such that t − τi(t) > T1 for

t ≥ T2, i = 1, 2, . . . , n and z(t) ≥ l/2 for t ≥ T1. In view of l/2 ≤ z(t) ≤ l and the continuity of fi(η), there exists b > 0
such that fi(z(t − τi(t))) ≥ b for t ≥ T2, then from (4.22), we have

0 = z ′(t)+
n∑
i=1

pi(t)fi(z(t − τi(t))) ≥ z ′(t)+ b
n∑
i=1

pi(t).

An integration of the above inequality from t to∞with t ≥ T2 yields

l−M
∑
k≥m

b∗k − z(t)+ b
(
l
2

)∫
∞

t

n∑
i=1

pi(s)ds ≤ 0,

which in view of (A5) and (A7) is a contradiction, and this confirms our claim.
Now we shall prove lim sup

t→∞
z(t) = 0. In view of (4.27) and the fact that lim inf

t→∞
z(t) = 0, we can take subsequence {ξk}

from {t∗k } such that

lim
k→∞

z(ξk) = 0. (4.28)

Similarly, take another subsequence {η+k } from {t
∗
+

k } between ξk and ξk+1 such that limk→∞ z(η
+

k ) = lim sup
t→∞

z(t). Assume

that b∗k and b
∗

k correspond to the moments ξk, ηk of impulsive effects, respectively. According to (4.22) and (4.27), it follows
from

0 < z(η+k ) ≤ (1+ b
∗

k)z(ηk) ≤ (1+ b
∗

k)z(η
+

k−1) ≤ (1+ b
∗

k)(1+ b
∗

k−1) · · · (1+ b
∗

k)z(ξk)

and (4.28) that limk→∞ z(η+k ) = 0. Therefore, we have limt→∞ z(t) = 0, which completes the proof of Lemma 4.3. �

Lemma 4.4. Assume that (A2) holds, then the following two statements are equivalent:

(i) The equation

x′(t)+
n∑
i=1

pi(t)x(t − τi(t)) = 0

has an eventually positive solution.
(ii) There exists ε0 > 0 such that for every ε ∈ [0, ε0], the equation

x′(t)+ (1− ε)
n∑
i=1

pi(t)x(t − τi(t)) = 0

has an eventually positive solution.
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Theorem 4.8 ([58]). Assume that (A1)–(A8) hold, and there exists a δ > 0 such that

|fi(µ)| ≤ |µ| for 0 < |µ| < δ.

If (4.22) is oscillatory, then (4.23) is also oscillatory.

Proof. Let y(t) be an eventually positive solution of (4.23). Then there exists tk such that y(t) > 0 for t ≥ tk− rσ . According
to Lemma 4.3, we have limt→∞ y(t) = 0. Set x(t) = y(t), tk − rσ ≤ t ≤ tk, then there exists a neighborhood of tk such that
x(t) > 0 and

x′(t) = −
n∑
i=1

pi(t)fi(x(t − τi(t))) ≥ −
n∑
i=1

pi(t)x(t − τi(t)),

x(t+k ) = x(tk)+ Ik(x(tk)) = y(tk)+ Ik(y(tk)) = y(t
+

k ).

By Lemma 4.1, x(t) ≥ y(t) > 0 for sufficiently large t , which contradicts the fact that (4.22) is oscillatory. This completes
the proof of Theorem 4.8. �

Theorem 4.9 ([58]). Assume that (A1)–(A8) hold, and

lim inf
µ→0

fi(µ)
µ
≥ 1, i = 1, 2, . . . , n. (4.29)

If (4.26) is oscillatory, then (4.22) is also oscillatory.

Proof. If (4.22) has an eventually positive solution x(t), then for every ε > 0, there exists T ≥ t0 such that

fi(x(t − τi(t))) ≥ (1− ε)x(t − τi(t)), t ≥ T , i = 1, 2, . . . , n.

Then from (4.22),x′(t)+
n∑
i=1

(1− ε)pi(t)x(t − τi(t)) ≤ 0, t 6= tk,

x(t+k )− x(tk) = Ik(x(tk)), k ∈ N,

has an eventually positive solution. By Lemma 4.2,x′(t)+
n∑
i=1

(1− ε)pi(t)x(t − τi(t)) = 0, t 6= tk,

x(t+k )− x(tk) = bkx(tk), k ∈ N,

also has an eventually positive solution. According to Theorem 2 in [31],

x′(t)+
n∑
i=1

(1− ε)pi(t)
∏

σ≤tk<t−τi(t)

(1+ bk)−1x(t − τi(t)) = 0

has an eventually positive solution. Thus, by Lemma 4.4,

x′(t)+
n∑
i=1

pi(t)
∏

σ≤tk<t−τi(t)

(1+ bk)−1x(t − τi(t)) = 0

has an eventually positive solution. Therefore, (4.26) has an eventually positive solution, which is a contradiction. This
completes the proof. �

Corollary 4.6. Assume that (A1)–(A8) hold, and

lim
µ→0

fi(µ)
µ
= 1, i = 1, 2, . . . , n.

