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a  b  s  t  r  a  c  t

Hot  aqueous  extraction  of  the  basidiocarps  of  the  mushroom  Pleurotus  sajor-caju  provided  a cold  water-
soluble,  gel-like  glucan,  which  was  characterized  chemically,  and  its effects  on  RAW  264.7  cell  line  (mouse
leukaemic  monocyte  macrophage)  activation  were  determined.  NMR  spectroscopy,  HPSEC,  methylation
analysis,  and  a  controlled  Smith  degradation  showed  it to  have  a branched  structure  with  a  (1→3)-
linked  �-Glcp  main-chain,  substituted  at O-6  by single-unit  �-Glcp  side-chains,  on the  average  of  two
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mmunomodulatory properties

to  every  third  residues  of the  backbone,  with  a  molar  mass  of  9.75  ×  10 g  mol .  In  macrophage  cell
culture,  the  �-glucan  induced  production  of NO and  the  cytokines  TNF-�,  IL-1�,  these  effects  being  very
similar  as  those  of  Escherichia  coli serotype  0111:B4  Sigma–Aldrich  lipopolysaccharide  (LPS),  although
not  modifying  the  response  of  LPS-activated  macrophages.  The  results  suggest  that  the  (1→3),  (1→6)-
linked  �-glucan  from  P.  sajor-caju  may  have  potential  for immunological  activities,  although  additional

y  for
experiments  are  necessar

. Introduction

The popularity of edible mushrooms of the genus Pleurotus has
ncreased, since they present good nutritional values, ready cultiva-
ion and are excellent sources of molecules such as polysaccharides
hat can act as biological response modifiers (Gonzaga, Ricardo,
eatly, & Soares, 2005; Lavi, Friesem, Geresh, Hadar, & Schwartz,
006; Smith, Rowan, & Sullivan, 2002).

Among these polymers, homo- and heteroglucans, with �-
1→3), �-(1→4)  and �-(1→6)  glycosidic linkages, are supposed to
lay a key role in some health aspects of mushrooms (Manzi &
izzoferrato, 2000). The most frequently described �-glucans have
he same main-chain (1→3),  substitution (O-6) and a degree of
ranching of 1:3:1, as the scleroglucan (Tabata, Ito, & Kojima, 1981);

entinan (Sasaki & Takasura, 1976) and grifolan (Kato, Mutoh,
gashira, Hiura, & Ueno, 1978), among others (Yoshioka, Tabeta,
aito, Uehara, & Fukuoka, 1985; Santos-Neves et al., 2008; Smiderle
t al., 2006, 2008). Most of them had been shown significant anti-
umor, anti-inflammatory and immunomodulating effects (Wasser,

011; Zhang, Cui, Cheung, & Wang, 2007).

Several studies have been carried out to confirm the
mmunomodulatory activity of some Pleurotus spp. (Paulík,

∗ Corresponding author. Tel.: +55 41 33611655; fax: +55 41 3266 2042.
E-mail address: iacomini@ufpr.br (M.  Iacomini).

144-8617     © 2012 Elsevier Ltd.  
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 a  better  understanding  of  the mechanisms  involved.
© 2012 Elsevier Ltd. 

Mojzisová, Durove, Benísek, & Húska, 1996; Sedaghat & Ghazanfari,
2011; Sun & Liu, 2009).

The immune body response is mediated by a diverse group of
leukocytes. The mononuclear phagocyte system is a subgroup of
leukocytes that circulate in the blood as monocytes and populate
tissues as macrophages in the steady state and during inflamma-
tion (van Furth & Cohn, 1968). Macrophages are resident phagocytic
cells in lymphoid and non-lymphoid tissues and are believed to be
involved in steady-state tissue homeostasis, promoting destruc-
tion of apoptotic cells, and the production of growth factors, as
Insulin-like Growth Factor I (IGF-I), Transforming Growth Factor-�
and � (TGF-� and TGF-�), Epidermal Growth Factor (EGF), Platelet-
Derived Growth Factor (PDGF), basic Fibroblast Growth Factor (FGF)
(Gordon, 2002; Rom et al., 1988; Rappolee, Mark, Banda, & Werb,
1988).

Numerous studies have shown that various �-glucans activate
cellular and humoral components of the host immune system
and increase functional activity of macrophages, suggesting that
they are able to serve as immunostimulants (Chang et al., 2009;
Dellinger et al., 1999; Liu et al., 2007; Moradali, Mostafavi, Ghods,
& Hedjaroude, 2007; Ross, Větvička, Yan, Xia, & Vetvicková, 1999).

