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Abstract

Let G be a linear algebraic group defined over an algebraically closed field. The double
question addressed in this paper is the following: Given closed subgroupsX andP , is the double
coset collectionX\G/P finite or infinite? We limit ourselves to the case whereX is maximal
rank and reductive andP parabolic. This paper presents a criterion for infiniteness which invo
only dimensions of centralizers of semisimple elements. This result is then applied to fini
classification of thoseX which are spherical subgroups. Finally, excluding a case inF4, we show
that if X\G/P is finite thenX is spherical or the Levi factor ofP is spherical. This places gre
restrictions onX andP for X\G/P to be finite. The primary method is to descend to calculation
the finite group level and then to use elementary character theory.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Given an algebraic groupG we wish to classify those subgroupsX andP such that the
double coset collectionX\G/P is finite. All our groups are defined over an algebraica
closed field and all subgroups are assumed to be closed. The collectionX\G/P is finite
if and only if theG-orbit G/P splits into finitely manyX-orbits. This viewpoint make
a complete classification of all finite double coset collections appear unlikely in the
future. In this paper we will assume thatG is a reductive (or simple) algebraic grou
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that P is a parabolic subgroup and thatX is maximal rank and reductive. We use
technique introduced by Lawther [13] for studying a particular instance of the double
problem. Some of our results provide necessary and sufficient conditions for a doubl
collection to be finite. In this paper we pursue the application of these results to in
collections. We intend to establish finiteness results in a later paper.

We will state the main results of the paper first with brief indications of how these re
relate to earlier work in the field. We refer the reader to the article by Seitz [15] for fu
discussion of progress on double coset problems.

The first result provides a powerful criterion for establishing thatX\G/P is infinite. If
G is a group andg ∈G we writeGg for the centralizer ofg in G. We writeZ(G) for the
center of the group.

Theorem 1 (Dimension Criterion).LetG be a reductive algebraic group,X andP closed
subgroups ofG with X maximal rank andP parabolic. LetL be a Levi factor ofP
and let s ∈ X ∩ L be a semisimple element. IfdimZ(Gs) + dimGs > dimXs + dimPs
(equivalently, ifdimZ(Gs) + 1

2 dimGs − dimXs − 1
2 dimLs > 0), thenXs\Gs/Ps and

X\G/P are infinite.

Classification of maximal rank reductive spherical subgroups

The first application of the dimension criterion is to finish the classification of max
rank reductive spherical subgroups of each simple algebraic groupG. If a Borel subgroup
B of G has a dense orbit on the quotientX \G, then we say thatX is asphericalsubgroup.
Brion [3] and Vinberg [17] independently showed thatX is spherical if and only ifX\G/B
is finite. The work of Krämer [12], Brundan [4], and Lawther [13] has produced a li
subgroups which are spherical in all characteristics. The maximal rank reductive sub
on this list are given in Table 1, where we use the following conventions. We treatA0 and
B0 as trivial groups andD1 as a 1-dimensional torus. Inside aD4 root system we us
the convention that root subsystems labelled asA1 +A1 andA3 are not conjugate to roo
subsystems labelled asD2 andD3 respectively. The former contain (up to conjugacy)
first node in the Dynkin diagram forD4 (using the standard labelling, as in [2]), and t
latter do not (even after conjugation). We extend these conventions to subsystemsDn

for n� 4. We list only the Lie type of each group, as the property of being spherical i
affected by which representative of an isogeny class is used (see Lemma 6). The notTi
refers to ani-dimensional torus, central inX. Thus,X is a central product of factors of th
indicated type. Finally, in the subgroupA1Ã1 of G2 the factorÃ1 denotes a subgroup wit
short roots (we don’t use this notation for the other groups as there is no ambiguit
classify the maximal rank reductive spherical subgroups, it suffices to classify only
subgroups which exist in all characteristics, as the others arise from isogenies or
automorphisms, which preserve the property of being spherical (see Lemma 6).

To prove that Table 1 is complete, we introduce the following root-theoretic pro
which is inspired by Lawther’s anti-open property (see [13]). We abbreviate the p
“maximal rank reductive” with MRR. We say a MRR subgroupX is genericif a subgroup
of the same type asX is defined in all characteristics. Fix a maximal torus ofX and define
the root systemsΦ(X) andΦ(G) with respect to this maximal torus. Letϕ � Φ(G) be
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Table 1
Generic maximal rank reductive spherical subgroups

X�G X�G

AnAmT1�An+m+1 E6T1�E7

BnDm�Bn+m A7�E7

An−1T1�Bn A1D6�E7

CnCm�Cn+m A1E7�E8

Cn−1T1�Cn D8�E8

An−1T1�Cn A1C3�F4

DnDm�Dn+m B4�F4

An−1T1�Dn A2�G2

D5T1�E6 A1Ã1�G2

A1A5�E6

a closed root subsystem. We say thatX has aϕ complementif ϕ is disjoint fromΦ(X).
This is equivalent to the existence of a generic MRR subgroupK �G with Φ(K)= ϕ and
K ∩X a maximal torus. The adjective “long” or “short” may be applied ifϕ has only long
or only short roots, respectively.

Theorem 2. Let G be a simple algebraic group andX a generic MRR subgroup. Th
following are equivalent:

(i) X is spherical.
(ii) X appears in Table1.
(iii) X has noA2 or B2 complement.

In this paper we show that (i)⇒ (iii) ⇒ (ii) (more precisely, we show¬ (ii) ⇒ ¬ (iii)
⇒ ¬ (i)). The implication (ii)⇒ (i) is due to Brundan [4] and Lawther [13].