Then (4.22) is oscillatory if and only if (4.26) is oscillatory.

Corollary 4.7. Assume that (A1)–(A8) and (4.29) are satisfied, and τ(t) = min1≤i≤n{τi(t)}. If either

lim inf
t→∞

∫ t

t−τ(t)

n∑
i=1

∏
t−τi(t)≤tk<t

(1+ bk)−1pi(s)ds >
1
e
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or

lim sup
t→∞

∫ t

t−τ(t)

n∑
i=1

∏
t−τi(t)≤tk<t

(1+ bk)−1pi(s)ds > 1

holds, then (4.22) is oscillatory.

Corollary 4.8. Assume that (A1)–(A8) and (4.29) are satisfied, and r(t) = max1≤i≤n{τi(t)}. If

lim inf
t→∞

∫ t

t−r(t)

n∑
i=1

∏
t−τi(t)≤tk<t

(1+ bk)−1pi(s)ds ≤
1
e
,

then (4.22) has an eventually positive solution.

Example 4.2. Consider the equation{
x′(t)+ tx(t − 2)ex(t−2) = 0, t 6= tk, t ≥ 2,

x(t+k )− x(tk) =
1
2k
x(tk), k ∈ N.

(4.30)

It is easily seen that Eq. (4.30) satisfies the conditions of Corollary 4.7, and hence it is oscillatory.

Linearized oscillation theory is also examined by Berezansky and Braverman [59]. They considered the following differ-
ential equationx

′(t)+
m∑
k=1

rk(t)fk[x(hk(t))] = 0, t 6= τj,

x(τj) = Ij(x(τ−j )), j ∈ N.
(4.31)

Unlike the results in [58], in [59] authors did not assume coefficients rk(t) and delays to be continuous. They also applied
the results to impulsive equations of mathematical biology. Following their work we introduce the following conditions:

(a1) rk(t) ≥ 0, k = 1, 2, . . . ,m, are Lebesgue measurable and locally essentially bounded functions;
(a2) hk : [0,∞)→ R, k = 1, 2, . . . ,m, are Lebesgue measurable functions, hk(t) ≤ t, limt→∞ hk(t) = ∞;
(a3) fk : R→ R, k = 1, 2, . . . ,m, are continuous functions, xfk(x) > 0, x 6= 0;
(a4) 0 = τ0 < τ1 < τ2 < · · · are fixed points, limj→∞ τj = ∞;
(a5) Ij are continuous functions satisfying xIj(x) > 0, x 6= 0, j ∈ N.

Theorem 4.10 ([59]). Let (a1)–(a5) and the following conditions hold:

(i) There exists a k such that∫
∞

t0
rk(t) = ∞, lim inf

t→∞
fk(t) > 0;

(ii) For sufficiently large x∣∣Ij(x)∣∣ ≤ cj |x| , cj ≥ 1,
∞∑
j=1

(cj − 1) <∞;

(iii) There exist δ > 0, ak > 0, dj > 0, k = 1, 2, . . . ,m, j ∈ N such that

lim
x→0

fk(x)
x
= ak and

∣∣Ij(x)∣∣ ≤ dj |x| for |x| < δ.

If for some ε, 0 < ε < ak, all solutions of the impulsive equationx
′(t)+

m∑
k=1

(ak − ε)rk(t)x(hk(t)) = 0, t 6= τj,

x(τj) = djx(τ−j ), j ∈ N,

are oscillatory, then all solutions of Eq. (4.31) are also oscillatory.
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Theorem 4.11 ([59]). Let (a1)–(a5) and there exist ak > 0, k = 1, 2, . . . ,m, dj > 0, j ∈ N, such that

|fk(x)| ≥ ak |x| and
∣∣Ij(x)∣∣ ≤ dj |x| .

If all solutions of the impulsive equationx
′(t)+

m∑
k=1

akrk(t)x(hk(t)) = 0, t 6= τj,

x(τj) = djx(τ−j ), j ∈ N,

are oscillatory, then all solutions of Eq. (4.31) are also oscillatory.

Theorem 4.12 ([59]). Suppose that (a1)–(a5) hold and there exist Mk > 0, k = 1, 2, . . . ,m, dj > 0, j ∈ N, such that
fk(x) ≤ Mkx, Ij(x) ≥ djx for any x > 0. If there exists a nonoscillatory solution of the linear impulsive equationx

′(t)+
m∑
k=1

Mkrk(t)x(hk(t)) = 0, t 6= τj,

x(τj) = djx(τ−j ), j ∈ N,
(4.32)

then there exists an eventually positive solution of (4.31).

