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Partial Matroid Representations 

KLAUS TRUEMPER 

A central theorem of matroid 3-connectivity is established that has a number of new and old 
connectivity results as corollaries. The proof of this theorem relies on a matrix theory developed 
here for partial matroid representations. 

I. INTRODUCTION 

In this paper we prove a central theorem of matroid 3-connectivity that has a number 
of useful corollaries, some old, some new, and some independently developed by others. 
We will leave the precise statement of the theorem to Section 3, but it implies the following 
statement: Let M be a 3-connected proper minor on at least four elements of a 3-connected 
matroid M. Then M has a 3-connected minor M that (a) has M as a proper minor, and 
(b) has at most three additional elements beyond those of M. The proof of the theorem 
relies on a matrix theory which we develop in Section 2 for partial matroid representations. 
The latter concept is nothing but a matrix representation of the fundamental circuit sets 
of H. Whitney [22], and can be defined as follows. 

Let X be a base of a matroid M on a set S, and Y = S - X. Construct {O, I} valued 
B = [liB] as follows. S is to be the set of indices of the columns of B; in particular X is 
to index the columns of identity I, say in the order XI, X 2, ••• X m • Then we index the rows 
by XI, X2, ••. Xm as well. Let y E Y, and suppose X is the subset of X that forms a circuit 
with y. Then in the column of B with index y, set element Bxy equal to I if X E X, and 
equal to 0 otherwise. Any B that may be so constructed from M is a partial representation 
of M. Note that this construction can always be carried out unless M consists only of 
loops. In the latter case, we may formally take B to be a matrix without rows (below we 
will call a matrix without rows or columns empty). Whenever we refer to matroid M 
below, we will assume that M has at least one independent element, or, equivalently, 
that B of M is not empty. 

Throughout we will assume a knowledge of elementary matroid definitions and results. 
A good reference is the book by D. J. A. Welsh [21]. 

2. RESULTS ON PARTIAL REPRESENTATIONS 

In this section we define determinant, pivot, cofactor and rank for partial representations. 
With these concepts we then establish a matrix theory of partial representations which 
is :l weaker form of the familiar matrix theory where the elements of the matrices are 
taken from a field. Due to space limitations we will only present results which were useful 
in connection with prior work [15, 16] and the development of Section 3. 

A few conventions concerning notation will simplify the exposition. For any matrix A 
the matrix A will denote [IIA]. Let B be a partial representation of a matroid M on a set 
S, where an identity of B corresponds to a base X. Define Y = S - X, and suppose B has 
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a submatrix 8. We then could display B as 

r--x ·1· Y-., 
1 x, x2 I Y, I Y2 1 
1 I I I 

f~~ 1, 
0 B 

0/1] 
, 

(2.1) 
8=X -- '1 

t~~ 0 
1, , 

'1 

'---v-------'''--v----'' 
I B 

The index sets of rows and columns of B, here X, Y, X ;, Y;, i = I, 2, will always be shown 
in the indicated manner. Due to this mode of indexing, we can specify B completely by 
just displaying B with row and column index sets. We will also make use of the following 
convention: Whenever the specified entries of a matrix or submatrix are all Is, then the 
unspecified entries are taken to be zeros. In this section 8 will always be a square submatrix 
of B, and we usually will rearrange B so 8 resides in the upper left corner of B as in 
(2.1). Submatrices that look exactly like 8 of (2.1) may occur several times in B or other 
partial representations of M, but we will not consider them to be the same matrix as 8. 
Indeed, to be precise, we should denote 8 of (2.1) as 

:~ [ B ] 
(2.2) 

to point out the difference between 8 and such seemingly identical submatrices. X2 of 
(2.2) denotes the index set of rows of B that do not intersect with 8 . We will rarely use 
notation (2.2), but the reader should be aware that when we write 8, meaning a submatrix 
of a partial representation, we use a shorthand notation for (2.2). A number of matrix 
theory concepts will be used. We will say '8 is nonsingular', '8 has full rank', '8 has 
nonzero determinant', or 'det8= I' if X2 u Yt is a basis of M. Now and then we will 
employ determinants of a square matrix, say A, over a field f!f. We write 'detg; A' to denote 
such a determinant in case confusion with the above case is possible. The opposite case 
to '8 is nonsingular' is described by '8 is singular', etc. We can extend this definition to 
all square sub matrices of B as follows. Let B be a square submatrix of B, say specified 
by X ~ X and i ~ X u Y. Define B to be singular if (X n Z) - X¥-0, or equivalently, 
if B has a 0 column with index in X. If (X n Z) - X = 0 , then B can be partitioned as 

)(2 Y, I 

x, 0 B 
B = (2.3) 

)(2 
1, , 0/1 

'1 

X 2 -X2 

and is then defined to be nonsingular if (X 2 - X2 ) u (X 2 U Yt)( = X2 u Yt ) is a base of M, 
and is said to be singular otherwise. Clearly det B (which is defined to be 0 or I in the 
obvious way) is equal to det 8 unless XI = YI = 0 . 
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Elementary matroid operations manifest themselves in partial representations as 
follows. 

