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Abstract 

In this paper a sort of end concept for directed graphs is introduced and examined. Two 
one-way infinite paths are called equivalent iff there are infinitely many pairwise disjoint paths 
joining them. An end of an undirected graph is an equivalence class with respect to this relation. 
For two one-way infinite directed paths U and V define: (a) U ~< V iff there are infinitely many 
pairwise disjoint directed paths from U to V; (b) U ~ V iff U ~< V and V ~< U. The relation ~< is 
a quasiorder, and hence ~ is an equivalence relation whose classes are called ends'. Furthermore, 
~< induces a partial order on the set of ends of a digraph. In the main section, necessary and 
sufficient conditions are presented for an abstract order to be representable by the end order of 
a digraph. @ 1998 Elsevier Science B.V. All rights reserved 

O. Introduction 

In the early 1940s, Hopf  [7] and Freudenthal [4] studied discrete groups with the aid 

o f  the end concept. In 1964, Halin independently reintroduced the end concept in order 

to study infinite graphs [5], and it turned out to be a basic and important tool in infinite 

graph theory. Diestel [2] and Polat [8] give each other supplementary overviews about 
several aspects o f  the subject. 

in the literature so far, the end notion seems to have been used only for the inves- 

tigation o f  undirected graphs. The question occurs, whether it is possible to define an 

analogue of  the end notion for digraphs. It is the purpose of  this paper to show that 

an analogue of  'undirected ends' for digraphs makes sense and to point out and to 

examine some differences to ends in undirected graphs. The end concept for digraphs 

introduced in Section 2 can be regarded both as a generalization of  the end notion 

for undirected graphs as well as a refinement of  certain subends of  the underlying 
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undirected graph. (Any graph G can be understood as a symmetric digraph by sub- 
stituting each edge of G by a directed cycle of length 2, and any digraph D can be 
regarded as a special orientation of the underlying undirected graph.) 

To state things in a more detailed fashion, call two one-way infinite paths - -  or 
briefly rays - -  of an (undirected) graph G equivalent iff there exist infinitely many 
pairwise disjoint paths joining them. An equivalence class with respect to this relation 
is called an end of  G. In an undirected graph, every pair of ends can be separated 
by a finite subgraph. For the purpose of distinction, directed paths (resp. cycles) will 
be called tracks (resp. circuits). For one-way infinite tracks U and V in a digraph D 
let U<~9 V mean that there are infinitely many pairwise disjoint U ~ V-tracks and 
U "D V mean that U ~< V and V ~< U. Then ~< is a quasiorder and " is an equivalence 
relation on the set of all one-way infinite tracks of D. The classes with respect to ,-~ 
are also called ends, and ~< establishes a partial order on the set of ends of D. In 
Section 2 some basic results on ends in digraphs are proved and some differences to 
ends in undirected graphs are pointed out. For example, if two one-way infinite tracks 
are comparable, they cannot be separated by a finite subdigraph, but it is possible that 
they belong to different ends. Moreover, there are three different end-notions: co-ends 
(containing only one-way infinite tracks going to infinity), co*-ends (containing only 
one-way infinite tracks coming from infinity), and composed ends (possibly containing 
both types of one-way infinite tracks). Furthermore, an end of a digraph belongs either 
completely or not at all to a strong component of D. 

Under these circumstances, one may ask whether it is justified to call the ,--classes 
'ends', since they are not ends in the topological sense. Nevertheless, these 'directed 
ends' are a generalization of the 'undirected' end-notion, and they reflect the ramifica- 
tion structure of the one-way infinite directed paths in a natural way. However, for a 
full justification of this naming, a sort of 'directed topology' ought to be developed. 

In Section 3, the main section of the paper, the following question is considered: 
Which types of abstract orders can arise on sets of ends of digraphs? An abstract 
poset (X, ~<) is said to be co-representable iff there is a digraph D such that the co- 
end-poset of  D is order isomorphic to (X, ~<). A necessary condition for an order to 
be co-representable is that every strictly increasing sequence has a supremum. Section 
3 also contains a sufficient condition, but it is a slightly technical. From that sufficient 
condition, the fact that a chain is co-representable if and only if every strictly increas- 
ing sequence has a supremum can be derived. Dual results are valid for co*-ends. 
Furthermore, some results concerning composed-end-representability are presented. 

1. Preliminaries 

The relations 'proper subset of '  (resp. 'subset of ' ,  'finite proper subset of ' ,  'fi- 
nite subset o f ' )  are denoted by c (resp. c ,  F, _E). For the set of natural numbers 
and its nth segments the following symbols shall be used: /%1 := {1,2,3 . . . .  }, No := 
{0, 1,2 . . . .  }, [n] := {1,2 . . . . .  n), [0] := ~. The set of all integers, rational numbers, and 
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real numbers will be denoted by 7?, Q, and g~, respectively. I f X  is a set, then IX] shall 
denote the cardinality of  X. Throughout this paper, the symbol a will be shorthand 

for {a}. 
A set X with the reflexive and transitive relation ~< (written (X,<~)) is called a 

quasiordered set (or quoset), and the relation ~< is called a quasiorder. (X,<~) is 

called a partially ordered set (or poset), and the relation ~< is called a partial order 
iff the relation ~< is also antisymmetric. A poset (X, ~<) is called a totally ordered set 
(or chain) iff ~< is also total, m denotes the order type of ~1. If  (X,~<) is a quoset 

and YC_X, then (Y,~<) shall be used instead of (Y,<~lvxr), and if x, y E X ,  then 
x < y means x < ~ y A y  ~ x. I f X  is a set and RC_X x X  is a relation o n X ,  then 

let R - I  := {(x, y)  I (y,x)  ER} and/} := R M R - l .  If  R is an equivalence relation on X 
and x EX,  then R ( x ) : =  { y E X I ( x , y )  E R  }. Further, let XR := { R ( x ) [ x E X }  and 

R* C_XR x XR be defined by R(x) R* R(y)  :¢¢, xR y. The following is a well known 

order theoretic result [3, p. 62, 3.19 Satz]: 

Proposition 1.1. Let (X,R) be a quoset. Then R is an equivalence relation on X and 
R* a partial order on X~. 