Theorem 4.13 ([59]). Suppose that (a1)–(a5) hold and there exist Mk > 0, k = 1, 2, . . . ,m, dj > 0, j ∈ N, such that
fk(x) ≥ Mkx, Ij(x) ≤ djx for any x < 0. If there exists a nonoscillatory solution of the linear impulsive Eq. (4.32), then there exists
a nonoscillatory (eventually negative) solution of (4.31).

Now we consider the impulsive logistic equationN
′(t) = N(t)

m∑
k=1

rk(t)
(
1−

N(hk(t))
K

)
, t 6= τj,

N(τj)− K = bj(N(τ−j )− K),
(4.33)

with the initial condition

N(t) = ψ(t) ≥ 0, t < t0, N(t0) = y0 > 0, (4.34)

where rk, hk satisfy (a1) and (a2), K > 0 and ψ : (−∞, t0)→ R is a Borel measurable bounded function.

Definition 4.1. A positive solution N of (4.33)–(4.34) is said to be oscillatory about K if there exists a sequence tn, tn →∞,
such that N(tn) − K = 0, n ∈ N;N is said to be nonoscillatory about K if there exists t0 ≥ 0 such that |N(t)− K | > 0 for
t ≥ t0.

Theorem 4.14 ([59]). Suppose that 0 < bj ≤ 1 and the conditions (a1), (a2), (a4), and the first equality of hypothesis (i) in
Theorem 4.10 hold. If for sufficiently small ε > 0, δ > 0 all solutions of the equationx

′(t)+ (1− ε)
m∑
k=1

rk(t)x(hk(t)) = 0, t ≥ t0, t 6= τj,

x(τj) = (bj + δ)x(τ−j ),
(4.35)

are oscillatory, then all solutions of (4.33) are oscillatory about K .

Proof. Using the substitution N(t) = Kex(t), Eq. (4.33) is transformed into the Eq. (4.31) with fk(x) = f (x) = ex− 1, Ij(x) =
ln(1− bj + bjex).
Now we can apply Theorem 4.10. For this, condition (ii) holds with ck = 1, condition (iii) is satisfied with ak = 1, and

since limx→0
Ij(x)
x = bj, there exists δ > 0 such that

∣∣∣ Ij(x)x ∣∣∣ ≤ (bj + δ). Thus all conditions of Theorem 4.10 are satisfied.
Hence all solutions of Eq. (4.35) are oscillatory about zero. This in turn implies that all solutions of (4.33) are oscillatory
about K . �

Theorem 4.15 ([59]). Suppose that bj ≥ 1,
∏
∞

j=1 bj ≤ M < ∞, and the conditions (a1), (a2), (a4) hold. If there exists a
nonoscillatory solution of linear impulsive delay equationx

′(t)+
m∑
i=1

rkx(hk(t)) = 0, t 6= τj,

x(τj) = bjx(τ−j ),

then there exists a nonoscillatory about K solution of the Eq. (4.33).
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The proof of Theorem 4.15 is similar to that of Theorem 4.14.
In [59], following generalized Lasota-Wazewska equation, which describes the survival of red blood cells, is also

considered{
N ′(t) = −µN(t)+ pe−γN(h(t)), t ≥ 0,
N(τj)− N∗ = bj(N(τ−j )− N

∗),
(4.36)

where µ, p, γ > 0, h(t) satisfies condition (a2), and N∗ satisfies the equation N∗ = p
µ
e−γN

∗

.
Using the transformation N(t) = N∗ + 1

γ
x(t), Eq. (4.36) takes the form{

x′(t)+ µx(t)+ µγN∗[1− e−x(h(t))] = 0,
x(τj) = bjx(τ−j ).

(4.37)

Clearly, Eq. (4.37) is of the form (4.31). Hence solutions of (4.36) are oscillatory about N∗ if and only if all solutions of (4.37)
are oscillatory about zero. Thus as a consequence of Theorem 4.10 and any one of the Theorems 4.12 and 4.13 we have the
following results.

Theorem 4.16. Suppose that 0 < bj ≤ 1, and there exists ε > 0 such that all solutions of the linear equation{
x′(t)+ (1− ε)µx(t)+ (1− ε)µγN∗x(h(t)) = 0,
x(τj) = bjx(τ−j )

are oscillatory. Then all solutions of Eq. (4.36) are oscillatory about N∗.

Corollary 4.9. Suppose that 0 < bj ≤ 1, lim sup
t→∞

(t − h(t)) <∞, and

lim inf
t→∞

µγN∗
∫ t

h(t)
exp{µ(s− h(s))}

∏
h(s)<τj≤s

b−1j ds >
1
e
.