LEMMA 2.1. Given a matroid M on a set S with partial representation D of (2.1). 
(a) [Btll] is a partial representation of the dual M* of M, and a square submatrix B of B 
is nonsingular if and only if related submatrix (B)t of Bt is nonsingular. 
(b) For x E X, D with row and column x deleted is a partial representation [I liB I] of M / {x}. 
A square submatrix B of BI is nonsingular if and only if the related submatrix of B is 
nonsingular. S'ich x is a coloop if and only if Bx. (= row x of B) is a zero vector. 
(c) For y E Y, B with column y deleted is a partial representation [IIBI] of M\{y}. A square 
submatrix B of BI is nonsingular if and only if the related submatrix of B is nonsingular. 
Such y is a loop if and only if B.y( = column y of B) is a zero vector. 
(d) Elements x E X and y E Yare parallel if and only if B.y is a unit vector with I in row 
x. Elements y, z E Yare parallel if and only if both B.y and B.z are not zero vectors and all 
2 x2 submatrices of [B.yIB.z] are singular. (In the latter case we will say 'B.y and B.z are 
parallel columns'.) 
(e) Elements x E X and y E Yare in series if and only if Bx. is a unit vector with I in column 
y. Elements x, z E X are in series if and only if Bx. and Bz. are not zero vectors and all 2 x 2 

submatrices of [:::J are singular. (In the latter case we will say 'Bx. and Bz. are parallel 

rows'.) 

The proof of Lemma 2.1 is straightforward and hence omitted. 
Pivots will play an important role since they will allow us to go from one partial 

representation to another one. Suppose we replace the Is of a partial representation D 
of a matroid M by nonzero elements of a field :Ji, getting A. We will say that A is an 
order k representation of Mover :Ji, for some integer k ~ I, if for </.11 I x I submatrices A 
of A, I",; k, det~ A.,t. 0 if and only if det B = 1 for the related submatrix of B. Matrix A is 
an order k representation of Mover:Ji relative to Axy, for some element Ax./" if the preceding 
requirement is satisfied by the A containing Axy. Clearly D itself is an order 1 representation 
of M over every field. This definition raises a number of interesting questions of which 
we shall address only one here: Given a partial representation D of a matroid M, does 
there always exist an order 2 representation derived from D, over some field? The answer 
is no. Consider the matroid M) represented by A with 

I Y I Y2 
I ' I 

1 1 0 
X, 

1 1 0 
A= 

0 1 
X 2 

1 0 

over some field :Ji. Now derive from MI an independence system M2 with same groundset 
as MI and same set of bases, except for X 2 u Y lo which is declared to be a base in M 2• 

In the terminology of [15] A is an almost representation of M2 over :Ji, and M2 is easily 
verified to be a matroid by theorem 2 of that reference. If we view A as a partial 
representation of M 2 , then it is a trivial exercise to verify that A cannot be turned into 
an order 2 representation of M2 for any field. (Note that M2 has at most m -9 bases 
regardless of the field chosen, so M2 cannot be the Vamos matroid, which has (~) - 5 
bases (see Welsh [21, p. 140]).) However, we have the following easily proved lemma. 
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LEMMA 2.2. Given a partial representation 8 and indices x E X, Y E Y. Then D can be 
turned into an order I representation and order 2 representation A relative to Axy over any 
field other than GF(2). 

We are interested in A of Lemma 2.2 because of the following result, which again has a 
straightforward proof. 

LEMMA 2.3. Let A be an order (k - I) representation as well as an order k representation 
relative to a nonzero Axy over some field :!F, for a matroid M and some k;;?; 2. Then (A I) 
derived from A by a pivot (in :!F) on Axy is an order (k - I) representation over :!F for M. 
In particular, the support of (A I) is a partial representation of M where the identity corresponds 
to basis (X - {x}) u {y} of M. 

We now define a pivot on a nonzero Bxy of 8 of (2.1) as follows: Replace 8 by A of 
Lemma 2.2 over some field :!F,e GF(2), pivot on A xy, and define (81

) to be the support 
of the resulting (AI). By Lemma 2.3 the matrix (81

) resulting from such a pivot is the 
partial representation corresponding to basis (X-{x})u{y}. If there is any chance of 
confusion of a pivot in a partial representation with a pivot in a matrix over a field :!F, 
we will call the latter pivot an :!F-pivot. 

Note that the operation of taking the dual commutes with that of a pivot. ~heorem 2.1 
below summarizes elementary results for partial representations. There rankeR), the rank 
of a sub matrix B of D, denotes the order of a largest square nonsingular submatrix of B. 
The inverse of nonsingular B of (2.1), (B)-\ is the submatrix 

I x I 
I 1 I 

:~ [B ] 
x2 

of the partial representation arising from basis X 2 u YI • The latter definition makes sense 
due to the following matrix multiplication rule. Let Xi, y;, i = I, 2 be as in (2.1), and 
suppose det B = I. Then for matrix 

define B . C to be the matrix 

Thus 

I Y3 I 
I I 

:~ [ c ] 

I Y I 
I 3 I 

~~ [ 0 ] 
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and 
I Y, I 
I I 

(8)-' . B = Y~ ~ [ ] 

Furthermore, if C is square, then det C = det D. 

THEOREM 2.1. Let H be a partial representation of a matroid M. Below B is always a 
k x k submatrix of H. 
(a) Let 

x 

I y I 
I I 

---t1!j 
0/1 

where c or d is a zero vector. If we pivot on the I of Bxy, getting (HI), then B is nonsingular 
if and only if the related submatrix of (HI) is nonsingular. 
(b) If we pivot on a I of row x of H, getting (HI), then any B intersecting row x and not 
containing the pivot element, is nonsingular if and only if the related sub matrix of (H I) is 
nonsingular. 
(c) (Schur complement) Let 

where B is a square nonsingular proper submatrix of B. Assume we perform a sequence 
of pivots in the B-part of B such that B becomes 

o BIB 

where B/B is the Schur complement. Then 

det B = det(B/B). (2.4) 

(d) (Cofactor expansion) Define Cij to be the submatrix of B obtained by deleting row 
i and column j. Then 

det B = L Bjj det Cij, (2.5) 
j 

provided the right-hand side of (2.5) is equal to 0 or I. 
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Q + 1 
,....---"---. 