Theorem 2 applies to a group acting on the full flag varietyG/B, whereB is a Borel
subgroup. Using the dimension criterion, we now obtain more general infiniteness r
whereP is any parabolic. Since Table 1 contains relatively few subgroups, the follo
theorem places great restrictions uponX andP for X\G/P to be finite. Anend node
parabolic is conjugate to a standard parabolic obtained by crossing off exactly one
end nodes in the Dynkin diagram ofG.

Theorem 3 (SphericalX or SphericalL). LetG be a simple algebraic group,X a MRR
subgroup,P a parabolic subgroup with Levi factorL. If G equalsF4 suppose thatP is
not an end node parabolic. IfX\G/P is finite thenX is spherical orL is spherical.

The extra restrictions placed uponP whenG equalsF4 are necessary. In a later paper
will show thatL1\F4/P4 andL4\F4/P1 are finite (wherePi is conjugate to the standa
parabolic obtained by crossing off theith node of the Dynkin diagram ofF4, andLi is its
Levi factor).
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Corollary 4. If X\G/P is finite andP is not maximal thenX is spherical.

Remark. The theorem and the corollary give a surprisingly strong dichotomy for M
subgroups with respect to the double coset problem. Either they are spherical, or the
an infinite number of orbits on almost all flag varieties. For instance,A1A5 is spherical in
E6, butT1A5 has an infinite number of orbits on all flag varietiesE6/P except, possibly
if P is an end node parabolic. As another example, suppose one could show that
subgroupX in GL(V ) has a finite number of orbits on flags consisting of one and
dimensional subspaces. ThenX has a finite number of orbits on full flags, i.e., uponG/B

whereB is a Borel subgroup.

Outline of remaining sections

The outline of the rest of this paper is as follows: Section 2 includes basic resul
preliminaries; Section 3 reduces the double coset question of algebraic groups to a
question about finite groups; Section 4 applies character theory to the finite groups (r
following Lawther [13]) and obtains the Dimension Criterion; Section 5 proves Theore
and 3, assuming Proposition 21; Section 6 proves Proposition 21.

2. Preliminaries

In this section we list basic results which will be used later. Many (perhaps a
the results in this section are known to others. We list them here either for conven
or because references are difficult to find. For standard facts and conventions reg
algebraic groups we follow [10].

Lemma 5. LetG be a simple algebraic group. All MRR subgroups of typeA2, of the same
length, are conjugate. All MRR subgroups of typeB2 are conjugate. If the rank ofG is at
least three then these subgroups are all Levi factors of parabolic subgroups.

Proof. The last statement is clear. LetH andH ′ be two MRR subgroups, both of typeB2
or both of typeA2 of the same length. By conjugation we may assume thatH andH ′ share
a common maximal torusT . If the rank ofG is two thenH andH ′ are equal. Otherwis
H andH ′ are Levi factors and each is generated byT and the root groups (positive an
negative) corresponding to a pair of adjacent nodes in the Dynkin diagram ofG. ThenH
andH ′ are conjugate by the action of the Weyl group.✷

The following lemma allows us to make a variety of convenient assumptions aboG.
We writeGg for g−1Gg.

Lemma 6. LetG be a group with subgroupsX andP . LetZ be the center ofG, suppose
thatZ is contained inP and letϕ1 :G→G/Z be the natural map. LetK be a finite normal
subgroup ofG and letϕ2 :G→G/K be the natural map. Letg,h ∈G. The following are
equivalent:
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(i) |X\G/P | <∞.
(ii) |ϕ1(X)\ϕ1(G)/ϕ1(P )|<∞.
(iii) |ϕ2(X)\ϕ2(G)/ϕ2(P )|<∞.
(iv) |Xg\G/Ph|<∞.

Proof. These statements can all be proven in an elementary fashion.✷
This lemma shows that the question of whetherX\G/P is finite depends only upo

the Lie type of the groups involved. In particular, it does not depend upon which ele
of an isogeny class are chosen, the presence of centers, connectedness etc. We
assume thatG has simply connected derived subgroup, which eases some of the p
Finally, if X andP are maximal rank then we may assume that they contain a com
maximal torus.

Conventions. If σ is an endomorphism ofG we denote byGσ the fixed points ofσ in G.
If G is a group andg ∈G thenGg denotes the centralizer ofg in G. Finally,Gσ,g denotes
those points inG fixed by bothσ andg. The finite groups of Lie type arise as the fix
points inG of a Frobenius morphismσ :G → G, whereG is defined over the algebra
closureFp of the fieldFp of p elements. We refer to [5] and [16] for details. We den
the cardinality of a setS by |S|.

Lemma 7. LetG be a connected reductive group with simply connected derived subg
LetT be a maximal torus ofG.

(i) The center ofG is contained in each maximal torus ofG. (This does not require tha
G have simply connected derived subgroup.)

(ii) If s ∈G is semisimple thenGs is reductive and connected.
(iii) For eachs ∈ T we haveZ(Gs)� T .
(iv) The set{Gs | s ∈ T } is finite. Its size may be bounded by a constant depending

upon the root system ofG.
(v) Fix s ∈ T . There existt1, . . . , tr ∈ T such that{Gt | t ∈ G, Gt > Gs} = {Gti | 1 �

i � r}. LetZ(s) = {t ∈ G | Gt = Gs}. ThenZ(s) is an open subset ofZ(Gs) and its
complement is the setU = ⋃

i Z(Gti ).
(vi) If S is a torus andL= CG(S) then{s ∈ S | L=Gs} is a dense subset ofS.