Then all solutions of Eq. (4.36) are oscillatory about N∗.

Theorem 4.17. Suppose that bj ≥ 1, and there exists a nonoscillatory solution of the linear equation{
x′(t)+ µx(t)+ µγN∗x(h(t)) = 0,
x(τj) = bjx(τ−j ).

Then there exists a nonoscillatory about N∗ solution of Eq. (4.36).

Corollary 4.10. Suppose that bj ≥ 1 and

lim sup
t→∞

µγN∗
∫ t

h(t)
exp{µ(s− h(s))}

∏
h(s)<τj≤s

b−1j ds <
1
e
.

Then there exists a nonoscillatory about N∗ solution of Eq. (4.36).

In [60], authors considered the food-limited equation
N ′(t) = r(t)N(t)

K − N(h(t))

K +
m∑
i=1
pi(t)N(gi(t))

,

N(t+k )− N(tk) = bk(N(tk)− K),

and obtained sufficient conditions for the oscillation or nonoscillation about K .
For further results on the oscillation of nonlinear impulsive equations which describe models in mathematical biology,

we refer to the interesting papers [61–65].

4.3. Second and higher order equations

In recent years oscillation of second order nonlinear impulsive delay differential equations has been examined
extensively [66–77]. Following [67], we consider the equation{

(a(t)(x′(t))σ )′ + f (t, x(t), x(t − τ)) = 0, t 6= tk,
x(t+k ) = Ik(x(tk)), x′(t+k ) = Ĩk(x

′(tk)),
(4.38)

where τ > 0, 0 < σ = p/qwith p and q odd integers, 0 < t1 < t2 < · · · < tk < · · ·, and limt→∞ tk = ∞, tk+1 − tk > τ .
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With respect to (4.38), we assume that:

(i) f (t, u, v) is continuous in [t0 − τ ,∞) × R × R, t0 ≥ 0, uf (t, u, v) > 0(uv > 0) and f (t, u, v)/ϕ(v) ≥ p(t)(v 6= 0),
where p(t) is continuous in [t0 − τ ,∞), p(t) ≥ 0 and xϕ(x) > 0(x 6= 0), ϕ′(x) ≥ 0;

(ii) Ik(x), Ĩk(x) are continuous in R and there exist positive numbers ck, c∗k , dk, d
∗

k such that

c∗k ≤
Ik(x)
x
≤ ck, dk ≤

Ĩk(x)
x
≤ d∗k;

(iii) a(t) is continuous positive function in [t0 − τ ,∞).

Lemma 4.5. Let x(t) be a solution of Eq. (4.38). Suppose that there exists some T ≥ t0 such that x(t) > 0 for t ≥ T . If

A(tj+1)− A(tj)+
dj+1
cj+1

(A(tj+2)− A(tj+1))+
dj+1dj+2
cj+1cj+2

(A(tj+3)− A(tj+2))

+ · · · +
dj+1dj+2 · · · dj+n
cj+1cj+2 · · · cj+n

(A(tj+n+1)− A(tj+n))+ · · · = +∞, (4.39)

for some tj(≥t1), where A(t) =
∫ t
t0

ds
a1/σ (s)

, then x′(t+k ) ≥ 0 and x
′(t) ≥ 0 for t ∈ (tk, tk+1], tk ≥ T .

Proof. First, we will show that x′(tk) ≥ 0, tk ≥ T . If not, then there exists some j such that tj ≥ T , x′(tj) < 0 and
x′(t+j ) = Ĩj(x

′(tj)) ≤ djx′(tj) < 0. Let

a(t+j )(x
′(t+j ))

σ
= −βσ (β > 0) and S(t) = a(t)(x′(t))σ .

From (4.38), it is clear that S(t) is nonincreasing in (tj+i−1, tj+i]. Thus,

a(tj+1)(x′(tj+1))σ ≤ a(t+j )(x
′(t+j ))

σ
= −βσ < 0. (4.40)

By induction, we have

a(tj+n)(x′(tj+n))σ ≤ −(dj+1dj+2 · · · dj+n−1)σβσ < 0, n ≥ 2. (4.41)

Now we claim that for n ≥ 2,

x(tj+n) ≤ cj+1cj+2 · · · cj+n−1

[
x(t+j )− β(A(tj+1)− A(tj))−

dj+1
cj+1

β(A(tj+2)− A(tj+1))

− · · · −
dj+1dj+2 · · · dj+n−1
cj+1cj+2 · · · cj+n−1

β(A(tj+n)− A(tj+n−1))

]
. (4.42)

Since S(t) is nonincreasing in (tj+i−1, tj+i], we get

x′(t) ≤
[a(t+j )(x

′(t+j ))
σ
]
1/σ

a1/σ (t)
.