Q {I 0/1J ] 
B= lnl 0/1 

where I;;, 0, then det B = O. In particular, det B = 0 if B has a zero row or column. 

(f) If 
B= 

" " 
0/1 

" " " 

o 

BS 

where each Bi is square, then det B = n;=, det Bi. 
(g) In (gi )-(g3) below, let B be an arbitrary sub matrix ofB with rank(B) = I, for some 1;;, o. 
(gI) If B is a column submatrix of B, say specified by an index set S, then S has rank 
equal to 1 in M. 
(g22 Every nonsingular submatrix B of B is contained in an 1 x I nonsingular submatrix 
ofB. 
(g3) Let Br with rank(B r

) = I consist of 1 rows of B, and Be be a column submatrix of 
B. Further define Brc to be the submatrix of B specified by the row indices of Br and the 
column indices of BC

• Then rank(BC
) = rank(BrC

). 

(h) (Cofactor inversion formula) Let B be nonsingular and Cij be the matrix of part (d). 
Then (B);;-' = det Ci, for all i and j. 

PROOF. Almost all statements follow by routine arguments from the previous lemmas. 
We only note that it is convenient to reduce each case to the situation where Band B 
are submatrices of B and not just B. Then the only instance possibly requiring details is 
case (d), where we may suppose B to be B itself. The result is obviously correct for k = 2, 
and inductively we may assume it to hold for k - 1 ;;, 2. Also, we may suppose that i = 1. 
If all Cli are singular, then the right-hand side of (2.5) is equal to O. Let x E X correspond 
to the first unit vector of I. Then M has no basis {x}u Y where Y~ y [see (2.1)], so 
every basis of M contains at least two elements of X if it contains x. If Y is a basis, it 
can be obtained from X by a sequence of I-element exchanges such that (a) all intermediate 
sets are bases as well, and (b) x is exchanged at the last step. But this is clearly not 
possible, so Y is not a base, and det B = o. So suppose e = ell is nonsingular, and 

I V I 
I I 

B·H 
If the right hand side of (2.5) is equal to 1, then in addition we may choose e such that 
a = 1. Note that e cannot contain a zero column or row since else a minor ar the dual 
of a minor of M has a base containing a loop. If c contains a 0, say in column y, then 
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we pivot on a I in column y of C, and by induction and part (c) the desired result follows. 
Hence we may suppose c to be a vector of Is. This implies that all c'j ;t. C are singular. 
We now pivot within the C-part to obtain 

y 

0< ' 0 

8'= 1, , , 
d' , 

'1 

from B. Clearly d' is a zero vector since else some c'j ;t. C is nonsingular. If a' = 0, then 
y is a loop of M, in B we must have a = 0, and d must be a zero vector. Thus the right 
hand side of (2.5) must have been equal to 0, and det B = 0 as desired. If a' = 1, then x 
and yare parallel in M, and in B we must have a = I and d must be a zero vector. This 
implies that the right-hand side of (2.5) is equal to 1, and also that det B = 1. 

The reader will surely have recognized many links between Theorem 2.1 and wel!-known 
matroid results. For example, the case of part (d) where the right-hand side of (2.5) is 
equal to 0, is a special case of a base exchange result of C. Greene [7], and (g2) is based 
on J. Edmonds' [5] independence axioms. We shall not go into details here, or show how 
the various axiomatic systems for matroids relate to our matrix approach here; the reader 
may want to fill in the details and see how these axioms manifest themselves in our 
framework. One can, however, specify a matroid directly in terms of partial representa
tions, and we shall include such axioms here. To this end we define stis to be the set of 
square {O, I} matrices with permanent equal to s, for s ~ 0. (The permanent is the number 
of transversals; see H. J. Ryser [II].) 

THEOREM 2.2. Let S be a set ofn ~ I elements and {J3 be a nonempty set ofm x n {O, I} 
matrices such that the columns of each BE {J3 are indexed by S, and each such B contains 
at least one m x m identity. Then (J3 is the collection of partial representations of a matroid 
if and only if (a) and (b) below hold for every BE {J3, where we suppose B to be partitioned 
and indexed as in (2.0. 
(a) If a submatrix B of B is a member of stio, then there is no matrix in (J3 having an identity 
in columns X2 u Y,. 
(b) If a submatrix B of B is a member of sti" then there is a matrix in (J3 having an identity 
in columns X2 u Y,. 
Further, (a) can be weakened by requiring the condition only for BE stio with a zero row, 
and (b) can be weakened by requiring the condition only for B = [I] E sti ,. 

The proof involves routine checking of the base axioms for matroids and is omitted. 
One way to look at Theorem 2.2 is as follows. Let 0)0 (0),) be the sets of square singular 

(nonsingular) matrices D over some field which always remain singular (nonsingular) 
when the nonzero entries are replaced by other nonzero entries, possibly by those of 
another field. Then DE 0)0 (D E 0).) if and only if the support of D is in stio (sti,). Theorem 
2.2 says that the entire matroid structure is specified via the supports of matrices in 
0)ou 0),. Finally, the reader may wonder whether (a) above could be weakened, by 
requiring the condition of (a) only for B = [0] E stio. This is not possible, as is evident 
from the collection 

{J3 = {[ I ° 0 0J 
o I 00' [0 ° I OJ}. 

o ° ° I 
Finally, we will make repeated use of a simple characterization of matroid connectivity. 
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We recall that a matroid M on a set S is connected if for every nontrivial partition of S 
into sets SI and S2 we have r(SI) + r(S2) > reS), where r(-) is the rank function of M. 
The graph G(B) referred to below is defined as follows. Each row and each column of 
B corresponds to a node, and an undirected arc connects nodes i and j if Bij = I. 