Proof. Part (i) is [10, 26.2].
Part (ii) is [5, 3.5.4, 3.5.6].
Part (iii). Note thatT is a maximal torus ofGs . By part (ii) we may apply part (i) to th

groupGs .
Part (iv). By [5, 3.5.3] we have thatGs is generated byT , the root groups it contain

and by certain elements of the Weyl group. Since the Weyl group is finite and the nu
of root groups is finite the number of possibilities forGs is finite and depends only upo
the root system ofG.

Part (v). Apply part (iii) to show that ifGt > Gs then t ∈ Z(Gt) < Z(Gs) � T . This
fact, and part (iv), show thatt1, . . . , tr may be chosen inT as stated and thatU ⊆ Z(Gs).
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Since the union is finite,U is a closed set. Givent ∈ Z(Gs) we have the following chain o
equivalent statements:t /∈ Z(s) if and only if Gt > Gs if and only if Gt =Gti for somei,
if and only if t ∈ Z(Gti ) for somei, if and only if t ∈ U . This shows thatU is the desired
complement.

Part (vi). We have, for allt ∈ S, thatGt � L. By an argument similar to that for part (v
one can show that the set oft ∈ S with Gt > L is a proper, closed subset ofS. ✷
Lemma 8. LetG be a connected reductive group andσ :G → G a Frobenius morphism
Then Z(Gσ ) = Z(G)σ . Moreover, if G has simply connected derived subgroup a
s, t ∈Gσ are semisimple elements, thenGs =Gt if and only ifGσ,s =Gσ,t .

Proof. The first statement is in [5, 3.6.8]. For the second statement note that “⇒” is
obvious, for “⇐” suppose thatGσ,s = Gσ,t . By Lemma 7(ii) we have thatGs andGt

are connected and reductive. By assumption,t is inZ(Gσ,s), which equalsZ(Gs)σ by the
first statement. This shows thatt is in Z(Gs) whenceGt � Gs . A symmetric argumen
shows thatGs �Gt . ✷
Lemma 9 (Rational normalizer theorem).Let G be a connected reductive group defin
over Fp , let σ :G → G be a Frobenius morphism and letP be a σ -stable parabolic
subgroup. ThenNGσ (Pσ )= Pσ = (NG(P ))σ

Proof. It is well known (see [10, 23.1]) thatP =NG(P), which gives the second equalit
For the first equality it is clear thatPσ � NGσ (Pσ ). The reverse inclusion follows from
the fact that if P̃ is a σ -stable parabolic subgroup with̃Pσ = Pσ then P̃ = P (see
[1, 4.20]). ✷
Corollary 10. LetG be a connected reductive group with a parabolic subgroupP . Letσ
be a Frobenius morphism ofG which fixesP and letx ∈ Gσ . Let (G/P)x be the variety
ofG-conjugates ofP which containx. Thenσ acts upon(G/P)x and the character value
1Gσ

Pσ
(x) is equal to the number ofσ -fixed points on this variety.

Proof. Let (G/P)σ be theσ -fixed points in the quotientG/P . Using the Lang–Steinber
Theorem [16] it is easy to show that the mapϕ :Gσ/Pσ → (G/P)σ takinggPσ to gP is an
x-equivariant bijection. Together with the rational normalizer theorem this shows th
have bijections between(G/P)σ,x , (Gσ /Pσ )x and{gPσ | g ∈Gσ , x ∈ gPσ }. Elementary
character theory shows that 1Gσ

Pσ
(x) equals the size of the last collection.✷

Lemma 11 [14, 3.5].LetG be a connected algebraic group of dimensiond , letσ :G→G

be a standardq th power Frobenius map. Then(q − 1)d � |Gσ | � (q + 1)d .

Lemma 12. LetG be a connected reductive group with simply connected derived subg
let σ :G → G be a standardq th power Frobenius map, lets ∈ Gσ be semisimple, letT
be a maximal torus containings and letZ(s) and t1, . . . , tr be as in Lemma7. Let c1 and
d1 be the number of connected components and the dimension ofZ(Gs) respectively. Le
I ⊆ {1, . . . , r} such thatdimZ(Gti ) < dimZ(Gs) if and only if i ∈ I . Letm = |I | and, if
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m > 0, let c2 andd2 be the maximal number of components and the greatest dimen
respectively, of theZ(Gti ) with i ∈ I .

ThenZ(s) is σ -stable and

(q − 1)d1 −mc2(q + 1)d2 �
∣∣Z(s)σ ∣∣ � c1(q + 1)d1.

Proof. Sinces is fixed byσ it is easy to show thatGs , Z(Gs), andZ(s) areσ -stable.
SinceZ(s)⊆Z(Gs) we may apply Lemma 11 to get|Z(s)σ | � |Z(Gs)σ | � c1(q+1)d1

where the second inequality is found by calculating|Z(Gs)σ | under the assumption thatσ
stabilizes each component ofZ(Gs).