Integrating the above inequality from s to t and then letting t → tj+1, s→ t+j , we obtain

x(tj+1) ≤ x(t+j )+ [a(t
+

j )(x
′(t+j ))

σ
]
1/σ (A(tj+1)− A(tj))

≤ x(t+j )− β(A(tj+1)− A(tj)). (4.43)

Similar to (4.43), we also have

x(tj+2) ≤ x(t+j+1)+ [a(t
+

j+1)(x
′(t+j+1))

σ
]
1/σ (A(tj+2)− A(tj+1)). (4.44)

Now by condition (ii), (4.40), (4.43), (4.44), we obtain

x(tj+2) ≤ Ij+1x(tj+1)+ a(tj+1)1/σ̃ Ij+1x′(tj+1)(A(tj+2)− A(tj+1))

≤ cj+1

[
x(t+j )− β(A(tj+1)− A(tj))−

dj+1
cj+1

β(A(tj+2)− A(tj+1))
]
.

Thus (4.42) holds for n = 2. By induction it can be shown that (4.42) holds for any n ≥ 2. Since x(tk) ≥ 0(tk ≥ T ), one
finds that (4.42) contradicts (4.39). Therefore, x′(tk) ≥ 0, (tk ≥ T ). By condition (ii), we have for any tk ≥ T , x′(t+k ) ≥ dk,
x′(tk) ≥ 0. Because S(t) is nonincreasing in (tj+i−1, tj+i], we get S(t) ≥ 0, t ∈ (tj+i−1, tj+i], which implies x′(t) ≥ 0. This
completes the proof. �
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Remark 4.1. If x(t) is eventually negative and (4.39) holds, then x′(t+k ) ≤ 0, tk ≥ T , and x
′(t) ≤ 0 for t ∈ (tj+i−1, tj+i].

Theorem 4.18 ([67]). Assume that (4.39) holds and there exists a positive integer k0 such that c∗k ≥ 1 for k ≥ k0. If∫ t1

t0
p(s)ds+

1
(d∗1)σ

∫ t2

t1
p(s)ds+

1
(d∗1d

∗

2)
σ

∫ t3

t2
p(s)ds+ · · · +

1
(d∗1d

∗

2 · · · d∗n)σ

∫ tn+1

tn
p(s)ds+ · · · = +∞, (4.45)

then Eq. (4.38) is oscillatory.

Proof. Without loss of generality, we can assume k0 = 1 and (4.38) has a solution x(t), such that x(t) > 0 for t ≥ t0. It
follows from Lemma 4.5 that x′(t) ≥ 0 for t ∈ (tk, tk+1], k ∈ N. Let

w(t) =
a(t)(x′(t))σ

ϕ(x(t − τ))
.

Thenw(t+k ) ≥ 0, k ∈ N, andw(t) ≥ 0, t ≥ t0. Using condition (i) and Eq. (4.38), we get

w′(t) = −
f (t, x(t), x(t − τ))
ϕ(x(t − τ))

−
a(t)(x′(t))σϕ′(x(t − τ))x′(t − τ)

ϕ2(x(t − τ))

≤ −p(t), t 6= tk, tk + τ . (4.46)

It follows from the continuity of a(t), condition (ii), c∗k ≥ 1 and ϕ
′(x) ≥ 0 that

w(t+k ) =
a(t+k )(x

′(t+k ))
σ

ϕ(x(t+k − τ))
≤ (d∗k)

σw(tk),

w(t+k + τ) =
a(t+k + τ)(x

′(t+k + τ))
σ

ϕ(x(t+k ))
≤ w(tk + τ). (4.47)

Integrate (4.46) from s to t , let s→ t+0 and t → t1, then in view of (4.47), we get

w(t+1 ) ≤ (d
∗

1)
σw(t1) ≤ (d∗1)

σ

[
w(t+0 )−

∫ t1

t0
p(s)ds

]
≤ (d∗1)

σw(t+0 )− (d
∗

1)
σ

∫ t1

t0
p(s)ds.

Similarly,

w(t+2 ) ≤ (d
∗

2)
σw(t2) ≤ (d∗2)

σ

[
w(t+1 + τ)−

∫ t2

t1+τ
p(s)ds

]
≤ · · · ≤ (d∗1d

∗

2)
σw(t+0 )− (d

∗

1d
∗

2)
σ

∫ t1

t0
p(s)ds− (d∗2)

σ

∫ t2

t1
p(s)ds.

Thus by induction, we have

w(t+n ) ≤ (d
∗

1d
∗

2 · · · d
∗

n)
σ

{
w(t+0 )−

∫ t1

t0
p(s)ds−

1
(d∗1)σ

∫ t2

t1
p(s)ds− · · · −

1
(d∗1d

∗

2 · · · d
∗

n−1)
σ

∫ tn

tn−1
p(s)ds

}
.