I f  D is an arbitrary directed (resp. undirected) graph, the set of all vertices and 
the set of  all arcs (resp. edges) of  D will be denoted by VD and AD (resp. ED), 
respectively, and it will be written D =- (VD, AD) (resp. D = (VD, ED)). The digraphs 
considered are assumed to have no multiple arcs, though 2-circuits may be possible, 

i.e. (U,v)EAD and (V,u)EAD. C is called a sub(di)graph of  D (in symbols: CC_D) iff 
Vc C_ VD and Ac C AD, whereby Ac only contains arcs that are incident with vertices 
EVc.  Sets of vertices, edges, and/or arcs may be identified with sub(di)graphs. C v D 

means that C is a finite sub(di)graph of D. If  C C_ D, then D[C] denotes the induced 
sub(di)graph of D which has Vc as its set of vertices, and D - C denotes the induced 
sub(di)graph of D which is spanned by the set of vertices Vo - Vc. D u denotes the 
underlying undirected graph. 

Let T be a digraph with n + 1 vertices (n E N0), Vr = {Vo, Vl,...,vn} say. If, for 
each i E [n], AT contains exactly one element of the set {(vi-l,  vi), (vi, vi-1 )}, then T 
is called a zigzag-track (o f  length n), and v0 and vn are called the rim vertices of  T. 
If, for each iE In], AT contains exactly the arc (vi-1, vi), then T is also called a track 
(o f  length n), and v0 (resp. v,) is called the initial (resp. terminal) vertex of  T. A 
zigzag-track is called proper if it is not a track. Note that every single vertex can be 
interpreted as a (zigzag-)track and also as a circuit of length 0. 

One-way infinite (zigzag-)tracks are defined analogously and briefly called 1-(zig- 
zag-)tracks. There are two kinds of  1-tracks: Those that go to infinity (called m-tracks) 
and those that come from infinity (called ~o*-tracks). ~ ( e ~ )  (resp. ~ (co) ,  ~ ( o 9 " ) )  
denotes the set of  all 1- (resp. co-, ~o*-) tracks of  the digraph D. If  U and V are both 
~-  or both ~o*-tracks, then U and V are said to have the same direction. Otherwise, 
U and V are said to have opposite directions. Every infinite subtrack of an ~o- or 
oJ*-track T is called a rest of  T. 
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Let D be a digraph and A,B C_D. Every zigzag-track (resp. track) with one rim 

vertex (resp. initial vertex) c A and the other rim vertex (resp. terminal vertex) C B 

and having no further vertex in common with A U B is called an A,B-zigzag-track 

(resp. an A ~ B-track). B is said to be reachable from A (written A -~D B) iff there 

exists an A ~ B-track in D. A ~--~D B abbreviates the fact that A and B are mutually 

reachable from each other. Clearly, (VD,--+D) is a quoset. 
Let T be an arbitrary (finite or infinite) track. I f  v E Vr, then v is said to be on the 

track T. I f  V, W_C T, V O W = 0, and v --+r w holds for all v~  V, wC W, then it is 

said that 'V  is before W on T' or 'W is behind V on T'. 

Remark 1.2. I f  D is a digraph, then every (finite or infinite) path of  D u corresponds 

to an (equivalence) class of  zigzag-tracks of  D which all have the same vertices in the 

same arrangement. The set of  all these classes is a partition of  the set o f  all zigzag- 
tracks of  D and can be mapped bijectively to the set o f  all paths of  D u, so that there 

is hardly any difference between running along the zigzag-tracks without consideration 
of  the direction of  the affiliated arcs and examining the underlying undirected paths. 

A digraph S is called a subdivision of  D iff S can be obtained from the digraph D 
by replacing every arc (v, w) of  D by a v --~ w-track of  length > 0 which has (except 

v and w) no vertex in common with D nor with any other 'replacing track'. 
In a designation of  the form XD or XD(Y) the parameter D may be suppressed 

whenever there is no danger of  confusion. 

2. Ends in digraphs 

The relation ~<D on ~ ( o c )  defined in the introduction is fundamental to all further 

investigations in this paper. In the sequel, some statements dealing with ~< are repeated 

and supplemented. 
Clearly, if  U ~ V, then U ~ ~< V ~ for all rests U ~ of  U, V t o f  V. 
The following proposition is helpful in many contexts to simplify proofs and can 

easily be verified: 

Proposition 2.1. Let D be a digraph. Following statements are equivalent: 

(1) U<~V. 

(2) U ---*D-S V for all S E D. 

The proof  of  the next result is also trivial, but it shows that it makes no sense 
to introduce an end concept based upon 1-zigzag-tracks since transitivity cannot be 
expected. Of  course, similar statements hold for (Y(co),  ~< ) and (J- (e)*) ,  ~<). 

Proposition 2.2. Let D be a digraph. Then (J-(e<~), ~<) is a quoset. 
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Proof. Clearly, ~< is reflexive since any vertex itself is a track. The relation ~< is also 

transitive: Let U and W be l-tracks, V be an o-track, U~< V, V~< W, and S ~ D. 

According to 2.1, there exists a U ~ V-track T in D -  S and a V --, W-track T' 
in D - (S U T). Now, U ---+D-s W can easily be seen, as the initial vertex of T' is 
behind the terminal vertex of T on V. A similar construction is feasible if V is an o*-  

track. The only difference is that the tracks 7', T' have to be constructed in the reverse 

order. 

Now, Proposition 1.1 yields that ~D is an equivalence relation on ~--(oc) (and also 
on J ( o ) ,  3-(oo*)). Moreover, Proposition 1.1 yields that 

? ~ < D ? ' : ¢ *  there exist U E g ,  V C g '  suchthatU~<V 

is a partial order on the ~-factorization of .Y-(oo) (and also of J ( o ) ,  J ( o * ) ) ,  which 
will be investigated in Section 3. 

Definition 2.3. An equivalence class of ~--(oc) with respect to ~ is called a composed 
end or briefly a c-end ofD. f2D(C) denotes the set of all c-ends of D. If  T is a one-way 
infinite track, then gD(c, T) denotes exactly that c-end of D which contains T. o-ends, 
o*-ends, f2D(OO), f2D(O*), o~D(o,T), and gD(O*, T) are defined analogously. If  o ~ is 

an arbitrary end of D, Nu denotes the set of all rays in D u that exactly correspond to 
tracks in d ~. o -  and o*-ends are also called simple ends'. If  there are statements valid 
for each of the end-notions introduced here, then the symbols f2D etc. may be used in 

a consistent way. In other words, within one statement, the symbols f2D etc. can be 
substituted uniformly by Y2D(C), ~D(O), and Y2D(O*). 

The concept of o-ends catches the forward o-ramification structure and the dual 
concept of o*-ends, the backward o-ramification structure of a digraph D. On the 

other hand, the concept of c-ends allows a general view over the whole o-ramification 
structure of D. Clearly, ]f2(c)l~>0 ¢,  Y(oo)  ¢ O, ]f2(o)1>/0 ~=~ 3--(0)) :~ O, and 

I~(o*)l >0 ~ J-(o*) ¢ O. 
The following statement about the relations between composed and simple ends can 

easily be verified and justifies in a way the expression 'composed ends'. 