LetZ(Gs)
◦ be the identity component ofZ(Gs). We have that∣∣Z(s)σ ∣∣ �

∣∣(sZ(Gs)
◦ ∩Z(s)

)
σ

∣∣.
From Lemma 7 we have a partitionZ(Gs)=Z(s)∪U whence∣∣(sZ(Gs)

◦ ∩Z(s)
)
σ

∣∣ = ∣∣(sZ(Gs)
◦)

σ

∣∣ − ∣∣(sZ(Gs)
◦ ∩U

)
σ

∣∣.
It is easy to check that

(q − 1)d1 �
∣∣Z(Gs)

◦
σ

∣∣ = ∣∣(sZ(Gs)
◦)

σ

∣∣,
and that ∣∣∣∣

(
sZ(Gs)

◦ ∩
(⋃

i∈I
Z(Gti )

))
σ

∣∣∣∣ �mc2(q + 1)d2,

whence it suffices to show thatsZ(Gs)
◦ ∩U = sZ(Gs)

◦ ∩ (
⋃

i∈I Z(Gti )). We prove this
by showing thatsZ(Gs)

◦ ∩Z(Gti ) is empty if dimZ(Gti )= dimZ(Gs). Let dimZ(Gti )=
dimZ(Gs). ThenZ(Gti )

◦ = Z(Gs)
◦ andsZ(Gs)

◦ ∩ Z(Gti ) is empty or all ofsZ(Gs)
◦.

However, by definition of theti , we haves /∈ Z(Gti ) so we are done. ✷

3. Reduction to finite groups

In this section we reduce the double coset problem in algebraic groups to double
in finite groups. These results seem intuitive, but use material surprisingly far from
theory.

By a reduced algebraic group scheme overZ, we mean that the groupG is defined, as
a subgroup of GLn(Z), using a finite number of polynomials overZ and thatZ[G] has
no nilpotents except 0. This is the case for the simple algebraic groups, as well a
parabolic subgroups and generic MRR subgroups (see [6] or [11]). Such a group s
has a group of points over every field. For an algebraically closed fieldk one may identify
the group of points (of the group scheme) overk with the algebraic group (in the naiv
sense) overk. The field Fp is the algebraic closure of the field ofp elements for the
primep.
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Proposition 13. Let G be a simple algebraic group scheme and letX andP be closed
algebraic subgroup schemes ofG, all of which are reduced overZ. For a fieldF we denote
byG(F), X(F), andP(F) the group of points overF of G, X, andP , respectively. Letk
be an algebraically closed field.

(i) If chark = 0 then

∣∣X(k)\G(k)/P (k)
∣∣<∞ ⇐⇒ lim sup

p→∞
∣∣X(

Fp

)\G(
Fp

)
/P

(
Fp

)∣∣<∞.

(ii) If chark = p > 0 then

∣∣X(k)\G(k)/P (k)
∣∣<∞ ⇐⇒ ∣∣X(

Fp

)\G(
Fp

)
/P

(
Fp

)∣∣<∞.

Proof. Part (ii) is proven in [8]. (We view the groupX(k)× P(k) as acting on the affin
spaceG(k). The assumption in [8] thatX(k)× P(k) should be reductive is not used.)
may also be proven using a model theoretic argument similar in nature to the one w
now for part (i). For basic facts about model theory we refer to the textbooks by Frie
Jarden [7] or Hodges [9].

For p equal to 0 or a prime, letACFp be the theory of algebraically closed fields
characteristicp. ThenACFp is a complete theory.

For a field F we identify G(F) as a set of matrices in GLn(F) using the defining
polynomials overZ. We make similar identifications forX andP . SinceG, X, andP
are defined overZ we can express membership inG(F), X(F), andP(F) with first order
sentences. Letϕ be the sentence which, applied to the modelF, gives∃g1, . . . ,gn ∈G(F),
∀g ∈ G(F), ∃x ∈ X(F), ∃y ∈ P(F), ∃i ∈ {1, . . . , n} such thatxgy = gi . In other words,ϕ
applied toF states that|X(F)\G(F)/P (F)| � n.

SupposeX(k)\G(k)/P (k) is infinite in characteristic zero. Thenϕ is false ink. Then
ACF0 � ¬ϕ by completeness. This means that we may derive¬ϕ using a finite numbe
of steps and a finite number of axioms. In particular, only finitely many axioms w
assert thatm · 1 �= 0 are used and so there exists a primep0 which is greater than ever
m which is used in this manner. For all primesp � p0 the axioms and steps which a
used in the proof ofACF0 � ¬ϕ may also be used to concludeACFp � ¬ϕ. Therefore,
for all suchp we have|X(Fp)\G(Fp)/P (Fp)|> n whence lim supp→∞ |X(Fp)\G(Fp)/

P (Fp)|> n.
Conversely, a similar argument shows that

ACF0 � ϕ ⇒ ACFp � ϕ

for all p sufficiently large. Therefore finiteness in characteristic 0 implies boundedne
|X(Fp)\G(Fp)/P (Fp)| asp → ∞. ✷

In the following lemma we often view the collectionX\G/P as the orbits of the grou
X × P acting onG in the natural way.
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Lemma 14. LetG be a connected algebraic group defined overk = Fp , let σ :G→G be
a Frobenius morphism, letX andP be closedσ -stable subgroups. IfX\G/P is infinite let
C = 1. If X\G/P is finite letC be an upper bound on the number of connected compon
of stabilizers ofX× P acting onG. Then

1

C
lim sup
n→∞

|Xσn\Gσn/Pσn | � |X\G/P | � lim sup
n→∞

|Xσn\Gσn/Pσn |.

Proof. Suppose lim supn→∞ |Xσn\Gσn/Pσn | is finite and less thanm. We will show that
|X\G/P | < m. Let g1, . . . , gm ∈ G. There is a natural numbern such thatg1, . . . , gm ∈
Gσn and m > |Xσn\Gσn/Pσn |. Then at least two ofg1, . . . , gm are in the same
(Xσn × Pσn )-orbit, whence they are in the sameX × P -orbit. Since this holds for ever
g1, . . . , gm ∈G we see that|X\G/P | <m.