Sincew(t) ≥ 0, the last inequality contradicts (4.45). This completes the proof of Theorem 4.18. �

Theorem 4.19 ([67]). Assume that (4.39) holds, and ϕ(ab) ≥ ϕ(a)ϕ(b) for any ab > 0. If∫ t1

t0
p(s)ds+

ϕ(c∗1 )
(d∗1)σ

∫ t2

t1
p(s)ds+

ϕ(c∗1 )ϕ(c
∗

2 )

(d∗1d
∗

2)
σ

∫ t3

t2
p(s)ds+ · · · +

ϕ(c∗1 )ϕ(c
∗

2 ) · · ·ϕ(c
∗
n )

(d∗1d
∗

2 · · · d∗n)σ

∫ tn+1

tn
p(s)ds+ · · · = +∞,

then Eq. (4.38) is oscillatory.

The proof of Theorem 4.19 is similar to that of Theorem 4.18.

Corollary 4.11. Assume that (4.39) holds, and there exists a positive integer k0 such that c∗k ≥ 1, d
∗

k ≤ 1 for k ≥ k0. If∫
+∞

p(s)ds = +∞,

then Eq. (4.38) is oscillatory.
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Corollary 4.12. Assume that (4.39) holds, and there exist a positive integer k0 and a constant α > 0 such that

c∗k ≥ 1,
1

(d∗k)σ
≥

(
tk+1
tk

)α
, for k ≥ k0,

and ∫
+∞

tαp(t)dt = +∞.

Then Eq. (4.38) is oscillatory.

Example 4.3. Consider the superlinear impulsive equation
x′′ +

1
t3
x2n−1

(
t −
1
3

)
= 0, t 6= k, k ∈ N,

x(k+) =
(
k+ 1
k

)
x(k), x′(k+) = x′(k), k ∈ N,

(4.48)

where n ≥ 2 is a natural number, ck = c∗k = (k + 1)/k, dk = d
∗

k = 1, t0 = 2/3, A(t) = t − 2/3, p(t) = 1/t
3, tk = k and

ϕ(x) = x2n−1. It is clear that all conditions of Corollary 4.12 are satisfied for k0 = 1, α = 3. Thus every solution of Eq. (4.48))
is oscillatory.

The technique of [67] has been adapted to a variety of different types of impulsive equations [69,70,73,75].
In [72], Simeonov examined the impulsive delay differential equations of the type{

(r(t)x′(t))′ + F(t, x(τ1(t)), . . . , x(τm(t))) = 0, t 6= tk,
∆(r(tk)x′(tk))+ Fk(x(τ1(tk)), . . . , x(τm(tk))) = 0.

(4.49)

The oscillatory properties of the solutions of (4.49) were compared with the oscillatory properties of the inequality{
[(r(t)x′(t))′ + F(t, x(τ1(t)), . . . , x(τm(t)))]sgn x(t) ≤ 0, t 6= tk,
[∆(r(tk)x′(tk))+ Fk(x(τ1(tk)), . . . , x(τm(tk)))]sgn x(tk) ≤ 0,

(4.50)

and with the comparison equation{
(q(t)y′(t))′ + G(t, y(σ1(t)), . . . , y(σm(t))) = 0, t 6= tk,
∆(q(tk)y′(tk))+ Gk(y(σ1(tk)), . . . , y(σm(tk))) = 0.

(4.51)

With respect to the above equations, we need the following conditions:

(H1) r ∈ PLC1(R+,R+),
∫
∞ dt
r(t) = +∞ and r(t) > 0, r(t

+

k ) > 0 for t, tk ∈ R+;
(H2) τi ∈ C(R+,R), limt→∞ τi(t) = +∞ and τi(t) ≤ t for t ∈ R+, i = 1, 2, . . . ,m;
(H3) F ∈ C((tk−1, tk] × Rm,R), Fk ∈ C(Rm,R) for k ∈ N and x1F(t, x1, . . . , xm) > 0,

x1Fk(x1, . . . , xm) > 0, limy→x,t→t+k−1 F(t, y) ∈ R for x1xi > 0, i = 1, 2, . . . ,m, t ∈ R, k ∈ N, where
y = (y1, . . . , ym), x = (x1, . . . , xm);

(H4) F(t, x1, . . . , xm) and Fk(x1, . . . , xm) are nondecreasing functions with respect to xi
i = 1, 2, . . . ,m for each fixed t ∈ R and k ∈ N;

