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In the context of extended phase space, where the negative cosmological constant is treated as a 
thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS 
metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a 
solution of Einstein’s equations, the corresponding stress energy tensor obeys (at least for certain range 
of metric parameters) all three weak, strong, and dominant energy conditions.
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1. Introduction

Due to the AdS/CFT correspondence, there has been a revival 
of interest in the physics of asymptotically AdS black holes in re-
cent years; the main focus being that of understanding strongly 
coupled thermal field theories living on the AdS boundary. Even 
from a bulk perspective such black holes are quite interesting, their 
thermodynamics exhibiting various phase transitions. A primary 
example is the thermal radiation/black hole first-order phase tran-
sition observed for Schwarzschild–AdS black hole spacetimes [1]. 
Interestingly, when a charge and/or rotation are added, behavior
qualitatively similar to a Van der Waals fluid emerges [2–5]. This 
analogy becomes even more complete in the extended phase space 
[6,7], where the cosmological constant is treated as a thermody-
namic pressure P ,

P = − Λ

8π
= 3

8π l2
, (1)

and is allowed to vary in the first law of black hole thermodynam-
ics,

δM = T δS + V δP + · · · , (2)

while a quantity thermodynamically conjugate to P is interpreted 
as a black hole thermodynamic volume [8,9]

V =
(

∂M

∂ P

)
S,...

. (3)
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This allows one to write down a ‘black hole equation of state’ 
P = P (V , T ) and compare it to the corresponding fluid equation 
of state, while we identify the black hole and fluid temperatures 
T ∼ T f , the black hole and fluid volumes V ∼ V f , and the cosmo-
logical and fluid pressures P ∼ P f .

The Van der Waals fluid is described by the Van der Waals 
equation, which is a closed form two-parameter equation of state:

T =
(

P + a

v2

)
(v − b), (4)

where v denotes the specific volume of the fluid, v = V /N with N
counting fluid’s degrees of freedom. The parameter a > 0 measures 
the attraction in between the molecules of the fluid, and the pa-
rameter b measures their volume. The thermodynamics of charged 
and/or rotating AdS black holes have been shown to qualitatively 
mimic the behavior of this equation [6,7], including the existence 
of a small/large black hole first-order phase transition correspond-
ing to a liquid/gas phase transition that eventually terminates at a 
critical point characterized by the standard mean field theory crit-
ical exponents. In both cases, the corresponding thermodynamic 
potential, the Gibbs free energy, displays the swallowtail catastro-
phe.

Although remarkable, the analogy between the thermodynam-
ics of charged/rotating AdS black holes and that of the Van der 
Waals fluid is only qualitative—the corresponding equations of state 
are not identical and prevent one from identifying the black hole 
parameters such as charge Q or rotation J with the fluid param-
eters a and b. Unfortunately, this remains true for all other more 
complicated examples of black holes, possibly in higher or lower 
dimensions, which were found to demonstrate a qualitative Van 
der Waals behavior; for a recent review see [10].
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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In this letter we turn the logic around and construct an asymp-
totically AdS black hole whose thermodynamics matches exactly 
that of the Van der Waals fluid and show that as a solution of 
Einstein’s equations, and for sufficiently small pressures, the cor-
responding stress energy tensor obeys all three standard energy 
conditions.

2. Constructing the solution

In what follows we want to construct an asymptotically AdS 
black hole metric whose thermodynamics coincide exactly with 
the given fluid equation of state. For simplicity here we assume 
the static spherically symmetric ansatz

ds2 = − f dt2 + dr2

f
+ r2dΩ2,

f = r2

l2
− 2M

r
− h(r, P ), (5)

where the function h is to be determined.
We further assume that such a metric is a solution of the 

Einstein field equations with a given energy–momentum source, 
Gab + Λgab = 8π Tab . In order that the energy–momentum source 
be physically plausible, we require it to satisfy certain conditions 
such as positivity of energy density and dominance of the en-
ergy density over pressure, known as energy conditions, e.g. [11]. 
Namely, the minimal requirement we impose is the weak energy 
condition, demanding Tabξ

aξb ≥ 0 for any future-directed non-
spacelike vector ξ . Writing the stress energy tensor in an orthonor-
mal basis, T ab = ρea

0eb
0 +∑

i piea
i eb

i , where ρ stands for the energy 
density and pi denote principal pressures, the energy conditions 
imply (i = 1, 2, 3)

Weak: ρ ≥ 0, ρ + pi ≥ 0, (6)

Strong: ρ +
∑

i

pi ≥ 0, ρ + pi ≥ 0, (7)

Dominant: ρ ≥ |pi|. (8)

In particular, for a metric ansatz we find (with prime denoting the 
derivative w.r.t. r)

ρ = −p1 = 1 − f − r f ′

8πr2
+ P ,

p2 = p3 = r f ′′ + 2 f ′

16πr
− P . (9)

Once we determine f , we shall check the corresponding energy 
conditions above.

The ansatz (5) implies that the “mass” of the black hole M is 
related to the horizon radius r+ according to

M = 4

3
πr3+ P − h(r+, P )r+

2
. (10)

Imposing further the first law, (2), the thermodynamic volume V is 
determined from (3). Since the horizon area is given by A = 4πr2+ , 
we now define the black hole ‘specific volume’ as

v = k
V

N
, N = A

L2
pl

, (11)

where in accord with previous papers we set the constant (in d = 4
dimensions) to be k = 4(d−1)

d−2 = 6, and interpret N as the number 
of degrees of freedom associated with the black hole horizon, with 
Lpl being the Planck length [6,7,10], giving

v = k

4πr2

[
4

3
πr3+ − r+

2

∂h(r+, P )

∂ P

]
. (12)
+

Since we are in Einstein gravity, the entropy and the horizon area 
are related as S = A/4. We also know that the black hole temper-
ature reads

T = f ′(r+)

4π
= 2r+ P − h(r+, P )

4πr+
− 1

4π

∂h(r+, P )

∂r+
. (13)

This can now be compared to any desired fluid equation of state, 
T = T (v, P ).