Suppose now thatX\G/P is finite, letn be given and let(X\G/P)σn be the collection
of σn-stable(X×P)-orbits. Then the Lang–Steinberg Theorem [16], applied to the ac
of X× P uponG, shows thatC|X\G/P | � C|(X\G/P)σn | � |Xσn\Gσn/Pσn |. ✷

4. Character theory and the dimension criterion

Strategy and conventions

By Lemma 6 we may, and shall, assume throughout this section thatG is a connected
reductive group with simply connected derived subgroup. By Section 3 we may, and
assume thatG is defined over the algebraic closure of a field of positive character
Let σ :G→G be aq th power Frobenius morphism. We assume thatX andP are closed
σ -stable subgroups. Eventually we assume thatX is maximal rank reductive andP is
parabolic, but we use these assumptions only as needed in the preparatory lemm
fixed points we will use the notationGσ , Ps , etc as described in Section 4. Then to pro
infiniteness, in all characteristics, it suffices to show that|Xσn\Gσn/Pσn | is unbounded a
n approaches infinity. IfG is a group, the notation[g] ⊆ G means thatg is an elemen
of G and[g] is its G-conjugacy class. An element denoted bys will be semisimple, and
an element denoted byu will be unipotent. A sum over[u] ⊆ G means the sum ove
representativesu of the unipotent classes ofG. This preparatory material roughly follow
Lawther [13], though, in most cases, he only stated those directions relevant for p
finiteness.

Lemma 15. We assume thatP is parabolic. Define an equivalence relation on semisim
elements inXσ as follows: s andt are equivalent ifGσ,s andGσ,t are conjugate underXσ .
Denote the equivalence class ofs byE(s,σ ). Choose a setSσ of representatives of thes
equivalence classes. Then

|Xσ \Gσ/Pσ | =
∑
s∈Sσ

∑
[u]⊆Xσ,s

|E(s,σ )|
|Xσ |

|Xσ,s |
|Xσ,s,u| 1Gσ

Pσ
(su).
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|Xσ \Gσ/Pσ | = (
1Gσ

Xσ
,1Gσ

Pσ

)
Gσ

= (
1Xσ ,1

Gσ

Pσ

)
Xσ

= 1

|Xσ |
∑
x∈Xσ

1Gσ

Pσ
(x).

Applying the Jordan–Chevalley decomposition within the finite groupXσ we get that this
last sum is equal to

1

|Xσ |
∑
s∈Xσ

∑
u∈Xσ,s

1Gσ

Pσ
(su).

Now we claim thatt ∈E(s,σ ) implies that∑
u∈Xσ,t

1Gσ

Pσ
(tu)=

∑
u∈Xσ,s

1Gσ

Pσ
(su).

Let x ∈Xσ with (Gσ,t )
x =Gσ,s . The crucial step is to show that for allu ∈Xσ,t we have

1Gσ

Pσ
(tu)= 1Gσ

Pσ

(
sux

)
.

Once this is done, conjugation byx shows that the sums are equal. We work at the leve
algebraic groups. Givenu ∈Xσ,t , let (G/P)tu and(G/P)sux be the varieties of conjugate
of P which containtu andsux respectively. Letg ∈ G such thatt ∈ Pg and letT be a
maximal torus ofPg which containst . We apply Lemma 8 to see that(Gt)

x = Gs . We
have the following:

T �Gt ⇒ T x �Gs ⇒ s ∈ T x ⇒ s ∈ Pgx.

It is now easy to see that iftu ∈ Pg then sux ∈ Pgx . Therefore, conjugation byx
gives aσ -equivariant bijection(G/P)tu → (G/P)sux . Takingσ -fixed points and applying
Corollary 10 finishes the claim.

Using the claim we have

1

|Xσ |
∑
s∈Xσ

∑
u∈Xσ,s

1Gσ

Pσ
(su)= 1

|Xσ |
∑
s∈Sσ

∑
u∈Xσ,s

∣∣E(s,σ )∣∣1Gσ

Pσ
(su).

To finish the proof we take the sum over the representatives of unipotent clas
Xσ,s . ✷
Lemma 16. We assume thatX is maximal rank. Lets ∈ Xσ , let T be a maximal torus
containings, let W = NG(T ) be the Weyl group and letZ(s,σ ) = {t ∈ G | Gσ,t = Gσ,s}.
LetZ(s) andE(s,σ ) be as in Lemma7 and Lemma15respectively. ThenZ(s,σ )= Z(s)σ
and

1 ∣∣sXσ ×Z(s,σ )
∣∣ �

∣∣E(s,σ )∣∣ �
∣∣sXσ ×Z(s,σ )

∣∣.
|W |
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Proof. Using Lemma 8 for one containment, it is easy to show thatZ(s)σ =Z(s,σ ).
The following claim finishes the proof. We have a surjective map,ϕ from sXσ ×Z(s,σ )

toE(s,σ ) taking(sx, t) to tx , whose fibers are bounded in size by|W |. Note that this map
is well-defined as every element inXσ which centralizess also centralizest . To see tha
the map is surjective, lett ∈ E(s,σ ) and letx ∈ Xσ with (Gσ,t )

x = Gσ,s . Then(sx
−1
, tx)

is in the domain ofϕ andϕ(sx
−1
, tx )= t .