THEOREM 2.3 (W. H. Cunningham [2], S. Krogdahl [9]). A matroid M on a set S with 
a partial representation '0 is connected if and only if G(B) is connected. 

The preceding theorems lead to almost trivial proofs for a number of important matroid 
results. As a demonstration we will prove a theorem about matroid representability due 
to W. T. Tutte [18]. First we introduce the relevant definitions. A matroid is representable 
over a field 8fi if one can replace the Is of a partial representation '0 by nonzero elements 
of the field, producing, say, a matrix A, such that every square submatrix of '0 is nonsingular 
if and only if the related submatrix of A is nonsingular. Equivalently we may require that 
(a) to each partial representation '0 there corresponds a matrix A over ffI whose support 
is '0; (b) when we 8fi-pivot in A on Aij and pivot in '0 on B ij, producing, say, (AI) and 
('0 1

), respectively, then (AI) is the matrix over 8fi corresponding to ('0 1
). We can weaken 

the second requirement by demanding that (AI) can be scaled to the matrix over ffI 
corresponding to ('0 1

). A hyperplane of a matroid of rank m is a maximal subset of rank 
m - I. Let Hx be the index set of the Os in row x of a partial representation B. We see 
that the column submatrix of '0 with index set Hx observes this rank condition, so Hx is 
a hyperplane. It is also easy to see that each hyperplane occurs as an Hx in some B. 
(Since the Is of row x correspond to a dual circuit-look at [BtII]-we also have 
immediately that each dual circuit is the complement of a hyperplane.) With these 
observations we are ready to prove the following theorem. 

THEOREM 2.4 (W. T. Tutte [18]). A simple matroid M (i.e., without loops or parallel 
elements) on a set S is representable over a field 8fi if and only if for every hyperplane H of 
M there exists a function fH such that 
(a) KerfH = H; 
(b) For any three hyperplanes HI> H 2, and H3 of M which intersect in a coline (= flat of 
M of rank reS) - 2), there exist constants ai, a2, a3 E ffI, all nonzero, such that 

adH, + a2fH2 + a3fH3 = O. 

PROOF. The 'only if' part is easily verified, so we will only prove the converse. For 
each partial representation '0 of M we first establish the following matrix A. If the Os of 
row '0 x. correspond to hyperplane H, then define Ax. = f H, where for convenience we view 
fH as a vector with elements fH(z), ZE S. We will show that the previously described 
pivot condition is satisfied by these A matrices. Consider the following '0 and A pair: 

Xl 
I x2 

I Y I Xl I x2 
I Y I 

I I I I I I 
-- r - - .-
x 1 CD x 1 @ 

z 1 z (3 
\ 0 0/1 0 elements \ \ 

\ \ of .'1 , 
' I 

B= --
I " A= 

X 2 0 
1, 

0 X 2 0 
1, 

0 , , 
'1 '1 -- ... 

'--y-----' 

B A 



Partial matroid representations 385 

By (a) the Os of B must agree with the Os of A. If we pivot on the circled I in B and the 
circled a in A, getting (B') and (A'), respectively, then the rows of {x}uX2 undergo at 
most scaling, so for these rows we have the desired agreement between (B') and (A') . 
For the remainder we examine a typical row, say row z. Let the Os of rows x and z of B 
correspond to hyperplanes H, and H 2 , respectively, and the Os of row z of (B') to 
hyperplane H 3 • The three hyperplanes contain the set [X, u X 2] - {x, z}, so they do intersect 
on a coline. By (b) and scaling we have a, ;f:. 0 such th~tfH3 = adHI + fH,. Now H3 contains 
y, so 0 = a, a + {3, i.e., a, = -{3/ a. But then row z of (A I), which is fH2 - {3 . fH'/ a, is equal 
to fH

3
, which was to be shown. 

3. MATROID 3-CONNECTIVITY 

The theorems of the preceding section are now utilized to prove a central theorem of 
matroid 3-connectivity. This theorem has a number of useful corollaries, some of which 
are new while the rest are well-known or have recently been independently proved by 
others. 

We have chosen to first introduce helpful lemmas before stating the main result 
(Theorem 3.1). All proofs are so simple that we will either sketch them or omit them 
entirely. Some terminology beyond that of deletion and contraction is used to simplify 
the exposition. If M2 = M, \ {z}, we say that we add z to M2 to obtain M,. The case of 
M2 = M,j{z} is covered by saying that we expand M2 by z to obtain M,. Both cases are 
handled by saying that we extend M2 by z to produce M,. Finally reduction by z is a 
deletion or contraction of z. Analogously we extend (reduce) a partial representation to 
another partial representation by adjoining (removing) rows and/or columns. We say 
that B of a partial representation B of a matroid M contains B of a partial representation 

of a matroid M if B can be rearranged to 

and the related square submatrices of the two B matrices have identical determinants. 
(The two B matrices are not identical according to (2.2)!) Note that M / X 2 \ Y2 = M. A 
matroid M on a set S is k-separable [19] for given k ~ I if there exists a partition S" S2 
of S with Is,l, IS21 ~ k for which 

(3.1 ) 

where r( ·) is the rank function of M. We call {S" S2} a k-separation of M. A matroid M 
is k-connected if any I-separation necessarily has I ~ k. By the previous definition M is 
connected if and only if M is not I-separable, i.e., if and only if M is 2-connected. 