Proposition 2.4. Every simple end is completely contained in a composed end. A c- 
end is either an o-end, an o*-end, or the union of exactly one o-end and exactly 
one o *-end. Hence, 

I~(c)l ~ IO(~)1 + I~(o*)142. IQ(c)l. 

One has to be very careful in generalizing results about ends in undirected graphs to 
results about ends in digraphs. Halin [5] defined two rays U and V of an undirected 
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graph G to be equivalent iff there is a ray W which meets both U and V infinitely 
many times. If, for U, V E ~ ( o o ) ,  equivalence had been stated as 

U ~ V :¢~ there is WE~(cx~)  which meets both U and V 

infinitely many times, 

then ,-J would not necessarily have been an equivalence relation. It is not difficult to 
construct digraphs such that ,,J is not transitive. The next proposition (compare with 
[5, 1.1]) shows that every counterexample contains 1-tracks of opposite directions. 

Proposition 2.5. Let D be a digraph and U, V E 3-(c~). Following statements are 

equivalent: 
(1) I f  U and V have the same direction, then U ~ V. Otherwise there are infinitely 

many pairwise disjoint circuits C_ D such that each of  them has at least one vertex 
in common both with U and V. 

(2) U ~--+D-S V for all S E D. 
(3) U,-~ V. 

Proof. 
(2) ¢* (3) follows immediately from Proposition 2.1. 
(1) => (3) is trivial. 
(3) =~ (1) can be shown by straightforward inductive constructions. [] 

One gains no new relation by replacing Y(c~)  by 3-(m) or by J-(m*) in the 
definition of t .  If U, V E ~--(m) and U ~t V, then Proposition 2.5 shows that there is 
an w-track W which meets both U and V infinitely many times. Thus, it is impossible 
that there is W E ~--(m*) but no WIE ~Y-(m) which meets both U and V infinitely 
many times. A dual statement holds if U, V E ~--(m*). Note that it would have been 
possible to define two rays U, V in an undirected graph G to be equivalent iff there 
are infinitely many pairwise disjoint cycles such that each of them has at least one 
vertex in common both with U and V. 

The next statement can be gained by straightforward inductive constructions, too. 

Proposition 2.6. Let D be a digraph. 

(1) I f  g is a c-end containing two 1-tracks U and V with opposite directions, then 
U and V have infinitely many vertices in common or D contains a subdivision of  the 
digraph in Fig. l(a). Similar statements hoM for 1-tracks with the same direction in 
m- and ¢o *-ends. 

(2) I f  ~, ~,~ are two different comparable ends o f  D, U E ~ is an w-track, and 
V E ~-~ is an m*-track, then D contains a subdivision of  the digraph in Fig. l(b). 
Similar statements hold for other combinations o f  directions o f  U and V. 

The next result says something about the relations between ends in graphs and 
digraphs. 
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Fig. 1. 

Proposition 2.7. Let  D be a digraph and ~, Y ends o f  D, 

( 1 ) All  rays E E u are contained in a single end o f  D u. 

(2) I f  g and ~ are comparable, then all rays in gu and ~ are in the same end o f  

D u. Hence, every component of(f2o,<~) belongs to one end o l D  u. On the other hand, 

an end o f  D ~ can contain several components o f  (f2D, <~). Moreover, i f  (f2o(c), ~<) is 

a chain, D u has exactly one end. 

(3) All  rays in ~ and o ~ are in the same end o f  D ~ i f  and only i f  there exist U E g  

and V E ~ such that there are infinitely many pairwise disjoint U, V-zigzag-tracks. 

(4) Let  U, V E g - o ( ~ ) .  Then U ~ and V ~ are in the same end o l D  u i f  and only i f  

either U ~ V or U <  V ~/ V < U or U ~ V A V ~ U A there exist infinitely many 

pairwise disjoint U, V-zigzag-tracks. 

Proof. Remark 1.2 yields (3), (1), (2) and (4) follow immediately from (3). [] 

Proposition 2.7 clarifies a fundamental difference between ends in graphs and ends 
in digraphs: Whereas two ends g, C ~ of an undirected graph G can always be separated 
by a finite subgraph S (that means: whenever U E g, V E C ,  then rests of  U and V 

are contained in different components of G - S), this is not true for digraphs. In light 
of  this, difficulties in obtaining interesting results about ends in digraphs with the help 

of separation of ends can be expected. Furthermore, Proposition 2.7 shows that the 

end-concept of digraphs investigated here is a refinement of certain subsets of  ends of 
undirected graphs. 

The following examples (see Fig. 2) give a flavour of the differences between 
'directed' and 'undirected' ends: Consider the ~1 × M-grid G. It has exactly one end. 

D2 is an orientation of G such that D2 has no end. On the other hand, the upwards 
directed ~ × M-grid D1 has two (completely independent) strictly increasing sequences 
of  eg-ends and one ~o-end - -  consisting of all 'diagonal' ~o-tracks that are unbounded 
in both coordinates (the fat ~o-track shows such a 'diagonal' Co-track) - -  as supremum 
of the two strictly increasing sequences. In Fig. 2, the ~o-ends of Di are drawn as ideal 
points. 

For the purpose of studying the relations between ends and connectivity in digraphs 
some new terminology is needed. A digraph D is called strongly connected iff u +-~ v 
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Fig. 2. 

holds for all u, v E VD. A strong component o f  D is a maximal strongly connected 

subgraph of  D. The strong components of  a digraph give a partition o f  its vertex set. 

Lemma 2.8. Let D be a digraph, 8 an end (simple or composed), and S a strong 

component o lD .  I f  there exists U ~ ~ such that ]U M S I = ~ ,  then S contains a rest 

o f  every V E E. In other words: An end ~ belongs either completely or not at all to 

a strong component. In the latter case, every U E ~ intersects with infinitely many 

strong components. 

Proofi Let S be a strong component o f  D and U E E  such that [UnS[ = cx~. S contains 

a rest o f  U. Now, let V E d. Now, v +-~D S follows from Proposition 2.5 for all but 

finitely many vertices v o f  V. Hence, S contains a rest o f  V. [] 

Lemma 2.8 motivates the following definition: 

Definition 2.9. A 1-track U resp. a (simple or composed) end g o f  a digraph D is 

called cyclic iff it belongs to a strong component in the sense of  Lemma 2.8. Otherwise, 

U resp. ~ is called acyclic. ~ac(co) (resp. f2~(co)) denotes the set o f  all acyclic co- 

tracks (resp. co-ends)of  D. ~ac(co*), (2~(c) etc. are defined analogously. 