The remainder of the proof bounds the size of the fibers ofϕ. Let (sx, t1) be an elemen
of the domain. We claim that

ϕ−1(tx1 ) = {(
sw

−1x, tw1
) |w ∈W

} ∩ (
sXσ ×Z(s,σ )

)
.

It is easy to see that the set on the right is contained inϕ−1(tx1 ). For opposite containmen

fix (sy, t2) ∈ ϕ−1(tx1 ). We first show thatT containst1, t2 = t
xy−1

1 , s, andsyx
−1

.

Now that we knowt1, t2 = t
xy−1

1 , s, syx
−1 ∈ T , we will apply [5, 3.7.1], and the

(standard) notation which appears there to involve the action of the Weyl group.
xy−1 = utẇu′ in the Bruhat canonical form. Since

t2 = t
xy−1

1

we have thatt2 = tw1 . Sincexy−1 conjugatessyx
−1

to s we have that(syx
−1
)w = s and

sy = sw
−1x . Therefore(sy, t2)= (sw

−1x, tw1 ). ✷
Corollary 17. We assume thatX is maximal rank and thatP is a parabolic subgroup. Le
Sσ andZ(s,σ ) be as in Lemmas15and16 respectively. We have

1

|W |
∑ |Z(s,σ )|

|Xσ,s,u| 1Gσ

Pσ
(su)� |Xσ \Gσ/Pσ | �

∑ |Z(s,σ )|
|Xσ,s,u| 1Gσ

Pσ
(su),

where each sum is taken over the elementss ∈ Sσ , and the representativesu of the
unipotent classes[u] ⊆Xσ,s .

Proof. Combine Lemma 15 and the bounds forE(s,σ ) just obtained in Lemma 16.✷
Proof of the Dimension Criterion. It is easy to show thatXs\Gs/Ps is infinite (use
Lemma 6 and consider quotients byZ(Gs)).

It remains to show thatX\G/P is infinite. Using Section 3 it suffices show that t
term in Corollary 17 corresponding tos ∈ Sσ , 1= [u] ⊆ Xσ,s is unbounded as we replac
σ with σn and letn approach∞. This term is

1 |Z(s,σn)|
n

1Gσn

Pσn
(s).
|W | |Xσ ,s |
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It is easy to show that 1Gσn

Pσn
(s)� |Gσn,s |

|Pσn,s | whence this term is bounded below by

1

|W |
|Z(s,σn)|
|Xσn,s |

|Gσn,s |
|Pσn,s | .

Therefore it suffices to show that

lim sup
n→∞

1

|W |
|Z(s,σn)|
|Xσn,s |

|Gσn,s |
|Pσn,s | = ∞.

Let c1 and c2 be the number of connected components ofXs andPs respectively. By
Lemmas 11, 12 and 16 we have

lim sup
n→∞

1

|W |
|Z(s,σn)|
|Xσn,s |

|Gσn,s |
|Pσn,s | � lim

n→∞
1

c1c2

(qn)dimZ(Gs)+dimGs

(qn)dimXs+dimPs
.

It is now easy to see that this limit is infinite.✷

5. Proof of Theorems 2 and 3

Throughout this sectionG is a simple algebraic group,X a generic MRR subgroup, an
P is a parabolic subgroup with Levi factorL. Starting with Proposition 21 we will useH
for arguments which apply to bothX andL.

Lemma 18. Let s ∈X ∩L. If either of the following holds thenX\G/P is infinite:

(i) Gs is of typeA2 andXs andLs are tori.
(ii) Gs is of typeB2, Xs is a torus andLs is of typeA1 or a torus.

Proof. Using the dimension criterion it suffices to show that

dimZ(Gs)+ 1

2
dimGs − dimXs − 1

2
dimLs > 0.

It is easy to check in each case that the quantity on the left is at least 1.✷
Corollary 19. If either of the following hold thenX\G/P is infinite:

(i) X andL have conjugateA2 complements.
(ii) X has aB2 complementK, and for some conjugatẽK =Kg we have that̃K ∩L is a

MRR subgroup which is a torus or of typeA1.

Proof. If G has rank 2 and (i) or (ii) holds then it is easy to show thatX\G/P is infinite
by dimension.
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Assume now that the rank ofG is at least 3. If (i) holds letK be theA2 complement
of X. Using Lemmas 5 and 6, we may replaceP by a conjugate and assume that in (i) t
A2 complements ofX andL coincide, and that in (ii), we havẽK = K. Since the rank o
G is at least 3, we have thatK is a Levi factor of a parabolic, whence is of the formCG(S)

for some torusS. Apply Lemma 7, to see that there existss ∈ S with Gs =K. We are done
by the previous lemma.✷
Corollary 20. If X has anA2 or B2 complement thenX is not spherical.

Proof. Apply Lemma 19, noting that the Levi factor of a Borel subgroup is a torus, w
has every type of complement possible.✷
Proposition 21. LetH be a generic MRR subgroup ofG which does not appear in Table1.
The following hold, and, in particular,H has anA2 or B2 complement in all cases.

(i) If G has single root length, thenH has anA2 complement.
(ii) If H is the Levi factor of a parabolic with non-abelian unipotent radical thenH has

anA2, B2 or G2 complement.
(iii) LetG equalBn or Cn.

(a) If G= Bn andH =Dn1Dn2 thenH has aB2 complement.
(b) OtherwiseH has anA2 complement.

(iv) LetG= Bn. If H is a Levi factor then there exists a MRR subgroupK of typeB2 with
H ∩K a MRR subgroup which is either a torus or of typeA1.