386 K. Truemper 

LEMMA 3.1. A matroid M with partial representation 8 has a k-separation if and only 
if B has a partition 

I Y 
I ' 

B' ~ ~ r-:-:-: ~:-:-:-I 
for which IXj U 1';1 ~ k, i = I, 2, and rank(B I2 )+ rank(B21 ) ~ k-1. 

(3.2) 

Of particular interest are 2-separations. We call a 2-separation {St, S2} a split, and 
specifically an I-split if min{ISII, IS21} = 1. By the previous definition 1 ~ 2 for any I-split. 
We call each Sj a splitting set. 

LEMMA 3.2. Let M be a connected matroid on a set S of at least four elements with 
partial representation 8. 
(a) M has a 2-split if and only if B contains a column unit vector, or a row unit vector, or 
two parallel rows or columns. 
(b) If M has an I-split for some 1 ~ 3, but no 2-split, then in every partition of 8 as in 
Lemma 3.1 (with k = 2) the sets X j and 1'; are all nonempty. 
(c) Suppose I of 8 corresponds to X c; S, and B of 8 to Y c; S. Assume there exist disjoint 
Xj and Yj, i = I, 2 and a sub matrix D of B such that 

(i) Ixju Yjl~2, i= 1,2, 
(ii) the column indices of D are all in Yt, 

(iii) rank D ~ I, and 
(iv) every path in G(B) from a node of XI u YI to a node of X2 u Y2 involves an arc 

corresponding to a I of D. 
Then M has a split {St, S2} for which Sj::;::> X j u Yj, i = 1,2. 

Below we repeatedly use the following observations. Let M be a minor of a matroid 
M on a set S. If XI is a base of M and Y I consists of the remaining elements of M, then 
there exists a set X2 disjoint from XI such that X = XI U X2 is a base of M and 
M=M/X2\(S-[Xu Yin. This fact implies that for any partial representation [liB] of 
M there always exists a partial representation 8 where B contains B. 

LEMMA 3.3. Let M be a 3-connected matroid on a set S of at least four elements, with 
partial representation [liB], 
(a) A matroid MI produced by a I-element extension of M is 3-connected if and only if 
every partial representation (81

) of MI containing B is specified by one of the following 
matrices, where in both cases z is the additional element. 

i Y 
I 1 

I I z 
I I 

where c is not a zero or unit vector, and is not parallel to a column of B. 

I I 
I Y, I 

;'~~ 

(3.3) 

(3.4) 
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where c is not a zero or unit vector, and is not parallel to a row of D. 
(b) Let M2 be produced by a 2-element extension of !VI such that every minor of M2 which 
is a I-element extension of !VI, is 2-separable. Then M2 is 3-connected if and only if every 
partial representation ('82) containing D has B2 of the following type, where x and yare the 
two additional elements. 

where 

I I I 
I Yl I v I 

~1~1 B Icl 
x~ 

(i) c (d) is a unit vector, or is parallel to a column (row) of D. 

(3.5) 

(ii) each of c1 = [~]. d 1 = [dl cd is not a unit vector, and it is not parallel to a column / row 

of the remainder of B2; 
(iii) if c (d) is parallel to thejth column (row) of D, then d (c) is not thejth unit vector. 

(c) Let M3 be produced by a 3-element extension of !VI such that every minor of M3 which 
is a 1- or 2-element extension of !VI, is 2-separable. Then M3 is 3-connected if and only if 
every partial representation (B3) containing D has B3 as one of the matrices below, where 
x, y, and z are the additional elements. 

where 
(i) each of c, e is a unit vector or parallel to a column of D; 

(ii) c is not parallel to e. 

where 
(i) each of c, e is a unit vector or parallel to a row of D; 

(ii) c is not parallel to e. 

(3.6) 

(3.7) 

In the statement of the main Theorem 3.1 as well as later on B x. y denotes the submatrix 
of B specified by the row indices of X and the column indices of f. The Theorem also 
mentions an independence black box of a matroid. This device decides dependence/in
dependence of a set in the matroid in unit time. Finally, the term efficient algorithm refers 
to an appropriate Turing machine for the given matroid problem whose running time is 
bounded by a polynomial in the cardinality of the groundset of the matroid. 
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THEOREM 3.1. Let M be a 3-connected proper minor on at least four elements of a 
3-connected matroid M with a given partial representation 8, where 

1."-- Y ----l.~1 
1 I 

: Y, Y2 Y3 : 

- -
B W2 0 

B= (3.8) 
W' 0/1 0/1 

0 0/1 K 

'--

and M = M / (X2 U X 3 )\( Y2 u Y 3 ). Each row of WI and each column of W2 is assumed to 
be nonzero. Suppose in addition we have an independence black box for M. Then there exists 
an efficient algorithm that locates a partial representation (81

) for M by pivoting at most in 
the K-part of B (so the structure of matrices Bx, Y, and Bx " y, including determinants of 
square submatrices, is unchanged), with 

Y, 

I'" 

x, B W2 

W' 0/1 

0 0/1 

'-

such that BI contains a submatrix of type (3.3)-0.7). 

