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of any s points from G results in a graph which is either connected or else has at most s/t com-

ponents. Ciearly, every hamiltonian graph is 1-tough. Conversely, we conjecture that for some

to, every fo-tough graph is hamiltonian. Since a square of a k-connected graph is always k-
tough, a proof of this conjecture with £y = 2 would imply Fleischner’s thecrem (the square of

a block ig hzn‘!“lfnnmn\ We congtruct 2n infinite family of (1/2)-tguek nonhamiltonian gxanhc
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0. Introduction

In this paper, we introduce a new invariant for graphs. It measures in

L

a simpie way how tightly various pieces of a graph hoid together; there-

Ff\rn weo call it tanchnace Onr cantral naint ic tn indicate tha imnartaneca
1T WU vail 1L WWugsiiialss. wul Llliuar pULnL o W intualaw e imporianc

of toughness for the existence of hamiltonian circuits. Every hamiltoni-
an graph is necessarily 1-tough. On the other hand, we conjecture that
every graph that is more than %-tough is necessarily hamiltonian. This
conjecture, if true, would strengthen recent results of Fleischner
concerning hamiitonian properties of squares of biocks.

during my work n this peper.
We follow Harar s notation and terminology [11] with minor modi-

fications. First of all, by a subgraph we always mean a spanning sub-

graph. Accordingly, G C H means that G is a spanning suogr aph of H. As
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in {11}, p(G) denotes the number of points, £{G) the nmamber of com-
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ponents, x(G) the point-connectivity, A(G) the line-connectivity and
By (G) the point-independence number of a graph G. By a point-cutset
(resp. line-cutset) in G we mean a set S of points (resp. a set X of lines)

A€ Y b e~ 1 3 N
of G whose removal results in a disconnected graph, i.e., for which

k(G—-S8)>1(resp. k(G-X)>1).

1. Toughness

Let G be a graph and ¢ a real number such that the implication
k(G-8)>1=|S|>1t k(G- S) holds for each set S of points of G.
Thien G will be said to be r-tough. Obviously, a ¢-tough graph is s-tough
for all s < ¢. If G is not complete, then there is a largest ¢ such that G is
t-tough; this ¢ will be called the toughness of G and denoted by #(G).
On the other hand, a com piete graph contains no peoint-cutset and so it
is #-tough for every t. Accurdingly, we set #(K,,) = + o for every n.
Adopting the conventicn min § = + e, we can write

)] t(G) = min |S1/k(G - §),

where S ranges over all point-cutsets of G.
Using the obvious implication G C H = k(G) = k(H) and the defini-
tion of toughness we arrive at:

Proposition 1.1. G << H= 1(G) < t(H).

T . toughness i3 a nondecreasing invariant whose values range from
zero .. infinity. A graph G is disconnected if and only if 1(G) =0; G is
complete if and only if £(G) = + oo,

For every point-cutset S of G, we have |S] > k(G) and k(G — 5) <
£p(G). Using (1), we readily obtain:

Fropesition 1.2. 1 > /.

If G is not complete (i.e., k < p(G) — 2), then G has at least one point-
cutset. Substituting the smallest point-cutset S of G into the right-hand
side of (1), we derive:
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Proposition 1.3. If G is not complete, then t < k.

Similarly, taking S to be the comple.nent of a largest independent set
of points of ¢, we deduce:

Proposition 1.4. If G is not complete, then t < (p — )/,

If G = K, , with m < n, then obviously k(G) = m, B;(G) = n and
p(G) = m + n. Combining Propositions i.2 and 1.4, we obtain:

Proposition 1.5. m < n = 1(K,, ,) = m/n.

Hence the equality in Propositions 1.2, 1.4 can be attained. In order
to show that the equality in Proposition 1.3 can be attained .- well, we
shall prove: ) '

Theorem 1.6. t(K,, X K,) =3(m +n)—1 (n, n = 2).