(v) If G = F4 the maximal possibilities forH are C3T1, A2Ã2, B3T1, A1A1B2, Ã1A3,
D4, whereÃ1 andÃ2 denote groups with short roots. The first possibility has a l
A2 complement, the next has both long and shortA2 complements, and the rest ha
shortA2 complements. In particular, ifL is a Levi factor for a parabolic subgrou
which is not an end node parabolic, thenL has both long and shortA2 complements

The proof of this proposition is delayed until the next section.

Proof of Theorem 2. The work of Brundan [4] and Lawther [13] show that (ii)⇒ (i).
Corollary 20 shows that (i)⇒ (iii). Proposition 21 shows that (iii)⇒ (ii). ✷
Proof of Theorem 3. We assume thatX andL are not spherical and will show th
X\G/P is infinite.

If G = G2 then by dimension one finds that ifX is non-spherical thenX\G/P is
infinite. For the remainder of the proof assumeG �=G2.

Recall our convention thatD1 is a 1-dimensional torus. If(G,X) �= (Bn, Dn1Dn2) then
apply Proposition 21, letHX be anA2 complement forX and letHL be anA2 complement
of L, of the same length asHX (length is only an issue forF4). If (G,X)= (Bn, Dn1Dn2)

then apply Proposition 21, letHX be aB2 complement forX and letHL be a MRR
subgroup of typeB2 with L ∩HL a MRR subgroup of typeA1 or a maximal torus. Apply
Lemma 5 to see thatHX andHL are conjugate. Apply Lemma 19 to see thatX\G/P is
infinite. ✷



W.E. Duckworth / Journal of Algebra 273 (2004) 718–733 731

st

-

to

o

ths

l

e

6. Proof of Proposition 21

Throughout this section we letH be a generic MRR subgroup ofG and fix a maximal
torusT �H . LetΦ(G) andΦ(H) be the root systems defined usingT .

We prove parts (i) and (ii) immediately. Parts (iii)–(v) follow after Corollary 24.

Proof of Proposition 21(i). Recall thatG has single root length andH is a MRR subgroup
which fails to appear in Table 1. Then, by [13],H is not anti-open, that is, there exi
α,β,α + β ∈Φ(G)−Φ(H). Letϕ equal allZ-linear combinations ofα andβ which are
contained inΦ(G). Thenϕ is anA2 complement forH . ✷
Proof of Proposition 21(ii). Recall thatH is the Levi factor of a parabolic with non
abelian unipotent radicalQ. Let α, β be roots such that the corresponding root groupsUα

andUβ are contained inQ and do not commute. Letϕ equal all theZ-linear combinations
of α and β which are contained inΦ(G). Then ϕ is an A2, B2 or G2 complement
for H . ✷
Lemma 22. Letϕ0 be an irreducible root system in a Euclidean spaceE with inner product
( , ). Letϕ1 be a proper, closed subsystem ofϕ0. Thenϕ0−ϕ1 spansE and for eachβ ∈ ϕ1

there existsα ∈ ϕ0 − ϕ1 with (α,β) �= 0.

Proof. Let n be the dimension ofE and fix a Dynkin diagram∆ of ϕ0. Givenα, β ∈ ∆

the path connectingα to β is the shortest such path and includesα andβ . The sum over
this path means the sum of each element of∆ which is contained in the path. It is easy
check that such a sum is itself a root.

For the first conclusion it suffices to show that we haven independent vectors inϕ0−ϕ1.
Sinceϕ1 is a proper, closed subsystem we have that∆− ϕ1 is non-empty. For eachα ∈∆

let γα be a path connectingα to exactly one element of∆−ϕ1. We re-index these paths s
that for i ∈ {1, . . . , n} the pathγi contains a node which does not appear inγ1, . . . , γi−1.
For eachi let βi be the sum overγi . By the manner in which the pathsγi were indexed, it
is easy to see thatβ1, . . . , βn are linearly independent. By the manner in which the pa
were chosen, we may write eachβi as the sum of a root inϕ1 and a root outside ofϕ1. This
shows thatβi is not inϕ1.

For the final conclusion note thatβ is not orthogonal toE, whence it is not orthogona
to ϕ0 − ϕ1. ✷
Corollary 23. Letϕ0 � Φ(G) be an irreducible root system and letϕ2 = ϕ0 ∩Φ(H). Let
ϕ1 be a closed subsystem ofϕ0 with ϕ0 > ϕ1 > ϕ2.

(i) If ϕ0 has single root length thenH has anA2 complement(whose length is the sam
asϕ0).

(ii) If ϕ0 is closed inΦ(G), G = Bn andϕ1 − ϕ2 contains a short root thenH has aB2
complement.
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Proof. Fix β ∈ ϕ1 − ϕ2 and assume thatβ is short if (ii) holds. By the previous lemm
there existsα ∈ ϕ0 − ϕ1 with (α,β) �= 0. Note thatα �= ±β and that ifiα + jβ ∈ Φ(G)

then iα + jβ ∈ ϕ0 (in part (i) use(α,β) �= 0). If (α,β) > 0 we replace one root with it
negative and assume that(α,β) < 0, whenceα + β ∈ ϕ0. Sinceα /∈ ϕ1 andβ ∈ ϕ1 we see
thatα + β /∈ ϕ1. Similarly, we see thatα + 2β /∈ ϕ1 (of course it may not even be a roo
and that 2α + β is not a root. Letϕ equal all theZ-linear combinations ofα andβ which
are contained inΦ(G). If (i) holds thenϕ is anA2 complement forH . If (ii) holds thenϕ
is aB2 complement forH sinceβ is short andBn has no closed subsystems of type sh
A2 orG2. ✷
Corollary 24. If ϕ0 �Φ(G) is irreducible with single root length andϕ2 = ϕ0 ∩Φ(H) is
submaximal inϕ0 then there existsϕ1 as in the previous corollary.