Y' 3 

0 

0/1 

K' 

-

(3.9) 

-

PROOF. We may suppose that B of (3.8) does not contain a matrix of (3.3)-(3.7). Let 
wi" y, Y ~ Y2, be nonempty and consist of the columns of W2 parallel to one column 
b of S, say with index z E YI . Clearly W = [blW x" y] has rank equal to 1. Adjoin to W all 
rows of Bx,{z}u y that are parallel to a nonzero row of W. Let W be the resulting rank 1 
matrix. From at least one node of Yu{z} of G(B) there must be a_path to at least one 
node of XI that does not involve arcs corresponding to any Is of W since otherwise M 
is 2-separable by Lemma 3.2(c). Choose a shortest such path. If this path makes use of 
arcs corresponding to Is of K, reduce its length by suitable pivots in K. A straightforward 
process then derives one of the matrices (3.5)-(3.7) from the resulting BI of (3.9). If W2 
consists only of unit vectors, then a pivot in S produces the above case. A final pivot in 
BI then 'undo.Jes' the initial pivot. Finally, suppose W2 to be empty. Then WI must be 
nonempty since otherwise M is separable, and passage to the dual M* of M produces 
the above case. When the BI for M* has been found, we revert back to M. 

Theorem 3.1 implies a number of interesting results, some old and some new. Here we 
restrict ourselves to corollaries concerning matroid connectivity. We use the concept of 
a nested 3 -connected extension sequence of matroids Mo, M I , •.. , Mso where Mi is a proper 
3-connected minor of M i+ lo for all i < s. Symbol == denotes 'is isomorphic to'. The wheel 
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y 

Wm (whirl 'W m)~ is the matroid on 2m ~ 6 elements with a partial representation B where 
and where Y is dependent (independent). (It is easily checked that this definition is 
consistent with the original one [19] using a theorem on almost representability [15]). It 
will be convenient for us to consider U~, the rank 2 uniform matroid on 4 elements, to 
be a whirl, say 'W2 • 

A subdivision of a matroid M is obtained from M by possibly repeated application of 
the following process: select an element z and replace it by the elements of a series class 
that includes z. 

COROLLARY 3.1.1. Let M be a 3-connected matroid on a set S with a 3-connected minor 
M = M / X\ Yon at least four elements. Then there exists at least one 3 -connected extension 
sequence Mo, M ..... , Ms = M for each of (a), (b), (c) l-elow, where in all cases kf and 
k~ are the number of I-element additions and expansions, respectively, required to go from 
M j to M H ], for all i < s. Let k j be the total number of elements M j + 1 has beyond those of 
M j , for all i < s. 
(a) Mo = M; k~, k~,;;; 2 and k j ,;;; 3, for all i < s. 
(b) Mo~ M; k~,;;; I and k j ';;; 3, for all i < s. If there exists a Z ~ S such that M xZ is a 
subdivision of M, then there exists a Zo ~ S such that M x Zo is a subdivision of Mo. 
(c) Mo~M; k~, k;,;;; I and kj ,;;;2. If kj =2, then either Mj~ 'Wm and MHI ~ 'Wm + h for 
some m ~ 2, or M j ~ Wm and M j + 1 ~ Wm+ h for some m ~ 3. 

If we have an independence black box for M, and if M is specified via two sets X 2 , Y2 as 
M / X2 \ Y2, then there exists an efficient algorithm that locates such a sequence for anyone 
of the three cases. 

The proof of Corollary 3.1.1 makes use of the following lemma. 

LEMMA 3.4. Let a 3-connected matroid M have a 3-connected minor M that has at least 
four elements such that 
(a) Every I-element extension of every minor of M isomorphic to M produces a 2-separable 
matroid; 
(b) M has two elements beyond those of M. 
Then M = 'Wm and M = 'Wm + l , some m ~2, or M = Wm and M = Wm+ 1 for some m~3. 

PROOF. Due to (3.5) and pivots M has a partial representation B where m x n B, 
m+ n ~6, is 

(3.10) 
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Here d is not parallel to c, and M = M / {x} \ {y}. In each partial representation S of M 
displayed below, the (m - I) x (n - I) submatrix in the upper left corner is always called 
B, and it corresponds to a minor isomorphic to M. When we use the same letter for two 
vectors we imply that they are parallel. With these conventions we see that the last column 
(row) of any B after deletion of the mth (nth) element must always be a unit vector or 
it must be parallel to a column (row) of B. When we pivot in S, say on By, we also 
exchange columns i and j of the resulting new partial representation to determine the 
new B. Also note that m and n must be at least three. We are now r~ady for the proof. 
If d is a unit vector, we can change it to a non-unit vector by a pivot in B without changing 
column y. If this is not possible, M is clearly 2-separable. So let d be parallel to row 
i = 2 of B. An exchange of rows x and i converts the second element in column y to a 
I. That column minus the last element must be parallel to a column of B, say column 
y = I. An exchange of columns y and y results in 

y 

r 
x 1 C 1 

x 1 d 1 
(3 .11) 

0 0/1 0 

0 If 1 
'- -

The subvectors [dll] of rows x and i in (3.11) are the ds of (3.10), so they are parallel. 
The 2 x 2 submatrix specified by indices x, X, y, Y is singular, so a pivot on Bxy changes 
the first element in column y to a o. Inductively we thus may assume that B is of the form 

Y, 

-1 
l ' 

" x, " ,', , , , , 
, 1 

'1 
B= 

0 

x 0 
-

where the 2 subvectors of type [dll] are parallel. 

c 

0 

d 

0/1 

d 

Iy 
I 

0 

0 

1 

0 

1 

(3 .12) 