(H5) q ∈ PLC1(R+,R+),
∫
∞ dt
q(t) = +∞ and q(t) > 0, q(t

+

k ) > 0 for t, tk ∈ R+;
(H6) σi ∈ C(R+,R), limt→∞ σi(t) = +∞ and σi(t) ≤ t for t ∈ R+, i = 1, 2, . . . ,m;
(H7) G ∈ C((tk−1, tk] × Rm,R),Gk ∈ C(Rm,R) for k ∈ N and x1G(t, x1, . . . , xm) > 0,

x1Gk(x1, . . . , xm) > 0, limy→x,t→t+k−1 G(t, y) ∈ R for x1xi > 0, i = 1, 2, . . . ,m, t ∈ R, k ∈ N, where
y = (y1, . . . , ym), x = (x1, . . . , xm);

(H8) G(t, x1, . . . , xm) and Gk(x1, . . . , xm) are nondecreasing functions with respect to xi,
i = 1, 2, . . . ,m for each fixedt ∈ R and k ∈ N.

Lemma 4.6. Let the condition (H1) be satisfied, x ∈ C([T ,+∞),R) and rx′ ∈ PLC1 ∈ ([T ,+∞),R). Then the following hold:

1. 1. If x(t) > 0, (r(t)x′(t))′ ≤ 0,∆(r(tk)x′(tk)) ≤ 0 for t ≥ T , t 6= tk ≥ T , then r(t)x′(t) is nonincreasing and nonnegative
for t ≥ T .

2. If x(t) < 0, (r(t)x′(t))′ ≥ 0,∆(r(tk)x′(tk)) ≥ 0 for t ≥ T , t 6= tk ≥ T , then r(t)x′(t) is nondecreasing and nonpositive for
t ≥ T .
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Proof. 1. Obviously r(t)x′(t) is nonincreasing for t ≥ T . Assume that there exists T0 ≥ T such that r(t)x′(t) ≤ −m < 0 for
t ≥ T0. Integrating this inequality we obtain a contradiction:

0 < x(t) ≤ x(T0)−mR(t)+mR(T0)→−∞ as t →+∞,

where R(t) =
∫ t ds

r(s) . Hence, r(t)x
′(t) ≥ 0 for t ≥ T .

2. The proof of assertion 2 is analogous. �

Theorem 4.20 ([72]). Suppose that conditions (H1)–(H8) hold, and there exists T ≥ 0 such that

r(t) ≤ q(t), t ≥ T ,
τi(t) ≥ σi(t), t ≥ T , i = 1, 2, . . . ,m,
F(t, x1, . . . , xm)sgn x1 ≥ G(t, x1, . . . , xm)sgn x1,
Fk(x1, . . . , xm)sgn x1 ≥ Gk(x1, . . . , xm)sgn x1 (4.52)

for x1xi > 0, i = 1, 2, . . . ,m, t ≥ T and k : tk ≥ T . Then Eq. (4.51) has a nonoscillatory solution if inequality (4.50) has a
nonoscillatory solution.

Proof. Without loss of generality we assume that inequality (4.50) has an eventually positive solution x(t) > 0, t ≥ T . It
follows from (H2) that there exists T0 ≥ T such that τi(t) ≥ T for t ≥ T0, i = 1, 2, . . . ,m. Then x(τi(t)) > 0, t ≥ T0, i =
1, . . . ,m and from (H3) and (4.50), the hypothesis of the first part of Lemma 4.6 is satisfied. Hence, r(t)x′(t) is nonincreasing
and r(t)x′(t) ≥ 0 for t ≥ T0. Then it follows from (4.50) that

r(t)x′(t) ≥
∫
∞

t
F(s, x(τ1(s)), . . . , x(τm(s)))ds+

∑
t≤tk

Fk(x(τ1(tk)), . . . , x(τm(tk))),

which implies

x(t) ≥ x(T0)+
∫ t

T0

1
r(u)

[∫
∞

u
F(s, x(τ1(s)), . . . , x(τm(s)))ds+

∑
u≤tk

Fk(x(τ1(tk)), . . . , x(τm(tk)))

]
du, t ≥ T0.

Since x(t) is nondecreasing, it follows from conditions (4.52) and the last inequality that

x(t) ≥ x(T0)+
∫ t

T0

1
q(u)

[∫
∞

u
G(s, x(σ1(s)), . . . , x(σm(s)))ds+

∑
u≤tk

Gk(x(σ1(tk)), . . . , x(σm(tk)))

]
du. (4.53)

Let T−1 = min1≤i≤m inf{σi(t) : t ≥ T0} and B be the space of continuous functions y : [T−1,+∞)→ R. In the set

Y = {y ∈ B : x(Tσ ) ≤ y(t) ≤ x(t), t > T0; y(t) = x(t), T−1 ≤ t ≤ T0}

define the operator S : Y → B as follows

Sy(t) =


x(T0)+

∫ t

T0

1
q(u)

[∫
∞

u
G(s, y(σ1(s)), . . . , y(σm(s)))ds

+

∑
u≤tk

Gk(y(σ1(tk)), . . . , y(σm(tk)))

]
du, t > T0,

x(t), T−1 ≤ t ≤ T0.