The following proposition deals with the inner structure of  acyclic ends. 

Proposition 2.10. An acyclic composed end o f  the digraph D contains either exclu- 

sively co-tracks or exclusively co*-tracks. Hence, there are no proper acyclic composed 

ends. Furthermore, i f  all ends o f  D are acyclic, then I(2D(C)I = I(2D(CO)I + [~2D(CO*)[. 

Proof.  Let g be an acyclic c-end of  D, U E d ~ an o-track, and V E g an co*-track. Let 
a be a vertex on U reachable from V and M the set o f  all vertices on U behind a. It 
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follows, for all uEM,  a ~ u, since V is an ~*-track and U, VCg.  Therefore, U[M] 
belongs to a strong component of D, contradicting the acyclicity of ~. [] 

In the sequel, the relations between the end-structure of D and D* are investigated. 
D* denotes the condensation of D which is derived from D as follows: The vertices 

of D* are exactly the strong components of D, and an arc passes in D* from S to 

S ~ iff there is an arc (u,v) in D such that u ~ S and v E S'. Yo denotes the set of 
all subdigraphs of D. Let B C_ D. B(D*) denotes the subdigraph of D* having exactly 

those strong components of D as vertices that intersect with B and containing an arc 

(S,S t) iff there is an arc from a vertex of S to a vertex of S' in B. Clearly, 

~P* : ~D --~YD*, ~p*(B):=B(D*), 

is a surjective mapping. 

Proposition 2.11, Let D be a digraph. Then q~*1.~,¢(¢,,) : .fD~c(¢o) --+ .~.(CO) is a 
sur/ective mapping. A dual statement holds Jbr ~J *-traeks. 

Proof. Clearly, if U is an acyclic co-track of D then U(D*)E ~, (~o) .  N6w, let U 
be an Co-track of D*. Starting from the initial vertex, let the vertices of U (strong 

components of D !) be denoted by SI, $2,$3,... • For i E ~,  there exists an arc (ai, bi) 
such that ai cSi and bi ESi+l. Furthermore, in Si+l, there exists a bi ~ ai+l-track Ti. 
Since Si N Sj = 0 for i ¢ j ,  the union of the 7",- and (ai, bi) (i c ~ )  is an oJ-track 
U ~ c_ D. Obviously, U~(D * ) = U. 

Lemma 2.12. Let D be a digraph and U, V 1-tracks of D. U and V are contained 
in the same acyclic end of D if  and only (f U(D* ) and V(D*) are contained in the 
same end of D*. 

Proof. ::~: Let g be an acyclic ~o-end of D and U, V E go. Every strong component of 
D only intersects with finitely many pairwise disjoint tracks joining U and V. (Assume 

(Wi)ic~ to be a family of pairwise disjoint U ~ V-tracks such that, for all i c  ~,  W~ 
intersects with the strong component S, and let v a terminal vertex of one of the W/on 
V. Then, of course, all vertices v t on V behind v would be reachable from S. On the 

other hand, U, and therefore S, would be reachable from all vertices of  V. Hence, a 
rest of  V would belong to S, a contradiction.) Therefore, if we remove finitely many 
strong components from D, then U and V remain mutually reachable from each other. 

Hence, for all T ~ _Z D*, U(D*) +-+D*-T' V(D*). Because of Proposition 2.5 U(D*) 
and V(D*) belong to the same o3-end of D*. A dual argumentation holds for ¢o*-tracks. 
Because of Proposition 2.10 there is nothing left to show. 

~ :  If  U(D*) and V(D*) are contained in the same so-end of D*, then, obviously, 
U and V are acyclic. Furthermore, for any T E D, T(D*) is finite. Proposition 2.5 

yields U(D*) ~-~D*-rtD*) V(D*). Now, U ~-+o-r V can be shown with the method in 
the proof of  Proposition 2.1 1. [] 
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Theorem 2.13. Let D be a digraph. ¢p : f2~ ~ f2D*, ~o(g) := g*, where ~* denotes 
the end of D* which contains U(D*) for some U E ~, is a bijective mapping. In 
other words: There exists a natural bijection between the acyclic ends of D and the 
ends of  D*. 

Proof. That ~o is well defined follows from Lemma 2.12 ' ~ ' .  The injectivity of 
99 follows from Lemma 2.12 '~='. The surjectivity of ~0 can be derived from 
Proposition 2.1 1. [] 

Corollary 2.14. [f2o. 1~< If2ol with equality in the fni te  case if and only if no strong 
component of D has an end. 

3. End orders 

This section is dedicated to the following 

Problem 1. Which types of  abstract orders can arise on sets of ends of  digraphs? 

In other words, which types of abstract orders are 09- (resp. 09*-, c-) representable? 
The notions 09*- and c-representability are defined in the same manner as the 09- 
representability in the introduction. The following result gives a necessary condition 
for an order to be 09-representable. A (simple or composed) end of a digraph D is called 
thick iff it contains a system of infinitely many pairwise disjoint 1-tracks. Otherwise, 
the end is called thin. If (X, ~<) is a poset, then x E X is called the supremum (resp. 
infimum) of A C_X iff a<~x (resp. a>>,x) holds for all aEA and, whenever a<~yEX 
(resp. a>~yEX) holds for all aEA, then y>~x (resp. y<~x). 

Theorem 3.1. Let D be a digraph and (~')iEN be a strictly &creasing sequence in 
(f2(09), <~). Then there exists a thick 09-end ~ which is the supremum of the sequence 
(~,)ic~ in (f2(09),~<). Moreover, D contains a subdivision of  the digraph in Fig. 3 as 
subdigraph (compare with Halin's wall graph in Fig. 4 and Satz 4 of [6]). 

Remark 3.2. A dual result can be formulated for 09*-tracks by simply substituting '09' 
by '09", 'strictly increasing' by 'strictly decreasing', and 'supremum' by 'infimum', 
and inverting the orientation of each arc. 

Proofi Let (~,)i~N be a strictly increasing sequence in (O(09),~<). Choose UI E 81 
arbitrarily. If Ui E g/ (i E Nn) are already chosen such that the U, (i E ~n) are pairwise 
disjoint, then choose Un~+l E dn+l arbitrarily. U~+ l has only finitely many vertices in 
common with Uie~,, ui. Hence U~+ l contains a rest Un+~ that has no vertex in common 
with UiE~,, Ui. By induction, an infinite system of pairwise disjoint w-tracks (U,-)/e~ 
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v ~  

k 

Fig. 3. 