3. Van der Waals black hole

The discussion in the previous section can be applied to any 
desired equation of state. Let us now specify to the Van der Waals 
case (4). That is, we compare the expression for T (13) with (4), to 
get

2r+ P − h

4πr+
− h′

4π
−

(
P + a

v2

)
(v − b) = 0, (14)

where we substitute for v the expression (12). This represents a 
partial differential equation for h(r, P ) which gives a solution to 
our problem.

In particular, we find a solution of this equation by employing 
the following ansatz:

h(r, P ) = A(r) − P B(r). (15)

With this ansatz the above PDE becomes of the form F1(r)P +
F2(r) = 0, where F1 and F2 depend on functions A and B and 
their derivatives. Since both these parts have to vanish separately, 
we get a system of two ODEs for unknown functions A and B . 
Solving first F1 = 0 we find that (setting k = 6)

B =
(

C1 − 8π

3

)
r2 + 4πbr. (16)

Setting now the integration constant C1 = 8π
3 [so that we preserve 

the AdS structure postulated in (5)], we find that F2 = 0 gives a 
solution

A = −2πa + 3πab2

r(2r + 3b)
+ 4πab

r
log

(
2r

r0
+ 3

b

r0

)
, (17)

where r0 is an integration constant with dimensions of length. For 
simplicity setting r0 = 2b yields

f = 2πa − 2M

r
+ r2

l2

(
1 + 3

2

b

r

)
− 3πab2

r(2r + 3b)

− 4πab

r
log

(
r

b
+ 3

2

)
(18)

for the ‘Van der Waals black hole metric’. For b � r this expands 
as

f = 2πa − 2M

r
+ 8π P

3
r2

(
1 + 3

2

b

r

)

− 4πab log(r/b)

r
− 15πa

2

b2

r2
+ O

[
(b/r)3]. (19)

Apart from the strange terms logarithmic and linear in r, we ob-
serve that the requirement for positivity of a, signifying the at-
traction in between the molecules of the fluid, implies ‘spherical’ 
horizon topology of the VdW black hole. Without loss of generality 
we can set a = 1/(2π).
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Fig. 1. Horizon and energy conditions. We display the energy density ρ (red curves) 
and the principal pressure p2 (blue curves). The x-axis represents the radial coor-
dinate r, the black curves depict metric function f , which is positive everywhere 
outside of r+ , giving rise to a black hole horizon. For small pressures P , and 
since p1 = −ρ , all three energy conditions are satisfied (not displayed). As P in-
creases, first the dominant energy condition is violated, illustrated by thick curves 
for P = 0.1, followed by the violation of the weak energy condition, illustrated by 
dotted curves for P = 0.17. All dimensionful quantities are measured in units of the 
Van der Waals parameter b, while we have set M = 10, a = 1

2π .

4. Conclusions

The obtained metric (5) with f given by (18) reproduces ex-
actly the Van der Waals equation (4) with the specific volume v , 
(12), given by

v = 2r+ + 3b. (20)

It is straightforward to show that the corresponding thermody-
namic volume V satisfies the reverse isoperimetric inequality [12]. 
We find that for sufficiently small pressures P , the corresponding 
energy–momentum source satisfies all three energy conditions (6), 
(7), and (8). As the pressure increases, ρ diminishes at small radii 
and eventually becomes negative, resulting in first violation of the 
dominant condition (8), followed by violation of the weak condi-
tion (6), see Fig. 1; the strong condition (7) is always satisfied.

We emphasize that our ansatz (15) is essentially unique. It is 
straightforward to check that inclusion of higher powers of P does
not yield solutions consistent with the asymptotic AdS structure 
postulated in (5). Indeed our ansatz furnishes a general procedure 
for constructing a metric from a given equation of state, at least 
in the spherically symmetric case, and our approach can easily be 
extended to other dimensions. One can, for example, construct a 
black hole whose thermodynamics coincides with the virial expan-
sion of equation of state to an arbitrary order.

However our results also indicate that the asymptotic fall-off 
behavior of the metric and matter fields will in general differ from 
that of standard electrovacuum and perfect fluid cases. For the par-
ticular Van der Waals case we consider here, an expansion of the 
stress-energy tensor at large r yields

ρ = P

2
− Pb

2r
+ 1 − 2πa

16πr2
+ ab

4r3
+ · · · ,

p2 = Pb

2r
+ ab

4r3
+ · · · , (21)

whose corresponding exact matter content remains to be found. 
We also remark that, apart from the logarithmic term, the obtained
metric is qualitatively similar to an exact solution to the field equa-
tions of a certain class of conformal gravity theories [13] with 
vanishing stress-energy, affording an alternate interpretation of our 
results.

Since the first law (2) is satisfied by (5) with f given by (18), 
we can regard M as a “mass”. An independent evaluation of this 
mass via either conformal [14,15] or counter term [16] methods 
is problematic due to the weaker subleading falloff behavior of 
the metric and the stress-energy. It will be necessary to modify 
these approaches (somewhat along the lines of Dilaton gravity [17]
or asymptotically Lifshitz metrics [18,19]) to cancel the divergent 
terms that arise.
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