-

If d is not a unit vector, then it is parallel to a row of B with index in X 2• We then do 
the same arguments as before to produce an instance of (3.12) where I Y11 is increased 
by I. If d is a unit vector, say with the I in column y E Y2, and if the vector defined by 
X2 and column y is not zero, then we pivot on a I in that vector and produce another 
instance of (3.12) where I Y11 is as before, but d has become a non-unit vector. If this 
pivot is not possible, Y2 must be {y} and X 2 = 0 since otherwise M is 2-separable. By 
induction we may thus assume Y2 = {y} and X 2 = 0 . The first element of column y must 
be a I since otherwise row I of B is a unit vector. We conclude that M is isomorphic to 
a wheel or whirl. A pivot on Bxy then shows M to be isomorphic to a wheel if M is, and 
to be isomorphic to a whirl otherwise. 
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PROOF OF COROLLARY 3.1.1. By Theorem 3.1 we may take B to be the matrix of (3.8) 
and M to be M/(X2 UX3 )\(Y2 U Y3 ). Furthermore we may assume B to contain one of 
the matrices of (3.3)-(3.7). Case (a) is then trivial. If in case (b) some M xZ is a 
subdivision of M for some Z c:;: S, then Z = X, U X2 U Y" and each row of W' is a unit 
vector or it is parallel to some row of B. We always suppose that there exists such Z for 
part (b) since otherwise (b) is subsumed by (c). 

Initially we designate Mo to be M and for (b) we define Zo to be Z. We first show how 
to find M, for (b) and (c). The only cases deserving detailed discussion are (3.6) for (b) 
and (3.5)-(3.7) for (c). 

(3.5): (c) Implement the proof procedure of Lemma 3.4. If we discover Mo and the 
matroid defined by B2 of (3.5) to be one of the pairs specified in (c), then let M, be the 
latter matroid. Otherwise a I-element extension of a minor isomorphic to Mo produces 
a 3-connected matroid. Let M, be this matroid, and redefine Mo to be the minor. The 
latter step amounts to a relabelling of elements of Mo according to the isomorphism. 

(3.6): (b) B contains a column submatrix 

Y, I y I z 
I , 

-
B c 8 

W, C' .' (3.13) 

1 1 
- -

0 0/1 

-
By assumption each row of W' must be a unit vector or be parallel to a row of B. If both 
e and e are unit vectors, we pivot on the (x, z) entry to get a new B where e has become 
a vector with two Is. Note that this pivot leaves the determinantal structure of B x. Y , 

unchanged. If the new e is not parallel to a column of B, we have case (3.3); otherwise, 
we are still in (3.6). Hence we may suppose that e is parallel to a column of B, say the 
first one. Next we analyze the rows of WI. If such a row, say with index w, is a unit 
vector other than the first one, and e~ = I, then row wand column y of B produce case 
(3.5). Similarly if row w of W' is parallel to a row of B, but row w of [W'le'] is not 
parallel to the related row of [Ble], then again we have an instance of (3.5). Thus the 
submatrix (3.13) of B must be 

r- -
B c • 

1 
I 0 0/1 
1 

0/1 

0 U 0 (3.14) 

w' C' 0/1 

1 1 

0 
0/1 

-
where each row of U is a unit vector, and where each row of [w'I<:'] is parallel to a row 
of [Ble]. Suppose we relabel y, to y in Mo. The new Mo is isomorphic to M, and there 
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exists a new Zo such that M xZo is a series extension of the new Mo by (3.14). Clearly 
the correspondingly redefined (3 .8) leads to case (3.5) . 

(3 .6): (c) As in (b) we may suppose that c is parallel to the first column of D, say with 
index YI. Relabel YI to Y in Mo. The related change in B produces case (3.5). 

(3.7): (c) Analogous to (3.6) we may suppose that c is parallel to a row of D, say with 
index XI. Relabel XI to X in Mo. The related change in B produces case (3.5). 

Inductively, suppose we have obtained Mo, M h • .. , Mj , and we want to produce M j + l · 

The appropriate procedure follows almost immediately from the above discussion if we 
take D of (3.8) to correspond to M j instead of Mo. Again Theorem 3.l guarantees one 
of (3.3)-(3.7), and we select a case with smallest equation number. Part (a) then goes 
through without modification. For (3 .6), part (b), WI still has all rows as unit vectors or 
parallel to a row of D since otherwise we have case (3.4) . Now any relabelling is done 
not just in M j , but also in M j _ I , .. • , Mo. The new Mo is isomorphic to Nt, and there exists 
a new Zo such that M x Z o is a series extension of the new Mo as before. For part (c) 
just one modification is needed, namely any relabelling in M j is also extended to a 
relabelling in M j - h ... , Mo. By induction we obtain a sequence Mo, M h ... , Ms = M 
having the desired properties in each case of (a), (b), (c) . 

Corollary 3.11 (c) is equivalent to P. D. Seymour's splitter theorem [12]; a binary version 
of the latter theorem as well as of the equivalent of our Lemma 3.4, (published in the 
preprint of[ 12]) precedes our work. When this work was completed, we received a preprint 
by S. Negami [10] in which the graph case of Corollary 3.1.I(c) is proved, and subsequently 
we obtained a copy of the thesis by J. J.-M. Tan [13] in which Corollary 3.1.1(c) and 
Lemma 3.4 are established. 

LEMMA 3.5. Every 3-connected matroid M on at least four elements has a minor 
isomorphic to U~ or W3 • 

PROOF. The lemma follows from characterizations of binary and graphic matroid due 
to W. T. Tutte [18] and of series-parallel graphs by G. A. Dirac [4], but proving the lemma 
that way is like firing a cannon to swat a fly. Suppose M has no U~ minor, so every 2 x 2 
submatrix with four I s of any partial representation B is singular. Trivial graph arguments 
on G(B) and pivots then produce one of the following submatrices: 

Both cases establish W 3 as minor. 