Fig. 4. The runway-poset. 

with Ui E ~ is obtained. Let the vertices of Ui - -  beginning with the initial vertex - -  
be denoted by ui, l, ui,2, ui,3 . . . .  ( i E  N). For i E ~,  n E ~, let U/(n) denote the subtrack 
of Ui with the vertices ui, i, ui,2,..., ug, n. The following two statements will be needed 
in the sequel: 

(a) For i , j  E ~ ,  i < j ,  there exist infinitely many pairwise disjoint Ui --~ Uj-tracks 
because (d / ) i~  is a strictly increasing sequence. 

(b) For all i E  N and all M E N with i , i +  1 ~ M, there exist infinitely many 
pairwise disjoint Ui ~ U/+l-tracks each not meeting Uk for all k E M .  

(Otherwise there exist infinitely many pairwise disjoint Ui --~ Ui+~-tracks such that 
each of them intersects with at least one of the Uk, k E M. Since M is finite, there 
exists k ' E  M such that infinitely many pairwise disjoint Ui -~ Ui+l-tracks intersect 
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with Uk,. I f  k / < i, then Uk, >~ Ui, and hence gk, ~> ~ ,  a contradiction. I f  k / > i + 1, 

then Ui+l ~>Uk,, and hence gi+l ~>gk,, a contradiction as well.) 
An overview of  the remaining proof  can be given as follows: By induction, infinitely 

many pairwise disjoint co-tracks W/ ( i c  t~) are constructed which belong to an co- 

end ~ ,  which turns out to be the supremum of  (~/)ic~ and whose union with the 
(Ui)ic~ contains a subdivision of  the digraph in Fig. 3. 

Clearly, there exists a Ul ~ Uz-track WI,I. For the purpose of  cutting away every- 
thing that lies on a U/ 'under '  /4Ii, 1, let 

S~:=W2,~ uU{Ut (n )  13i, nEF~: bli, nCWl, 1 nu,}. 

Sz is finite. 

Because of  (a), there exists a U1 --- U2-track Y112 in D - Si. Because of  (b), there 
exists a U2 -~ U3-track Wl,2 and a U1 ~ U2-track /412, l such that WI,2 does not meet 
U1, the initial vertex of  W~,2 comes behind the terminal vertex of  yl  1,2 on  U2, m2, l 

does not meet /-/3 and Wj,2, and the terminal vertex of  W2, l comes behind the initial 
vertex of  Wi.2 on /-72. For the purpose of  cutting away everything that lies on a Ui 

'under '  Wl,2, W2,1, and Yll,2, let 

Q2 := W1,2 U W2, I u YII,2 

and 

82 :=Sl  u Q 2 u  U{U/(n)  t 3i, n E t~: ui,. E Q2 N Ui}. 

$2 is finite. 

Now, let Wi,n, W2,n-i . . . . .  W.,1 and Yi~.-k+l ( k E  [ n -  1],i < n - k +  1) and S~ 
already be constructed. Because of  (a), there exist Ut --+ Un_k+2-tracks Yi~.-k+2 (k E 
[n], i < n -  k + 2 )  in D -  Sn. Because of  (b), there exists a U.+l ~ Un+2-track Wl,n+l, a 

U.--~U.+l- t rack W2,n . . . . .  and a UI ~ U2-track W.+l,i such that Wl,n+l does not meet 
Uj, U2 . . . . .  Un, the initial vertex of  Wj,.+l comes behind the terminal vertices of  the 
I( j i,n+l on Un+l ( i c [n ] ) ,  W2,. does not meet Ul . . . . .  U~-l,  U~+2, and Wl,n+l, the initial 
vertex of  W2,~ comes behind the terminal vertices of  the Y/2. on Un ( i C [ n -  1]), the 

terminal vertex of  W2,. comes behind the initial vertex of  Wl,n+l on Un+l . . . . .  W.+l.1 

does not meet U3, U4 . . . . .  Un+2, Wl,n+l, . . . ,  W.-1,3, and W~,2, and the terminal vertex 
of  W~+I,1 comes behind the initial vertex of  W.,2 on U2. Let 

and 

Sn+l :=SnUQn+j U U {Ui(n)[~i ,  n E ~: ui, n E Qn+l N Ui}. 

Sn+l is finite. 
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After completing the induction, for i,j E N, let Wi'j be the union of  Wi,j with the 
segment of  Uj+l between the terminal vertex of  W/,j and the initial vertex of  Wi,j+l 
and set 

J 

/IV;.'= U Wi,j ( i E N ) .  
jEN 

By construction, the Wi (i ~ N)  are pairwise disjoint, and, clearly, the union of  the 

Wi with the Ui ( /GIN) contains a subdivision of  the digraph in Fig. 3. 

Wi belongs to an co-end ~ and is constructed such that, for each i E N, there 

are infinitely many Ui--~ W,-tracks Yilj (J  E N\{1}) .  Hence, for all i E IN, Ui4W, ,  
and, therefore, for all i E ~ ,  ~; ~< ;~. ~ = gi for an i E N is impossible because 
Y = N i  < o~i+l ~<,~- yields a contradiction. Hence, Y > g~i for all iE IN. 

Now, let ff E •(co) with ~ > gi for all i E IN. To show that ~ is the supremum of 
the sequence (gi)iEN, it remains to show that g ~ > J .  g contains an co-track W. Since 

> ,~,l and W1 A U1 is finite, it is possible to find a U1 ---, W-track RI such that the 
initial vertex of RI comes behind WI N Uj on Ul. Obviously, the union of  R1 with the 

segment of  Ui between the last vertex of  WI A UI and the initial vertex of  Rj contains 
a WL ~ W-track PI.  Let il := 1. 

For n E N, let the pairwise disjoint WI ---+ W-tracks P1 . . . . .  P ,  already be constructed. 
Since the Pi (i E In]) only intersect with finitely many of  the Ui (i E N) in D, there 
exists i,+l E N such that Ui,,+, does not intersect with one of  the Pi ( iE[n]) .  Because 

Wi intersects with all U; (i E IN) and because g > gi (i E IN), it is possible to find a 

Wl ~ W-track P~+l in D -  (UiE[n]Pi), just as in the case n =  1. 
By induction, one obtains a system of  infinitely many pairwise disjoint Wl ---, W- 

tracks (P;)ie~. Hence, o~>~S. 