Using (4.53) it is obtained that SY ⊆ Y . Define the functions y0(t) ≡ x(t0), t ≥ T−1 and yn(t) = Syn−1(t), t ≥ T−1, n ∈ N.
By induction we conclude that

yn(t) = x(t), T1 ≤ t ≤ T0 and x(T0) ≤ yn(t) ≤ yn−1(t) ≤ x(t), t ≥ T0, n ∈ N.

Therefore there exists the finite limit limn→+∞ yn(t) = y(t) for each t ≥ T−1, y(t) = x(t), T−1 ≤ t ≤ T0 and
x(T0) ≤ y(t) ≤ x(t), t > T0.
Now in view of the Lebesgue dominated convergence theoremwe have y ∈ Y and y(t) = Sy(t), t ≥ T−1. Finally, a direct

verification shows that y(t) is a nonoscillatory solution of Eq. (4.51). �

Theorem 4.21 ([72]). Suppose that conditions (H1)–(H8) and (4.52) hold. Then Eq. (4.49) is oscillatory if Eq. (4.51) is oscillatory.

Theorem 4.22 ([72]). Suppose that conditions (H1)–(H4) hold. Then the followings assertions are equivalent:

1. Eq. (4.49) has a nonoscillatory solution.
2. Inequality (4.50) has a nonoscillatory solution.
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Theorem 4.23 ([72]). Suppose that conditions (H1)–(H4) hold and the condition∫
∞

|F(t, c, . . . , c)| dt +
∞∑
k

|Fk(c, . . . , c)| = +∞ (4.54)

is satisfied for each constant c 6= 0. Then Eq. (4.49) is oscillatory.

Proof. Without loss of generality we assume that Eq. (4.49) has an eventually positive solution x(t) > 0, t ≥ T . Using the
same arguments as in Theorem 4.20, we obtain

r(t)x′(t) ≥ 0, t ≥ T0. (4.55)

Let T−1 = min1≤i≤m inf{τi(t) : t ≥ T0}. Since x(t) is a nondecreasing function, we have for t ≥ T0, i = 1, 2, . . . ,m that
x(τi(t)) ≥ x(T−1) ≡ c > 0. Therefore{

(r(t)x′(t))′ + F(t, c, . . . , c) ≤ 0, t ≥ T0, t 6= tk,
∆(r(tk)x′(tk))+ Fk(c, . . . , c) ≤ 0, tk ≥ T0.

Integrating the last inequality and using (4.54), we get

lim
t→∞

r(t)x′(t) = −∞,

which contradicts (4.55). �

Oscillation properties of higher order nonlinear differential equations have been addressed in [78–80]. Particularly,
in [78], authors considered the third order nonlinear differential equationy

′′′(t)+ f (t, y(t), y(g(t))) = 0, t 6= tk,
1y′′(tk)+ fk(y(tk), y(g(tk))) = 0, k ∈ N,
1y(tk) = 1y′(tk) = 0, k ∈ N,

(4.56)

assuming that the following conditions hold:

(H1) g ∈ C((0,∞), (0,∞)), g(t) ≤ t, g ′(t) ≥ 0, limt→∞ g(t) = +∞;
(H2) f ∈ C((0,∞)× R2,R), uf (t, u, v) > 0, for uv > 0; fk ∈ C(R2,R), ufk(u, v) > 0 for uv > 0, u, v ∈ R, k ∈ N;
(H3) |f (t, u1, v1)| ≤ |f (t, u2, v2)| , |fk(u1, v1)| ≤ |fk(u2, v2)| , k ∈ N for |u1| ≤ |u2| , |v1| ≤ |v2| , u1u2 > 0, v1v2 > 0.

Theorem 4.24. Let (H1)–(H3) hold. If∫
∞

t2 |f (t, c, c)| dt +
∞∑
k=1

t2k |fk(c, c)| < +∞

for some constant c 6= 0, then Eq. (4.56) has a bounded nonoscillatory solution.

Theorem 4.25. Let (H1)–(H3) hold. If there exists a point T ≥ 0 such that∫
∞

T
(t − T )2 |f (t, c, c)| dt +

∑
tk≥T

(tk − T )2 |fk(c, c)| = +∞

for some constant c 6= 0, then each bounded solution y(t) of the Eq. (4.56) either oscillates or

lim
t→∞

y(t) = lim
t→∞

y′(t) = lim
t→∞

y′′(t) = 0.
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