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A B S T R A C T  

In view o f  the analysis o f  mul t ip le  grid methods ,  in this note  we consider defec t  correct ion pro- 
cesses o f  def ic ient  rank.  Both  for  the error and for the residual, the convergence o f  the defect  itera- 
tive process is s tud ied  in terms o f  the range and the kernel o f  the approx imate  inverse. Since the 
coarse grid cor rec t ion  in the mul t ip le  grid algori thm can be seen as a step in such an iterative pro- 
cess, the present  s t u d y  can be used in the convergence analysis o f  these algorithms. It shows tha t  
pre-relaxat ion is advantageous  for  reducing the error,  whereas post-relaxat ion is be t te r  for  reducing 
the residual. 

1. THE DEFECT CORRECTION PROCESS 

In order to solve the operator equation 

Vx = y, (1) 

F : B 1 ~ B 2, B 1, B 2 Banach spaces, we consider the 

defect correction iterative process 

x = G y ,  YEB2, 

t x i +  1 = xi - Grx i  + GY" (2) 

The process is determined by the operator G : B 2 -~ B1, 

which is called the approximate inverse of F. 
In this paper we consider only linear operators F and G. 
We notice that the process (2) converges to the solution 
x* of (1) ff G is injective and 

[[I-GFI[BI~B 1 < 1. 

The value e i = x i -x*  is called the error ofxi; and the 
operator 

M =  I - G F  

the transistion matrix, or is the amplification operator 
of  the error, since 

el+ 1 = Me i. 

We notice also that, due to the linearity of G, the pro- 
cess (2) is equivalent with 

££0 = Y' 

i+ 1 = £ i - rG£i+  Y, (3) 

when x i is identified with 

xi = G~i" 
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The process (3) converges to the solution of (1) if 

[[I - FG[[B2_,B2< 1; 

the value r i = y - F x  i is called the residual of x i and the 
operator 

IVl = I - F G  

is the ami~lification operator of the residual since 
ri+ 1 = Mri" 
In particular we shall here consider the processes (2) 

and (3) where F and G are operators F~ n ~  •n, where 
F is a full rank matrix, such th~  the original problem 
(1) has a unique solution, and G is of deficient rank, i.e. 

is neither injective nor surjective. 

Because rank (G) -- k < n, we know that N = Range (G) 

is a k-dimensional subspace of ~ n  and Z = Kernel (G) 

is a (n-k)-dimensional subspace of F, n. 
In order to define orthonormal bases in N and Z, we 
can decompose the n*n matrix G into its singular value 
decomposition [4] : 
~ = U ~ V  T, 

where U, ~ and V are n*n matrices, U and V are ortho- 
normal and ~ is a nonnegative diagonal matrix. Except 
for the ordering of the elements of ~, this decomposi- 
tion is uniquely determined. The diagonal elements of 

are the singular values and normally they are ordered 
such that 

01>~ o2 >~...~> On>~ 0. 

Because rank (G) = k, we know that o1~o 2 ..... o k are 

non-zero and oj = 0, j = k + l  ..... n. 
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Since G is not  surjective, possibly x* ~ N; however, f rom 
(2) we see that  all approximate solutions {x i} are in N. 

Hence, i f  (xi} i =  0,1 .... attains a s tat ionary point  ~, ~ is 

not  necessarily the solution o f  (1). However, we know 

( y -  F~) = 0, 

i.e. the residual f = y - F~ E Z. Thus with A = V 1 V T 

the projection ~q.n-~z£, instead of  the sequence {~i ) in 

(3) we may consider the sequence (Xi}, with )~i = A~i : 

~ 0 = Ay, 

i +  1 = Xi-AFGXi + Ay, 

which has a unique stationary point  X, satisfying 

AFG)~ = Ay. 

Clearly, N = Span (U1), where U 1 are the first k column 

vectors o f  U and N 'l = Span (U2), the last n-k columns 

of  U. Analogously, Z -- Span (V2) and Z ± = Span (V 1). 

From the singular value decomposit ion we easily see 

that  for an arbitrary P : F,k-->~ n and R : F , . n - ~  k, 
with range (P) = N and Kernel (R) = Z, we may write 

G = PSR, 

where S : F- k--> R k is the nonsingular k*k  matr ix for 
which 

s-1 = (RVl) diag(~l, 02' 

The operators P and R are called prolongation and 
restriction respectively. 
Because P and R are full rank matrices, 
rank(P) = rank(R) = k, P has the left-inverse 

= (uTp) -1UI T and R has the right-inverse 

1 ~ = V 1 (RV1)- I .  Moreover, we know that  

pl~ = P(uITP)'IuT : ~n-+ N, 

and 

PR = V 1 (RVI)-I R : ~q~n-+z I , 

are projection operators. 
Now we can consider what happens to  the error to  the 
solution or to the residual after one i teration step of  the 
defect correction process. 

Me s = MPI~e s = (PI~ - PSRFPI~) e s = P (I - SRFP) I~es, 

we see that Me s E N. Moreover, we notice that  in the 

special case when S -1 = RFP, we have Me s = 0. In the 

general case, with S -1 = RFP + E we have 

Me s = PSEI~e s = GI~EI~e s. 