It remains to show that F is thick. Repeating the argumentation of  the last four 

paragraphs for each W/ (i ~>2) yields Wi E Y for all i E IN since suprema are uniquely 
determined. As the Wi are pairwise disjoint, ~ is a thick co-end, and the proof is 
completed. [] 

The next theorem implies that the necessary condition of  Theorem 3.1 is 
also sufficient in the class of  total orders. Naturally, a poset (X, ~<) can be regarded 

as a reflexive, antisymmetric, and transitive digraph D = (X, ~<) (and vice versa). 

There exists a bijective mapping between the set of  all strictly increasing sequences 
of  (X, ~<) and YD(co): Just map (vi)ie~ onto that one co-track T with vertex set 

VT = {•i[i E N} such that -+ r  = ~<vr×v ~. Now, if (X,~<) is a chain fulfilling 
the condition that all strictly increasing sequences have a supremum 
then 

(*) two co-tracks U, V belong to the same co-end if and only if the corresponding 
strictly increasing sequences (bli)iE[N and (vi)ie~ have the same supremum u = v .  

(If (bli)iE N and (vi) i~ did not have the same supremum, then u < v or v < u since 
(X, ~<) is a chain. Without loss of  generality, assume u < v. Then there would exist 
n E N  such that vj > ui for all iG N and j>~n. Thus, no ui (iE IN) would be reachable 
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by a vj, j>~n. Hence, go(co, U) < go(co, V), a contradiction. The other direction is 
trivial.) 

( . )  is not necessarily true for general posets. For example, Fig. 4 shows a poset 
consisting of two completely independent, strictly increasing sequences with a com- 
mon supremum. From statement ( . ) ,  it remains only: U, V belong to the same 09- 
end only i f  the corresponding strictly increasing sequences have the same 
supremum. 

The validity of ( . )  is very convenient for constructing digraphs whose co-end-order 
represents (X, ~<). Just let each x E X that occurs as the supremum of a strictly in- 
creasing sequence be represented by that co-end which contains the co-tracks whose 
corresponding strictly increasing sequences have x as supremum. If ( . )  is not ful- 
filled, it seems to be very difficult to find a digraph whose co-end-structure represents 
(X, ~<) - -  and, therefore, (*) is postulated in Theorem 3.3. For further investigations 
the following remarks may be useful: 

Let M be the set of all x c X that are not the supremum of any strictly in- 
creasing sequence in X. For x C X \ M, let ax denote the (nonempty) set of all 
strictly increasing sequences of X that have supremum x. Obviously, ax decomposes 
into a family of equivalence classes (5~ix)icl, such that the corresponding classes of 
co-tracks are subsets of co-ends (gi)ml, of (X, ~<), which is partially ordered corre- 
sponding to the co-end-subordering of the (~i)iElx" One may be tempted to add arcs 
to weld the co-ends (gi)i~l~ together, but then at least two problems could occur: 
(1) Adding arcs may generate new co-ends that have nothing to do with (X, ~<). (2) 
Too many co-ends may possibly be welded together if arcs are added globally for all 

suprema. 
The third condition of Theorem 3.3 is required to preserve the order structure of 

(X, ~<) at suprema for the co-end-structure of the digraph constructed in the proof of 

Theorem 3.3. 

Theorem 3.3. Let (X, <~ ) be a poset. It is co-representable i f  the following conditions 

are fulfilled: 
(1) Every strictly increasing sequence in (X, ~<) has a supremum in X. 
(2) Whenever two strictly increasing sequences have the same supremum, the cor- 

responding co-tracks of(X,  <<.) belong to the same co-end of(X,  <~). 
(3) I f  x c X  is the supremum of a strictly increasing sequence in (X, ~<), then for 

V~X all y E X, y < x, there exists a strictly increasing sequence (z~ ) i ~  with supremum 
z = x  and y < z  y'x <x  for all i c ~ .  

Proof. Let M be defined as above. A digraph D can be constructed from (X, ~<) as 
follows: For each x EM, let Wx denote an m-track with vertex set {x, xi l i c  N} such 
that, for all x, y C M, Wx and Wy are disjoint whenever x ~ y, and, for all x c M, 
WxM(X, ~<)--x. Now, let 

A' :={(z, xi),(xi,z'),(xi, yj)]x,  yEM,  z,z' EX, z <x  <z/ ,x  < y,i, j C  ~}  
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and 

D:=(X, ~)U U WxUA". 
xEM 

Clearly, x<<, y ~ x  --+x Y for all x, y E X .  

(A) Each U E JD(CO) has either a rest in common with exactly one of  the ~ or 

only finitely many vertices in common with each of  the W~ (xEM) .  (If  a track leaves 

W~ it can never return to Wx.) In the latter case U corresponds in a natural way to a 

strictly increasing sequence o f  (X, ~<). 

(B) U, V E YD(CO) belong to the same ~o-end of  D if and only if either rests of  

U and V belong to the same Wx or both U and V correspond to strictly increasing 

sequences (Ui ) iE f~  , (/)i)iEN in (X, ~<) that have the same supremum u = v E X .  

( ~ )  Trivial if rests of  U and V belong to the same Wz. If  both U and V correspond 

to strictly increasing sequences in (X, ~<) with the same supremum, then ' ~ '  follows 

from (2) and the fact that all W~ ~ Wy-arcs exist whenever x < y. 

( 3 )  Because of  (A) and (1), only three cases have to be considered: 

(I) A rest o f  U belongs to W~ and a rest of  V belongs to Wy. 

(II) A rest of  U belongs to Wx and V corresponds to a strictly increasing sequence 

(vi)ic~ with supremum v in (X, ~<). 

(III) Both U and V correspond to a strictly increasing sequence (with suprema u 
and v, respectively) in (X, ~<). 

ad (I): I f  x ~ y then (without loss of  generality) either x < y or x and y are 

incomparable. In the former case, U < V is valid, implying that 8D(CO, U)  < 

SD(CO, V), and in the latter case, U and V are incomparable, implying that 

ND(co, U)  and ND(co, V) are incomparable. In both cases, U and V do not 

belong to the same co-end of  D, a contradiction. Hence x = y. 

ad (II): Again, there are three possible cases (v = x is impossible since x E M, 

v ~ M):  

(a) v < x: Then vi < x for all i E N, and hence V < U (since there is no 

U --* V-track in D and, for each vi E M,  x is reachable from every vertex 

of  Nv,), implying that No(co, V) < do(co, U). Therefore, U and V do not 

belong to the same co-end, a contradiction. 