Proof. Let S be a point-cutset of G = K, X K,, minimizing |S|/k(G - S);
let us set k = k(G — S). Then S is necessarily minimal with respect to the
property k(G — S) = k. The point-set of G will be written as ' X W with
[Vl =m, | W|=r. From the minimality of S, we easily conclude that the
point-set of the jth component of G - S is V.X W; with V;C V and

W C W. Moreover, V; N V @ and W; N W = () whenever z #j. Thus, we
have

k
2) ISI=mn— 25 mx,
i=1
where m; = |V;| and n; = |W;| for each i = 1, 2, ..., k. The right-hand side
of (2) is minimized by m =m, =...=my_; = l my =m—k+1and
ny=ny=..=n,_=1,n, =n—k+ 1. Hence

ISizrm—(k-D—-m-k+1Dn-k+1)
=(k-1D(m+n-k),

and so
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tHG)=1SI/k(G-8)=(k-D(m+n—-kK)/k=4(m+n-2).

The opposite inequality follows from Proposition 1.3 as G is rsgular of
degreem +n—2.

Propositions 1.2 and 1.3 indicate a relationship between toughness
and connectivity. Another indication of this relationship is given by:

Theorem 1.7. t(G?) = k(G).

Proof. Let G be a graph with connectivity k and let S be a point-cutset
in G2. Let V, V,, ..., V,, be the point-sets of components of G2 — .
For each pointu € Sand each i = 1, 2, ..., m, we set u € §; if and only if
there is a point v € V; adjacent to u in G. Obviously, each ; is a point-
cutset of G (it separates V; from the rest of G). Hence

» |S;1> k foreachi=1,2,...,m.

Moreover, each u € S belongs to at most one S;. Otherwise there would
be points v; € V; and v; € V; with i #j such that v is adjacent in G to
both v; and v;. Consequently, the points v; and v; would be adjacent in
G2, contradicting the fact that they belong to distinct components of
G2 — S. Thus we have

(4) i=#j=>S,~ﬁS,-=Q).

Combining (3) and (4) we have

m
1S1= 22 18;1= km =Kkk(G? - S).
i=1

Since § was an arbitrary set with k(G2 — §) > 1, G* is k-tough, which is
the desired result.

Corollary 1.8. If m is a positive integer and n = 2™, then t(G") > -;-nk:(G ).

Proof. We shal! proceed by induction on m. The case m =1 is ejuivalent
to Theorem 1.7. Next, if £(G?) = +oo, then t(G21) = +oo, If 1(G?) < too,



2. Toughress and hamiltoniz1 graphs 219
then by Theorem 1.7 and Proposition 1.3 we have

t(G2") 2 k(G™) > 2t(G")
which is the induction step fromm tom + 1.

Let us note that the inequality #(G") > 1nk (G) does not hold in gen-
eral. The graph G in Fig. 1 is 1-connected but its cube G3 = K, + K is
not %-toug,‘h. Actualiy, 8,(G3) = 3; using Proposition 1.4, we conclude
that #(G3) < 2.

Fig. 1.

2. Toughness and hamiltonian graphs

It is easy to see that every cycle is 1-tough. This observation and
Proposition 1.1 imply

Proposition 2.1. Every hamiltonian graph is 1-tough.

Unfortunately, the converse of Proposition 2.1 holds for graphs with
at most six points only. The nonhamiltonian graph H in Fig. 2 is 1-tough.
Let us note that H is a square of the graph G ‘n Fig. 1;as k(G) = 1,
Theorem 1.6 yields t (H) > 1. Nevertheless, the graphs which are not i-
tough do play a special role among nonhamiltonian graphs. Let us say
that a graph G is degree-majorized by a graph H if there is a one-to-one
correspondence f between the points of G and those of H such that, for
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Fig. 2.

each point u of G, the degree of u in G does not exceed the degree of
f(u) in H. Recently, I proved that every nonhamiitonian graph is degree-
majorized by a graph which is not 1-tough [5] (in fact, by

(K U Kyy_5) + K, with a suitable m < }p). This is a strengthening of
previous resits due to Dirac [7], Pésa [ 14} and Bondy [1].