Accordingly, the edible mushroom Pleurotus sajor-caju, known

Open access under the Elsevier OA license.
in Japan as Houbitake and whose therapeutic properties are
attributed to its carbohydrates, were now extracted and resulting
polysaccharides were purified for further structural characteriza-
tion. A branched �-glucan was  isolated and characterized and its

https://core.ac.uk/display/82452013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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iological effects were evaluated to determine its immunomodu-
atory properties using a RAW 264.7 macrophage cell culture.

. Materials and methods

.1. Biological material

Fresh basidiocarps (fruiting bodies) of P. sajor-caju (2 kg)
ere furnished by Makoto Yamashita Company (Miriam Harumi
amashita), São José dos Pinhais, State of Paraná, Brazil.

.2. Reagents

All chemicals were purchased from Sigma–Aldrich Chemical
and cytokine ELISA kits from R&D Systems (Europe, Abingdon, UK).

.3. Extraction and purification of ˇ-glucan

Dried and powdered fruiting bodies of P. sajor-caju (222 g) were
reated with successive extraction with water at 4 ◦C (6×,  2000 mL
ach) and 100 ◦C (6×,  2000 mL  each). Polysaccharides were sepa-
ately recovered from the respective aqueous extracts by addition
o excess EtOH, giving fractions named CW,  for Cold Water aque-
us extract obtained at 4 ◦C, and HW,  for Hot Water aqueous extract
btained at 100 ◦C. Crude HW was submitted to a freeze–thawing
rocess (Gorin & Iacomini, 1984), furnishing cold water-soluble
SHW) and soluble gel-like fractions (SGHW), which were sepa-
ated by centrifugation (9000 rpm for 30 min. at 4 ◦C).

.4. Monosaccharide composition

Each polysaccharide fraction (1 mg)  was hydrolyzed with 2 M
FA at 100 ◦C for 8 h, followed by evaporation to dryness. The
esidues were successively reduced with excess of NaBH4 and
cetylated with Ac2O–pyridine (1:1, v/v; 400 �L) at room temper-
ture for 12 h (Wolfrom & Thompson, 1963a, 1963b). The resulting
lditol acetates were analyzed by gas chromatography–mass spec-
rometry (GC–MS), using a Varian model 3300 gas chromatograph
inked to a Finnigan Ion-Trap, Model 810-R12 mass spectrome-
er. Incorporated was a DB-225 capillary column (30 m × 0.25 mm
.d.) programmed from 50 to 220 ◦C at 40 ◦C min−1, then hold, and
he alditol acetates identified by their typical retention times and
lectron impact profiles.

.5. Determination of homogeneity of polysaccharides and their
olecular weight (Mw)

The determination of the homogeneity and molar mass (Mw)
f the fractions were performed on a Waters high-performance
ize-exclusion chromatography (HPSEC) apparatus coupled to a
ifferential refractometer (RI) and a Wyatt Technology Dawn-F
ulti-Angle Laser Light Scattering (MALLS) detector. The eluent
as 0.1 M NaNO3, containing 0.5 g L−1 NaN3. The polysaccharides

olutions were filtered through a membrane with 0.22 �m diame-
er pores (Millipore). The specific refractive index increment (dn/dc)
as determined using a Waters 2410 detector, the samples being
issolved in the eluent, five increasing concentrations, ranging from
.2 to 1.0 mg  mL−1 being used to determine the slope of the incre-
ent.

.6. Methylation analysis of ˇ-glucan
Per-O-methylation of the isolated polysaccharide (10 mg)  was
arried out using NaOH-Me2SO-MeI (Ciucanu & Kerek, 1984). The
rocess, after isolation of the products by neutralization (HOAc),
ialysis, and evaporation was repeated, and the methylation was
Polymers 90 (2012) 814– 819 815

found to be complete. The per-O-methylated derivatives were
hydrolyzed with 45% (v/v) aq. formic acid (1 mL)  for 15 h at 100 ◦C,
followed by NaB2H4 reduction and acetylation as in item 2.4, to give
a mixture of partially O-methylated alditol acetates, which was ana-
lyzed by GC–MS using a DB-225 capillary column (30 m × 0.25 mm
i.d.) programmed from 50 to 215 ◦C at 40 ◦C min−1, then hold, and
identified from m/z profiles of their positive ions, by comparison
with standards, the results being expressed as a relative percentage
of each component.