(b) v > x: Then, because o f  (3), there exists a strictly increasing sequence 
x,v 

( z i ) i e ~  with supremum z = v .  Because of  (2), the co-track Z with vertices 

(zX'~)iEN is end-equivalent to the co-track V ~ with vertices (Vi)iE~ (and 

clearly, V ~ ~ V). Hence, Z ~ V. Because (x i , z i )E AD for all i E N and 

there exists no Z ~ U-track in D, U < Z ~ V, and hence No(co, U) < 
gD(co, V), a contradiction. 

(c) v and x are incomparable: vi < x for all i E N is not possible because, 
otherwise, v ~ x  since v is the supremum of  (vi)ie~. I f  there exists j E N 

such that vj >~x, then v > vj ~>x, which is impossible, too. Hence, there 

exists n E N such that vi and x are incomparable for all i t> n. It follows that 
there are no U --* V-tracks and only finitely many pairwise disjoint V -~ 
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U-tracks in D. Hence U and V, and therefore o'~D(co, U) and O~D(CO, V), 

are incomparable, a contradiction. 
Altogether, case (II) is impossible. 

ad (III): Again, there are three possible cases: 
(a) u=v:  finished. 
(b) Without loss of generality, u < v (v < u is a symmetric situation): It is 

possible to argue as in (II)(b) by substituting 'ui' for 'xi'. In particular, 
8D(co, U) < gD(e), V), a contradiction. 

(c) u and v are incomparable: ui < v for all i E N is not possible because, 
otherwise, u<~v since u is the supremum of (ui)ie~. Symmetrically, 
vi < u for all i c N is impossible. If there exists j E N such that us. > v, 
then u > us. > v, which is impossible, too. Symmetrically, vs. > u for a 
j E N is impossible. It follows, that there exist m, n E N such that ui and 
vj are incomparable for all i/> m, j ~>n. So if U' denotes the co-track 
with vertices (ui)ic~ and V' the co-track with vertices (vi)ic~, then U ~ 
and V ~ are incomparable in (~ ( co ) ,  4) .  Since U ~ U' and V ~ V', 
U and V, and therefore d°D(co, U) and d~D(co, V), are incomparable, a 
contradiction. This completes the proof of (B). 

Now, consider the mapping f : X  ---+ f2D(co), x ~-+E~, where Ex denotes, for x E M, the 
co-end of D corresponding to W~ and, for x ~ M, the co-end whose elements correspond 
to strictly increasing sequences in (X, ~<) with supremum x. 

f is well defined: Because of (B), each Wx (x E M) represents exactly one co-end 
of D. I f x  ~ M, then x is the supremum of a strictly increasing sequence S in (X, ~<). 
There is at least one co-track of D that corresponds to S. This, in combination with 
(B), guarantees the existence of exactly one co-end fulfilling the definition of Ex in the 

ease x ~ M. 
Because of (A) and (1), f is surjective. That f is injective and an order isomorphism 

follows from the proof of (B). 

Conditions (2) and (3) of Theorem 3.3 are not necessary: There are posets not fulfill- 
ing (2) or (3) which are nevertheless co-representable. For example, the runway-poset 
(Fig. 4) is co-represented by the digraph Di in Fig. 2, but, obviously, it violates (2). 
Now, let (X, ~<) be a poset where X =  {x, y, x i l i E  [~}, (xi)ic~ be a strictly increasing 
sequence with supremum x and y be an element less than x but independent from 
each xi, i E ~ .  Now let D be constructed as in Theorem 3.3 and include the following 
additional a r c s :  (yi,xi) for all i c ~. It is easy to see that (X, ~<) is co-represented by 
D in spite of the fact that (X, <<,) does not fulfill condition (3). 

Condition (1) of Theorem 3.3 characterizes those total orders that are co-represent- 
able, since conditions (2) and (3) are always fulfilled in chains. It is possible to obtain 
a dual result for co*-tracks (see Remark 3.2). 

Corollary 3.4. Let  (X, <~) be a chain. Then (X, <.) is co-representable i f  and only i f  
every strictly increasin 9 sequence o f ( X ,  <~) has a supremum. 
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(X, 4 )  is called a well-ordered (resp. dually well-ordered) set (briefly woset (resp. 

dwoset)) iff every nonempty subset of  X contains a least (resp. greatest) element. 
Every (d)woset is a chain. Conditions (1), (2), and (3) are always fulfilled in posets 
that contain no strictly increasing sequence, which are exactly the posets in which 

every chain is a dwoset. Therefore: 

Corol lary 3.5. Every poset that contains only dually well-ordered chains is co- 
representable. 

Up to this point only co- and co*-representability have been studied. It remains to 

investigate e-representability. Whether an abstract order is c-representable or not seems 

to be a somehow different problem: 
• There are orders that are c- but neither co- nor co*-representable, e.g. Z with the 

natural order (see Example 3.12). 
• An co-representable order (X, ~<) may not be c-representable because each digraph 

whose co-end order represents (X, ~<) may also contain co*-tracks that are contained 

in a c-end which contains no co-tracks. 
Up to now, I was not able to find an example to illustrate the second of  the above 

points. Therefore, the following problem may be interesting. 

Problem 2. Are there abstract orders that are co- (resp. co*-) but not c-representable? 

Since composed ends contain both co- and co*-tracks, it is a little bit more difficult 

to find a necessary condition in terms of  infima/suprema for an abstract order to be 
c-representable. One has to draw on a more special and sophisticated looking class of  

orders. First of  all, the following lemma is needed: 

L e m m a  3.6. Let C be an (inclusion-) maximal chain in (f2D(c), <<,) and f2~(c) be the 
set of  all c-ends of D that contain exclusively o-tracks. I f  C contains a countable, 
upper unbounded subset, then ~2~(c) N C is upper bounded in C. A dual statement 
holds for co*-tracks. 

Proofi Let A = {ai[ i E N } be an upper unbounded, countable subset of  C and C ~ := 
~2~j(c) N C. If  C r would be upper unbounded in C, then, for every i E N, there would 

exist a Cg E C ~ such that ci > ai, i.e. {ci[ i ~ N } would be upper unbounded. Clearly, 
{c, li E N} would contain an upper unbounded strictly increasing sequence, and Theo- 

rem 3.1 would yield a contradiction to the maximality of  C. [] 

The countability of  the unbounded subset of  C is necessary because there exist orders 
in which every countable subset is bounded, e.g. any order of  order type col (see [1, 
pp. 65-67,  Theorems 17, 1U, 17~r]). 

The following theorem gives a sufficient condition for an order not to be c-represent- 
able. (A, B)  is called a cut of  (X, 4)  iff A N B --- 13, A U B = X ,  and a < b holds for all 
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aEA, bEB. In addition, i fA  and B are nonempty, then (A,B) is called a proper cut 
of(X, ~). 