The contr ibut ion f rom e u to Me is given by  

Me u = e u - GFeu,  

with GFe u E N and e u E N ±. 

We conclude that  

I (Me)s = GI~EI~e s - ~ F e u ,  

[(Me)u = %" (4) 

1.2. The residual 

For  the residual, the transit ion matr ix  is 

/Vl = I -~ FG = I - FPSR. 

Now we decompose the residual r into two parts 

r = r s + r u, with r u E Z and r s E Z ±. Analogously we 

write 

g~ = ( ~ ) s  + (Mr)u" 

Again, a simple computa t ion  shows 

[ (/~lr)s = l~El~drs, 

(t~)u = -(I-~R) F~r s + r u. 
(s) 

1.3. Summary 

Summarizing the effect o f  one i terat ion step in a defect 
correction process with an approximate  inverse of  
de~cient  rank, we fred the following transitions in a 
single i terat ion step of  the form (2). 
For  the error in the solut ion : 

Smooth components  = Range (P) = N G I~EI~ ) N 

Unsmooth components  = Kernel ( I~)= N ± ~ N l 

1.1. The error in the solution 

To study the effect on the error o f  the solution, we con- 
sider (2), o f  which the transition matrix is 

M = I -  G F  = I -  PSRF. 

We decompose the error e into two parts : e = e s + e u ,  

with e s E N and e u E N 1. Analogously, we write 

Me = (Me)s + (Me)u , 

with (Me)s E N and (Me)u E N I .  

From the relation 

For  the residual : 

Smooth components  = Range (#) = z ± t~Eg ~ , Z l 

Unsmooth components  = Kernel (R) = Z ) Z. 
I 

We note that  in the special case when R = pT we have 

N = Range(P) = Span (U1) = Span (V1) = Z ±, 

Z = Kernel(R) = Span ( U 2 ) -  Span (V2) = N ±. 

In this case the subspace o f  the smooth (resp. un- 
smooth) components  of  the residual is the same as the 
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subspace of the smooth (unsmooth) components in the 
e r ro r .  

2. APPLICATION TO THE MULTIGRID METHOD 

We want to apply the above results for the explanation 
of some phenomena in multiple grid methods. The 
multiple grid method (see [1,2,3]) is an iterative method 
for the solution of  a linear system 

Ah Xh = f.h' 

arising from the discretization of an elliptic partial dif- 
ferential equation. The multi-grid method is an iterative 
method which consists of relaxation steps and coarse- 
grid correction (CGC) steps. It is well knownthat  relaxa- 
tion steps are efficient for the reduction of non-smooth 
components in the error or in the residual. In the multi- 
grid method the CGC is used to reduce the smooth com- 
ponents efficiently. 
The CGC-step can be written in the form (2), with 

F = A  h 

and 

-- PSR = PhH AH1 RHh' 

where A h is the £me-grid discretization of  the continuous 

operator, A H is its coarse grid discretization; RHh is the 

restriction of  a free-grid function to a coarse grid and 
Phil is the prolongation (interpolation) of  a coarse grid 
function to a fine grid. 
For A H any convergent discretization of  the continuous 

problem can be used. However, one particularly efficient 
choice is 

AH = RHh Ah Phil '  (6) 

the Galerkin approximation of A h on the coarse grid. 

This choice corresponds with S -1 = RFP, i.e. E = 0 in 
the discussion in the previous section. 
The treatment in section 1 holds for arbitrary P and R. 
In the context of  a multi-grid method we choose 
P = Phil and R = RHh. This implies that the compo- 

nents in N are those grid functions in the fine grid that 
can be obtained by prolongation from a coarse grid 
function; therefore they are the smooth components of 

the error. Those in N £ are the unsmooth components o f  
the error. 
Similarly, we find in the right-hand-side space B 2 that 

the components in Z are those grid function on the Free 
grid that vanish by restriction to the coarse grid and 
therefore they are the unsmooth components o f  the 

residual; those in Z "[ are the smooth components of the 
residual. 
Application o f  the results in (4) and (5) to the CGC of  
the multigrid method shows that 
(1) In the case of  the Gahrkin approximation (6), 

smooth errors in the solution (and smooth residuals) 
do not give rise to new smooth errors (resp. residuals) 
after a CGC step. If A H is not the Galerkin approx,- 

imation, the transfer from smooth to smooth com- 
ponents is proportional to the deviation of the 
Galerkin approximation, i.e. 

E = AI, I - R H h  A h Phil" 
(2) Unsmooth components in the error or in the residual 

before a CGC-step give rise to the same unsmooth 
components after the CGC-step. 

(3) Since smooth components in the error don't induce 
unsmooth components in the error, but unsmooth 
components induce smooth components, reduction 
of  the unsmooth component before a CGC is more 
useful than after a CGC. Hence, to obtain a small 
error in a multi-grid cycle pre-relaxation is preferred. 

(4) Since unsmooth components in the residual don't 
induce smooth components, but smooth components 
do induce unsmooth components in the residual, 
post-relaxation is preferred in a multi-grid cycle to 
obtain a small residual. 
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