Now let us return to our Proposition 2.1. Even though its converse
does not hold, one may wonder what additional conditions placed upon
a 1-tough graph G would imply the existence of a hamiltonian cycle in
G. As in our next conjeciure, such conditions may have the flavour of
Ramsey’s theorem.

Conjecture 2.2. If G is 1-tcugh, then either G is hamiltonian or its com-
plement G contains the graph F in Fig. 3.
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If this conjecture is true, then it is best possible in the sense that a
replacement of F by any other graph F' results in a conjecture which is
either weaker or false. To show this, it is sufficient t> observe that the
complement H of the nonhamiltoniar: 1-tough graph H in Fig. 2 consists
of the graph F with an added isolated point.

As every 1-tough graph is 2-connected (see Proposition 1.3), our Pro-
position 2.1 is a strengthening of the obvious implicition.

(5) G is hamiltonian = k(G) > 2.
Even a weakened converse of (5), i.e. the implication
k(G) > Ky = G is hamiltonian,

does not hold. Indeed, the complete bipartite graphs K,,,, with m <n
are m-connected but not 1-tough (and therefore not hamiltonian) — see
Proposition 1.5. However, it may well be that such a2 weakened converse
of Proposition 2.1 holds.

Conjecture 2.3. There exists ty such that every ty-tough graph is hamil-
tonian.

It was coujectured independently by Nash—Williams [12] and Plum-
mer [11, p. 569] that the square of every block (i.e., 2-connected graph)
is hamiltonian. This has been proved only recently by Fleischner |9].

Theorem 1.7 implies that the square of every block is 2-tough. Thus
a proof of Conjecture 2.3 with 7y = 2 would yield a strengthening of
Fleischner’s theorem. Actually, to strengthen Fleischner’s thecrera, it
would suffice to prove the slightly weaker conjecture stated belove. To
formulate this one, we need the notion of a neighborhood-connected
graph. This is a graph G such that the neighborhood of each point of G
induces a connected subgraph of G. It is easy to see that the square of
every graph is neighborhood-connected.

Conjecture 2.4. Every 2-tough neighborhood-connected graph is hamil-
tonian.
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In Section 5, we shall construct %-toug': t nb mitonian graphs. The
strongest form of Conjecture 2.3 for whichI1¢  know any counter-
example is the following:

Conjecture 2.5. Every t-tough graph with > > * is hamiltonian.

This conjecture is certainly valid for planar graphs. indeed, every -
tough graph with £ > 3 is 4-connected (Proposition 1.3) and by Tutte’s
theorem [16], every 4-connected planar graph is hamiltonian. By the
theorem of Watkins and Mesner [171, every t-tough graph with ¢ > 1 is
3-cyclable (that is, every three points lie on & ccrnmon cycle).

Recently, it has been proved that every graph with k > §, is hamilto-
nian [6]. Propositions 2.1 aud 1.2 show how to relate this theorem to
our concept of toughness. By Proposition 1.2, ail graphs satisfy either
kiBy<t<1lork/fy<1<torl<k/By< ¢ ByProposition 2.1, graphs
of the first kind are nonhamiltonian and, by the result of [6], graphs
of the third kind are hamiltonian.

Ther: may also be a relation between toughness and the concept of
pancyclic graphs (i.e., graphs containing cycles of every length /,

3 <1< p) introduced and studied in [2]. Actually, one can make

Conjecture Z.0. There exists ty such that every ty-tough graph is pan-
cyclic.

3. Toughness and %-factors

Conjecture 3.1. Let G be a graph with p vertices and let k be a positive
integer such that G is k-tough and kp is even. Then G has a k-factor.

t follows from Tutte’s matching theorem [15] that Conjecture 3.1
is valid with k = 1.

If Conjecture 2.5 is true, then every graph that is more than 3-tough
has a 2-factor. Actually, I even do nut know any counterexample to the
following:

1

Conjecture 3.2. Every %-tough. sraph has a 2-factor.



3. Toughness and k-factors 223

If this conjecture is true, then it is certainly the best possible as the
following set of examples shows.

Theorem 3.3. Given any t < 2, there is a t-tough graph having r.0 2-factor.