Theorem 3.7. Let (X, <<.) be a poset, C be a (inclusion-)maximal chain & (X, ~)  
containing an upper unbounded, countable subset, M = M(C) the nonempty set of 
all proper cuts (A,B) of  C such that A has no greatest element and B contains 
a lower unbounded countable subset, and (~(A,8)EMB = ~. Then (X, <<.) is not c- 
representable. (A dual statement holds if C contains a lower unbounded, countable 
subset by changing the roles of A and B. ) 

Proof. Assume C to be a maximal chain in (X, ~<) such that C contains an upper un- 
bounded, countable subset and A(A.8)EMB=0. Let D be a digraph and f :X ~ I2D(C) 
be an (order) isomorphism. Then f[C] is a maximal chain in (f2D(c), <~) and contains 
an upper unbounded, countable subset. From Lemma 3.6 it follows that I2~(c)N f[C] 
is upper bounded. Let f ( x )  be an upper bound of (2~9(c) M f[C] in f[C]. Since 
A(A,s)~M B = 0 and M is nonempty, there exists a cut (W,B ~) E M such that x f[B', 
i.e. f ( x )  q~ f[B']. It follows that f ( x )  < g for all ~ E f[B']. Since B', and hence 

f[ f f] ,  contains a lower unbounded, countable subset B ' ,  resp. f iB ' ] ,  and thus also 

a lower unbounded strictly decreasing sequence (xi)i~N, resp. ( f ( x i ) ) i E N  , according 
to Theorem 3.1, there exists f f  E f[C] such that ~- is the infimum of the sequence 

(f(xi))iE~. Clearly, f l E A  ~ since ( f ( x i ) ) i ~  is lower unbounded in fiB'], which is a 
contradiction because A ~ does not contain a greatest element. Hence, the existence of 

an isomorphism f :X ~ f2D(C) is impossible. [] 

Example 3.8. Q with the natural order is not c-representable since Q is a countable, 

infinite chain, and the set of all gaps, which are characterizable with the help of cuts, 
is both upper and lower unbounded. Clearly, Q with the natural order is neither ~o- 
nor co*-representable, and hence there are orders that are not at all end-representable 

by digraphs. 

The next two theorems will show that there are orders that are c- but not o9- (resp. 
09*-) representable. 

Theorem 3.9. Every poset in which every cha& is well-ordered (resp. dually well- 
ordered) is c-representable. 

Proof. Let (X, ~<) be a poset such that every chain in (X, ~<) is dually well-ordered. 
Then (X, ~<) contains no strictly increasing sequence. Construct a digraph D as follows: 
First of  all, for each xEX ,  let D contain an ~o-track Wx such that the Wx ( xEX)  are 
pairwise disjoint and the vertices of  Wx - -  beginning with the initial vertex - -  are 

denoted by Wx3, Wx,2, Wx,3,.... Additionally, let D contain the arcs (wx, n, Wy, n+l) (n E 
~, x, y EX, x < y). With that, the construction of D is completed. 

Clearly, each Wx ( xEX)  represents another c-end of D. Further, x<<.y ¢* 8D(c, Wx) 
~<gD(c, Wy) for all x, y E X  because, for x < y, there are infinitely many W~ ~ Wy-arcs 
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in D, but no IVy ~ Wx-tracks. Hence, (Y2D(c), ~<) --~ (X, ~<) provided that D contains 
no other c-ends except the gD(C, W~), x E X .  

Let U E YD(~). Then either U has a rest in common with one of the Wx or U 
corresponds to a strictly increasing sequence of (X, ~<). Since (X, ~<) contains no strictly 
increasing sequence, U must belong to one of the gD(C, Wx). Now, let VE J-D(~0*). V 
contains a vertex wx, n. By the construction of D, there are vertices Wy, n _ l , . . .  , Wz, l on 
V, but no arc terminates at wz, 1, a contradiction. Hence, D does not contains co*-tracks, 
and the theorem is proved. [] 

Definition 3.10. Let (X, ~<) and (Yx, <<-) ( x E X )  be pairwise disjoint posets. Then let 

~-~xEX Yx, the (X, <~)-sum of  the ((Y~, ~<))xEX, denote the following poser: Let each 
x EX be substituted by Y~, and for y E Y~, y~E Yx', let y ~< y~ iff either x = x  r and y ~<yr 
in Yx o r x < x  ~. 

Theorem 3.11. Let (X, <~) be a poset containing only finite chains and (Yx)xEX be 
a family of  c-representable posets whereby X and the (Yx)xcx are pairwise disjoint. 
Then ~xEX Yx is c-representable. 

Proof. Let (Dx)xEX be a family of pairwise disjoint digraphs such that Dx c-represents 
Yx (x E X).  If one welds together the (D~)xEx in the same manner as the (Yx)xcX, 
then it is easy to see that the resulting digraph D c-represents ~-~xEX Yx: Since (X, ~<) 
contains only finite chains, each 1-track in D has a rest in common with a 1-track of 
one of the Dx (xEX).  [] 

A version of Theorem 3.11 for ~o- (resp. ~o*-) representable posets is also valid. In 
this version (X, ~<) can be allowed to be a poset containing only dually well-ordered 
(resp. well-ordered) chains. 

Example 3.12. 7/ with the natural order is c-representable (by combination of 
Theorem 3.9 and Theorem 3.11). 

4. Outlook 

A (di)graph is called locally finite iff every vertex is of finite degree, and vertex- 
symmetric iff its automorphism group acts transitively on its vertex set. 

In this article, I have considered orders that can be end-represented by arbitrary di- 
graphs and was not able to gain a full characterization. Maybe this is possible in smaller 
classes of digraphs. Especially, I expect the following problems to be interesting: 

Problem 3. Which abstract orders are end-representable by locally finite digraphs? 

Problem 4. Which abstract orders are end-representable by vertex-symmetric 
digraphs? 
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Additionally, I suppose that there are orders which are neither o-representable nor 

fulfilling condition (2) or (3) o f  Theorem 3.3, but in which every strictly increasing 

sequence has a supremum. A suitable counterexample would increase the expectation 

that a simple characterization o f  ~o-representable orders cannot be found. 

This paper spots only a very close area around the 'directed end'-concept. Forth- 

coming articles, for example dealing with subjects like end-faithful spanning arbores- 

cences, automorphisms of  infinite digraphs, and relations between the ends and the 

orientations o f  undirected graphs, will enlighten the following two important questions: 

1. To what extent can results about 'undirected ends' be generalized to ends o f  

digraphs? 

2. Can 'directed ends' be productively used in the investigation of  undirected infinite 

graphs? 
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