2.7. Controlled Smith degradation

The purified �-glucan (42.8 mg)  was submitted to oxidation
with 0.05 M aq. NaIO4 (15 mL)  at room temperature for 72 h in
the dark. Ethylene glycol was  then added to stop the reaction, the
solution dialyzed, and the resulting polyaldehydes were reduced
with NaBH4 for 24 h, neutralized with HOAc, dialyzed, and con-
centrated (Goldstein, Hay, Lewis, & Smith, 2005). The residue was
partially hydrolyzed with aq. TFA at pH 2.0 (30 min  at 100 ◦C,
under reflux) (Gorin, Horitsu, & Spencer, 1965) followed by dialysis
against tap water using membranes with a size exclusion of 2 kDa
and the solution containing retained material was freeze-dried to
give polymeric fraction SM-SGHW (31.0 mg), and analyzed by 13C
NMR  spectroscopy.

2.8. Nuclear magnetic resonance (NMR) spectroscopy

13C, 1H and HSQC NMR  spectra were obtained using a 400 MHz
Bruker model DRX Avance spectrometer, incorporating Fourier
transform, by procedures described in the Bruker manual. Anal-
yses were performed at 70 ◦C on polysaccharide samples dissolved
in Me2SO-d6 (30 mg  in 0.4 mL  for 13C, and 2 mg  in 0.6 mL  for 1H
NMR analysis). Chemical shifts of samples are expressed in ı (ppm)
relative to Me2SO-d6 at ı 39.7 and 2.40 for 13C and 1H signals,
respectively.

2.9. Cell line and culture conditions

The murine macrophage cell line, Raw 264.7 (obtained from the
Cell Culture Unit of the University of Granada, Granada, Spain),
were cultured in Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with 10% heat-inactivated FBS, high glucose (4.5 g L−1)
plus 1% of streptomycin–penicillin, 1% amphotericin, 1% glutamine
at 37 ◦C under 5% CO2. Cells were seeded onto 24-well cul-
ture plates at a density of 5 × 105 cells/well and grown until
confluence, and were incubated in media containing �-glucan
(0.1–300 �g mL−1), for 1 h. Cells were then incubated with or with-
out LPS (0.1 �g mL−1; Lipopolysaccharides from Escherichia coli
serotype 0111:B4 Sigma–Aldrich) for 24 h (37 ◦C under 5% CO2).
Their viability was then determined by the Crystal Violet assay
(Gilles, Didier, & Denton, 1986). Levels of nitric oxide (NO) were
measured using the Griess reagent (Park, Quinn, Wright, & Schuller-
Levis, 1993), and the concentration of pro-inflammatory cytokines
(TNF-�, IL-1�) was finally investigated using ELISA kits following
the manufacturer’s protocol.

3. Results and discussion

3.1. Structural characterization of (1→3),  (1→6)  ˇ-d-glucan

The basidiocarps (fruiting bodies) of P. sajor-caju,  after des-
iccation in a freeze dryer gave 11.1% of their original weight.

They were then treated with successive extractions with water at
4 ◦C and 100 ◦C. The extracted polysaccharides were recovered via
ethanol precipitation, giving fractions CW (12.4 g) and HW (11.4 g),
respectively.
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& Gershwin, 2004; Zhang et al., 2007), depending on the
structural characteristics as solubility, degree of branching, molec-
ular weight, among others. Studies have indicated that the
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ig. 1. 13C NMR  spectrum of fraction SGHW from P. sajor-caju, in Me2SO-d6 at 70 ◦C
chemical shifts are expressed in ppm).

Fraction HW was shown to be heterogeneous by HPSEC and
as composed of units of glucose (89.0%), besides rhamnose (4.5%),

rabinose (2.2%), mannose (2.2%), and galactose (2.1%). Fractiona-
ion and purification of HW was carried out by a freeze–thawing
rocedure (Gorin & Iacomini, 1984), which resulted in respective
old water-soluble (SHW, 8.3 g) and in a soluble gel-like fractions
SGHW, 3.1 g).

Fraction SGHW was shown to be homogeneous on HPSEC, and
ad Mw of 9.75 × 10−5 g mol−1 (dn/dc 0.159 mL  g−1).

The purified polysaccharide fraction (SGHW) contained mainly
lucose (97.8%) as its monosaccharide component (GC–MS).
ethylation-GC–MS analysis gave rise to partially O-methylated

lditol acetates, corresponding to a branched (1→3),  (1→6)-linked
-d-glucan with nonreducing end-(40.1%), 3-O- (19.4%) and 3,6-di-
-substituted units (40.5%) in a molar ratio of 2:1:2, respectively.