Proof. In a root system with single root length, every root subsystem is closed.✷
Proof of Proposition 21(iii)–(v). Part (iii). Recall thatG equalsBn or Cn andH is a
generic MRR subgroup which does not appear in Table 1.

Part (a). Ifn = 2 andH does not appear in Table 1 thenH is just a torus andG itself
is aB2 complement. We now assume thatn � 3, G = Bn andH = Dn1Dn2. We assume
thatn1 � 2. Letϕ0 = Φ(G) and setϕ2 = Φ(H). Let ϕ1 = Φ(Bn1Dn2). Thenϕ1 contains
a short root andϕ2 does not. Thusϕ1 − ϕ2 contains a short root and we are done by p
Corollary 23(ii).

Part (b). We assume thatn� 3 and ifG = Bn thatH �= Dn1Dn2. If G = Bn let ϕ0 and
ϕ2 equal the long roots inΦ(G) andΦ(H) respectively. IfG = Cn let ϕ0 andϕ2 equal
the short roots inΦ(G) andΦ(H) respectively. In both casesϕ0 is of typeDn, and is
irreducible sincen � 3. The maximal subsystems ofϕ0 areAn−1 andDn1 + Dn2. The
subsystemϕ2 cannot equalDn, An−1, or Dn1 + Dn2 as this would contradict either th
assumption thatH is not in Table 1 or the extra restrictions onH whenG= Bn. Therefore
ϕ2 is a submaximal subsystem ofϕ0 and we are done by Corollary 24.

Part (iv). We have thatG = Bn and thatH is a Levi subgroup ofG. Let α1, . . . , αn be
the nodes in the Dynkin diagram ofG in the usual order (as in [2]) and suppose thatH

is described by “crossing off” certain nodes. Letβ1 = α1 andβ2 = α2 + · · · + αn. Let ϕ
equal all theZ-linear combinations ofα andβ which are contained inΦ(G). LetK be the
connected group which contains the fixed maximal torus and whose root system eqϕ.

Part (v). We have thatG = F4. To construct all shortA2 complements, takeϕ0 equal to
all the short roots inΦ(F4), thusϕ2 equals all the short roots inΦ(H). Observe thatϕ0 is of
typeD4. By examining each possibility forH it is easy to verify thatϕ2 is submaximal in
aD4 root system and we are done by Corollary 24. To construct the longA2 complements
one proceeds similarly withϕ0 equal to all the long roots inΦ(F4). ✷

Acknowledgments

The author thanks his thesis advisor, Gary Seitz, who originally proposed the d
coset problem as a thesis topic and with whom early versions of these results



W.E. Duckworth / Journal of Algebra 273 (2004) 718–733 733

ework

91–198.
d Their

, 1985.

orbits

1993.
75.
c Press,

positio

d Their

Groups,
developed. The author also thanks Ross Lawther, who’s work provided the fram
for the present paper and who helped in the formulation of some of the results.

References

[1] A. Borel, J. Tits, Groupes réductif, Publ. Inst. Hautes Études Sci. 27 (1965) 55–160.
[2] N. Bourbaki, Groupes et Algèbres de Lie, IV, V, VI, Masson, Paris, 1981.
[3] M. Brion, Quelques propriétés des espaces homogènes sphériques, Manuscripta Math. 55 (1986) 1
[4] J. Brundan, Dense orbits and double cosets, in: R.W. Carter, J. Saxl (Eds.), Algebraic Groups an

Representations, Kluwer, Dordrecht, 1998, pp. 259–274.
[5] R. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley, New York
[6] M. Demazure, P. Gabriel, Groupes Algébriques I, North-Holland, Amsterdam, 1970.
[7] M. Fried, M. Jarden, Field Arithmetic, Springer-Verlag, Berlin, 1986.
[8] R. Guralnick, M. Liebeck, D. Macpherson, G. Seitz, Modules for algebraic groups with finitely many

on subspaces, J. Algebra 196 (1997) 211–250.
[9] W. Hodges, Model Theory, in: Encyclopedia Math. Appl., vol. 42, Cambridge Univ. Press, Cambridge,

[10] J. Humphreys, Linear Algebraic Groups, in: Grad. Texts in Math., vol. 21, Springer-Verlag, Berlin, 19
[11] J.C. Jantzen, Representations of Algebraic Groups, in: Pure and Applied Math., vol. 131, Academi

San Diego, 1987.
[12] M. Krämer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Com

Math. 38 (1979) 129–153.
[13] R. Lawther, Finiteness of double coset spaces, Proc. London Math. Soc. 79 (3) (1999) 605–625.
[14] M.V. Nori, On subgroups of GLn(Fp), Invent. Math. 88 (1987) 257–275.
[15] G. Seitz, Double cosets in algebraic groups, in: R.W. Carter, J. Saxl (Eds.), Algebraic Groups an

Representations, Kluwer, Dordrecht, 1998, pp. 214–257.
[16] T. Springer, R. Steinberg, Conjugacy classes, in: Seminar in Algebraic Groups and Related Finite

in: Lecture Notes in Math., vol. 131, Springer-Verlag, Berlin, 1970.
[17] E. Vinberg, Complexity of action of reductive groups, Funct. Anal. Appl. 20 (1986) 1–11.