Proof. Let ¢ < 3 be given. Then there is a positive integer n such that
3n/(2n +1) > t. Take pairwise disjoint sets S = {5y, 5,,...,5,}, T=

{ti th, o tau1 L, R=1{r{, 1y, ..., 7541}, join each s; to all the other
points and each r; to every other r; as well as to the point ¢; with the
same subscript i. Call the resulting graph H. (If n = 1, we obtain the graph
H in Fig. 2.)

Let W be a point-cutset in H which minimizes | W|/k(H — ¥ }. Let
k=k(H—-W)and m =|W N R|. Obviously, W is a minimal set whose re-
moval from H results in a graph with k£ components. As W is a cutset, we
have S = W and m > 1. From the minimality of W we then easily con-
clude that TN W= and m < 2n. Then we have | Wl =n+m and
k(H—W)=m+ 1. Hence

(Wi n+m _ 3n

M= ca—w - N T T aned

>t

It is straightforward to see that H has no 2-factor. Indeed, iet us as-
sume the contrary, i.e., let F C H be regular of degree 2. Let us denote
by X the set of lines of F having &t least one endpoint in 7. Since T is
independent, we have | X| = 2| T|. On the other hand, there ar2 at most
218! lines in X having one endpoint in S and at most |R| lines in X hav-
ing one endpoint in R. Thus

4n+2=2|T|=|XI<2IS|+|RI=4n+1

which is a2 contradiction.

4. Line-toughness

Looking at our definition of toughness from a merely formal point
of view, one could wonder why we did not define a line-toug? ness
t*(@) of G by
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where X ranges over all the line-cutsets of G. The answer is given by the
following theorem; line-toughness is exactly one half of line-connectivity.

Theorem 4.1. t* = 1\,

Proof. Let G be a graph with line-connectivity A. Then there is a line-
cutset X'y of & with | X1 =\ and we have

*(G) < 1 Xl [k(G— Xg) < N

On the other hand, let X be a line-cutset of G minimizing
[X1/k(G — X). Let the components of G — X be Hy, H,, ..., H. For
eachi=1,2,...,k, let us denote by X f| the set of lines in X having an
endpoint in H;. Obviously, each X; is a line-cutset of G and so we have
[X;l>Xforeachi=1,2,..., k.
Moreover, X is a minimal line-cutset of G whose removal results in a

graph with k¥ components. Hence no line in X has both endpoints in the
same H; and so ve have

k
21Xi= 25 I1X;1> Ak
i=1
or

t*(G)=1X\/k= 3\

5. Toughness of inflations

Let G be an arbitrary graph. By the inflation G* of G we mean the
graph whose points are all ordered pairs (¢, x), where x is a line of G and
u is an endpoint of x; two points of &* are adjacent if they differ in ex-
actly one coordinate.

Theorem 5.1. Let G be an arbitrary graph without isolated points and
G* its inflation. If G # K,, then t(G*) = \(G) and k(G*) = A(G*) = N(G).

Proof. Let S be a point-cutset of G* minimizing |S|/k(G* — S); set
k = k(G* — S). Obviously, S is a minimal set whose removal from G*
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yields a graph with at least £ components. From this we easily conclude
that for each line x of G, S contains at most one point (&, x) of G*. De-
noting by X the set of all the lines x of G with (u, x} € S for some i1, we
then have | X| = |S|. If two points (u, x}, (v, ¥) of G* belong to distinct
components of G* — &, then necessarily u # v and u, v belong to distinct
components of G — X. Hence k(G — X) = k(G* — §) and Theorem 4.1
implies

(6)  H(G*)=ISI/k(G*— S)> IXI/k(G - X)>t*(G} = }A(G).

Next, if G # X,, then G* is not complete and so, by Proposition 1.3,
tH(G¥) < %K(G*). By Whitney’s inequality [18], k (G*) < A(G*). More-
over, there is a natural one-to-one mapping f frora the line-set of G into
the line-set of G*. If X is a cutset of G then f(X) is a cutset of G*.
Hence M(G*) < M(G) and we have

(M HEM<3r(GH) SFNEH) < FNE).