The 13C NMR  of fraction SGHW contained only one anomeric C-
 signal at ı 103.0 (Fig. 1), while in its HSQC spectrum (Fig. 2) two
istinct signals (C-1/H-1) could be observed, one at ı 103.0/4.21
orresponding to nonreducing end-units, and other at ı 102.9/4.51
rom 3-O- and 3,6-di-O-substituted residues (Fig. 2). The �-
onfiguration was shown by low frequency H-1 (ı 4.51 and 4.21)
nd high-frequency C-1 signals (ı 103.0 and 102.9) (Figs. 1 and 2A
nd B) (Hall & Johnson, 1969). All the signals were assigned using
he literature values for similar polysaccharides (Chauveau, Talaga,

ieruszeski, Strecker, & Chavant, 1996; Santos-Neves et al., 2008;
abata et al., 1981; Yoshioka et al., 1985) (Table 1).

The positions of the glycosidic linkages of the glucan were
hown by the presence of 3-O-substituted signals at ı 86.6, 86.3,
nd 86.0 (Figs. 1 and 2) and an O-substituted CH2-6 signal at ı 68.3,
hich appeared as doublet in its HSQC spectrum at ı 68.3; 4.06/3.52

Fig. 2).
The main-chain structure of fraction SGHW was  shown by a con-

rolled Smith degradation, its final polymeric product (SM-SGHW)
eing analyzed by 13C NMR  spectroscopy. Its 13C NMR  spectrum
not shown) showed it to be a linear (1→3)-linked �-d-glucan with
ypical 13C signals at ı 102.9 (C-1); 86.1 (C-3); 76.3 (C-5); 72.8 (C-2);
8.4 (C-4), and 60.9 (C-6) (Gorin, 1981).

Analysis of fraction SGHW, based on monosaccharide composi-
ion, methylation data, NMR  spectroscopic analysis, and controlled
mith showed it to be a �-d-glucan with a (1→3)-linked main
hain, partially substituted at O-6 by side chains of nonreducing
nd-units of �-d-Glcp, on the average of two to every third unit of
he backbone (Fig. 3).

This type of �-glucan is a common component of basid-
omycetes, with the degree of substitution varying with the fungus.
hey have mainly been found to have the same main chain

nd O-6 substitution with a degree of branching of 1–3. �-
lucans containing the same proportion of branching to those now
escribed, have been isolated from Auricularia auricula judae basid-

omycetes (Sone, Kakuta, & Misaki, 1978). However, for P. sajor-caju
Fig. 2. HSQC (A) and 1H NMR (B) spectra of fraction SGHW from P. sajor-caju, in
Me2SO-d6 at 70 ◦C (chemical shifts are expressed in ppm).

only other polysaccharides containing glucose have been char-
acterized (Pramanik, Mondal, Chakraborty, Rout, & Islam, 2005;
Pramanik, Chakraborty, Mondal, & Islam, 2007; Roy, Maiti, Mondal,
Das, & Islam, 2008). Two  of them refer to heteropolysaccharides
(Pramanik et al., 2005; Roy et al., 2008) and one to a glucan with an
unusual structure, which contain �- and �-Glcp units, besides of
Glcp (1→2)-linked units (Pramanik et al., 2007). In this way, no
polysaccharide already described for P. sajor-caju resembles the
branched �-d-glucan described in this report.

Previous investigations have described the antitumor and
immunostimulating properties of homopolymers (Borchers, Keen,
n

Fig. 3. Structure of water-soluble gel-like �-glucan (SGHW) obtained from P. sajor-
caju.
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Table 1
1H and 13C NMR  chemical shifts [expressed as ı (ppm)] of �-d-Glucan (1→3),  (1→6)  from P. sajor-cajua.

Units 1 2 3 4 5 6

a b

→3)-�-d-Glcp-(1→ 13C 102.9 72.8 86.6/86.3 68.4 76.5/76.4 61.0/60.9 61.0/60.9
1H 4.51 3.31 3.48 3.26 3.25 3.69 3.45

→3,6)-�-d-Glcp-(1→ 13C 103.0 72.7 86.1 68.7 74.9 68.3 68.3
1H 4.51 3.31 3.48 3.26 3.50 4.06 3.52

�-d-Glcp-(1→ 13C 103.1 73.7 76.7 70.3 76.2 61.2 61.2
1H 4.21 3.01 3.10 3.09 3.25 3.69 3.45

a Assignments are based on 13C, 1H and HSQC examination.