A few arguments could be added to the above proof to establish the stronger result 
(also implied by [18] and [4]) that every matroid without minors isomorphic to U~ or 
W 3 is the forest matroid of a series-parallel graph. 

COROLLARY 3.1.2 (W. T. Tutte [19]). Let M be a 3-connected matroid such that every 
I-element reduction results in a 2-separable matroid. Then M is isomorphic to a wheel or whirl. 

PROOF. We may suppose that M has at least five elements. By Lemma 3.5 M is 
isomorphic to W3 or it has a proper 3-connected minor M isomorphic to U~ or W3. In 
the latter case M must be isomorphic to a wheel or whirl by Corollary 3. l.l (c) since in 
any extension sequence Mo;;;:;' M, M h . .. , M s- h M s = M matroids M s and M s- I must 
differ by two elements. 
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We gain additional insight into the sequence Mo, M" .. . , Ms of Corollary 3.1.1 by 
analyzing the B of (3.8) attained when Ms is reached. By the procedure of that corollary 
we may partition B as 

I- y ·1 
1 y I Y I 
I 0 I 1 

1 y 1 

I $ 1 

n~ U 
"-

X "-

L~ 
'\ 

'-

where U;~o ~ = Xi is a base of Mi and the related nonbasic elements are given by 
Yj = U;~o }j. Note that Xj u Yi.,t. 0, for all i. Let B

j 
be the submatrix Bx .. Y

i
, and collect . -. [Bj] 

the nonzero rows of Bx - Xi. Vi in a matrix R', say, specified by BXi• Yi' Define B' = R j 
_ c . _ 

and Mi to be the matroid partially represented by (B'). Thus the M j may be efficiently 
derived from the M i if the latter matroids are determined from M and M by the procedure 
of Corollary 3.1.1. The Mj have the following properties. 

COROLLARY 3.1.3 . Let M, Mo, MJ, ... , M s = M be the matroids of Corollary 3.1.1 (a), 
(b), or (c). Then the sequence Mo, MJ,"" Ms satisfies the following: 
(a) Each Mj is equal to M x Zj for Zi = Xi U Xi U "9;, and it is a subdivision of a 3 -connected 
matroid. Furthermore Mi may be obtained from Mj by expansion steps, and Ms = M s. In 
case of Corollary 3.1.1 part (a) [part (b)], Mo is a subdivision of M (of a minor of M 
isomorphic to M) provided there exists a Z such that M x Z is a subdivision of M. 
(b) Mi+ 1 is either equal to M j , or it is obtained from Mi by 1";3 I repeated applications of 
the following procedure : Add a new element y, then replace y by one or more elements of a 
series class which includes y. Here 1~2for part (a), and 1= I for parts (b) and (c). 

PROOF. (a) follows from the definition of Mi , Theorem 3.1, and Corollary 3.1.1. That 
corollary also establishes 1 Y;1~2 for part (a) and IY;I~ I for parts (b), (c) , for all i>O. 
The rows of R i+'1 with index not in Xi (i.e., rows of Ri+' that do not intersect Si) must 
all be unit vectors if Y;+I = {y}. We thus can add y and (possibly) additional elements 
in series with y, to produce Mi+' from Mj • A minor modification of this argument proves 
the case when I Yj+ 11 = 2, so (b) holds as well . 

For con,,:enience of exposition we have allowed the sequence Mo, M" ... , Ms to contain 
duplicate matroids, but we could strike out such duplicates and get after renumbering a 
new sequence Mo, M" .. . , Mt• Due to this notation we have lost the connection between 
M j and M;, but from now on we will not be interested in that relationship. Hence 
Mo, M" ... , Mt will be the sequence derived from Mo, M" . .. , M, by deleting duplicates 
from and renumbering the Mi of Corollary 3.1.3. 

D. W. Barnette and B. Griinbaum [1] first proved existence of Mo, M" . . . , Mt arising 
from Corollary 3.1.1 (b) for graphs, and P. D. Seymour[12] extended this result to matroids. 
Here we have seen that it is just one more consequence of Theorem 3.1. 

It is trivial but true that we could view any of the extension sequences Mo, M" .. . , Ms = 

M or Mo, M" .. . , M, = M as a reduction sequence from M to Mo or Mo. Sometimes 
this view gives a result that looks superficially different as seen below. 
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COROLLARY 3.1.4. Every 3-connected matroid M on a set S of at least four elements 
contains an element y such that M\ {y} becomes 3 -connected once the elements of each series 
class of M\ {y} are contracted to one element each. 

PROOF. By Lemma 3.5 M has a minor M isomorphic to U~ or W3, where we prefer 
U~ if there is a choice. Take Mo, M!. ... , Mt to be the sequence derived from a sequence 
Mo, M!. ... , Ms of Corollary 3.1.1(c). If t> 1, the element added to Mt - 1 to get Mt is 
the desired y. The case t = 1 is trivial. 

Corollary 3.1.4 was previously proved by W. H. Cunningham [3], and the dual version 
restricted to graphs has appeared in a paper by C. Thomassen [14]. 

A final comment seems in order. Though we have produced quite a few corollaries 
from Theorem 3.l, many more can be derived from that theorem, as we have discovered 
in more recent work. There is no need to include such results here since the reader can 
easily produce them by rather simple arguments and routine operations. Finally, we 
should mention that translation of the above results (and their dual versions) into graph 
language is quite straightforward since only one graph corresponds to a 3-connected 
graphic matroid. 
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