Combining (6) and (7), we c¢btain the desired result.
It is quite easy to see that a hamiltonian circait in G* induces a closed
spanning trail in G and vice versa. Hence we have:

Proposition 5.2. G* is hamiltonian if and only if G has an eulerian span-
ning subgraph.

This proposition and Theorem 5.1 yield:

Corollary 5.3. Let G be a cubic nonhamiltonian graph with N(G) = 3
Then its inflation G* is a cubic nonhamiltonian graph with t(G*) =
and N(G*) = 3.

Indeed, the inflation of a regular graph of degree # is a regular graph
of degree n. Moreover, an eulerian spanning subgraph of a cubic graph
is necessarily a hamiltonian cycle.

In particular, denoting by G, the Petersen graph and setting Gy . =
G} we obtain an infinite family G,, G5, ... of cubic nonhamiltonian
3 tough graphs The Petersen graph G is not 2-tough; onz can show
that t(G,) =$%. In the next section, we will prove that the number of
peints of any %-tough. cubic graph G with G # K, is divis ble by six.
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6. Toughness of regular graphs

Iet G be a regular graph of degree n with p points, wherep > n + 1
(so that G is not complete). Then k(G) < n and by Propcsition 1.3,
HG) < —n One may ask for which choice of » and p the equality
t(G) =4n can be attained. If n is even then every p works. Indeed, it is
easy to see that the graph C"/ % js i n-tough. Now, let » be odd and grea-
ter than one; then the sxtuatlo-n is dlffelenf

We already have two methods for constructing 3 n-tough regular graphs
of degree n. Firstly, if p =rs with r + 5 — 2 = n, then the graph K, X K|
with p points is regular of degree n and 3 n-tough (see Theorem 1.6).
Secondly, if p = nk for an even integer £ > n + 1, then there is a regular
graph H of degree n with k points and A(H) = n (the existence of H fol-
lows fror [8] or [4]). Its inflation H* has p points, is regular of degree
n and 3 n-tough (see Theorem 5.1).

However, it seems likely that for p sufficiently large and not divisible
by n there is no graph G with p points which is regular of degree # anc
3 n-tough. We will prove this for n = 3 and 'eave the cases n > 5 open.

Let us call a coloring of G balanced if all of its color classes have the
same size: otherwise the coioring is unbalar.ced.

Theorem 6.1. No cubic 2-tough graph admits an unbalanced 3-coloring.

Proof. Let G be a cubic 2-tough graph and et the point-set of G be p:r-
titioned into color classes R, S, T with

¢ IRI<ISI<ITI

Let | R} be as smail as possible. Then each u € R is adjacent to some
vE S (otherwise R* =R — {u}, S*=SU {u} and T* = T would be color
classes with |R*| < |R|) and similarly, each u € R is adjacent to some
v € T. Hence there is a partition R = Rg U Ry such that each u € Rg is
adjacent to exactly one point in S and each u € R is adjacent to exactly
one point in T, Obviously, the subgraph of G induced by S U R has
exactly |§| components. Thus,

k(G—(TURy)) =181,
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and similarly

k(G- (SURg)=ITI.

We have | S| > 2 (otherwise (8) implies |R U S| < 2, which is impos-
sible since each point in T is adjacent to three points in R U §) and by
(8) also | T'| = 2. Since G is 3-tough, we have

ITURSI = 21S]
and

ISU Rgl = 3IT).

Adding these two inequalities we obtain |R| + S| +|T| > 28, +1TD)
or | K> 3(IS| +|T\) which together with (8) implies |R| =S| =T).

Corollary 6.2. A necessary and sufficient condition for the existence of
a cubic 3-tough graph with p points is that either p = 4 or p is divisible
by six.

Indeed, K, and K, X K; are $-tough and we can construct cubic
%-tough graphs with 6k points (k > 1) by inflations as described above.
On the other hand, let G be a cubic 3-tough graph with more than four
points. Obviously, the number p of points of G must be even. By Brooks’
theorem [3], G admits a 3-coloring. By Theorem 3.4, this 3-coloring
must be balanced and therefore p divisible by 3.
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