Fig. 4. Effects of SGHW �-glucan and lipopolysaccharide (LPS) on the viabil-
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Fig. 6. Effects of SGHW �-glucan and lipopolysaccharide (LPS) on TNF-� secretion,
ty  of RAW264.7 macrophages, measured by Crystal Violet assay. Data represent
ean ± SEM. * Significant difference (p < 0.05) compared to control group (Dul-

ecco’s modified Eagle’s medium).

istribution of the single glycosyl units along the main chain con-
ers their immunomodulating activity, their solubility in water also
eing important for biological applications (Bohn & BeMiller, 1995;
asser, 2011).
Consequently, water-soluble gel-like �-d-glucan of P. sajor-caju

ight be considered as good candidate to be tested for its potential
s biological response modifiers, although biological investigations
re necessary in order to attribute a relation between structure and
ctivity of its highly branched structure, since most of the pre-
ious investigations were on �-glucans having a lower degree of
ranching.

.2. Biological properties of the ˇ-glucan

To investigate the effects of P. sajor-caju �-glucan on
acrophages, it was first confirmed that it was not toxic to RAW

64.7 macrophages, since it did not affect the cell viabilities within

he range of concentrations tested (Fig. 4).

After 24 h of �-glucan exposure (0.1–300 �g mL−1), RAW
64.7 cells showed an increase in NO production (Fig. 5). The

ig. 5. Effects of SGHW �-glucan and lipopolysaccharide (LPS) on the amount of
itrite measured by Griess reaction in RAW264.7 macrophage medium. Data repre-
ent  mean ± SEM. * Significant difference (p < 0.05) compared to the control group
Dulbecco’s modified Eagle’s medium).
measured by ELISA in RAW264.7 macrophage medium. Data represent mean ± SEM.
*  Significant difference (p < 0.05) compared to control group (Dulbecco’s modified
Eagle’s medium).

concentration of cytokines was  also investigated with RAW 264.7
macrophages, which were exposed to �-glucan. It increased the
amount of TNF-� from 532.5 ± 3.6 from the medium group to
1287 ± 81, 1686 ± 178, 2038 ± 21, 2084 ± 71 and 2092 ± 9 pg mL−1,
with the 0.1, 1, 10, 100 and 300 �g mL−1 of �-glucan, respectively
(Fig. 6). The concentration of IL-1� also increased after incuba-
tion with �-glucan from 434 ± 76 (medium) to 760 ± 54, 1976 ± 3,
2147 ± 25 and 2102 ± 41 with 0.1, 1, 10, 100 and 300 �g mL−1 of
�-glucan, respectively (Fig. 7).

The primary effect of polysaccharides is to enhance and/or acti-
vate macrophage immune responses. In particular, they have been
shown to activate phagocytic activity, increase reactive oxygen
species and NO synthesis, and enhance secretion of cytokines and
chemokines, such as TNF-�, IL-1�, IL-6, IL-8, IL-12, IFN-� and IFN-
�2 (Schepetkin & Quinn, 2006).

Polysaccharides isolated from several mushrooms (Kim, Choi,
Lee, & Park, 2004; Lee et al., 2008; Son et al., 2006;) and higher
plants (Schepetkin & Quinn, 2006) have been shown to be effective

inducers of NO synthesis in macrophages.

In the present study, �-glucan from P. sajor-caju activated RAW
264.7 macrophages and induced synthesis of NO and cytokines
TNF-�, IL-1�, these effects being very similar to that of LPS.

Fig. 7. Effects of SGHW �-glucan and lipopolysaccharide (LPS) on IL-1� secretion,
measured by ELISA in RAW264.7 macrophage medium. Data represent mean ± SEM.
*  Significant difference (p < 0.05) compared to control group (Dulbecco’s modified
Eagle’s medium).
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owever, the �-glucan did not modify release of NO and the
ytokines, when the macrophages were activated with LPS.

Activated macrophages contribute to inflammatory responses,
onseptic hypersensitivity reactions and diseases, and even

nfection-associated tissue injury (Molloy, Mannick, & Rodrick,
993; Stout, 1993). During inflammation, macrophages can pro-
uce and release NO and cytokines into the general circulation to
xert systemic effects (West, Seatter, Bellingham, & Clair, 1995).

TNF-� and IL-1� are two typical pro-inflammatory cytokines,
hich are produced by activated macrophages and are involved in

he immune responses and host defense (Beutler & Cerami, 1986;
arswell, Old, & Kassel, 1975).

In conclusion, the present results suggest that the �-glucan of P.
ajor-caju has an immunostimulatory effect, although further stud-
es are necessary for a better understanding of the mechanisms
nvolved.
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