Spaces of Distributions of Besov and Triebel-Lizorkin Type for the Fourier-Bessel Transform

D. I. Cruz-Báez

Departamento de Economía Aplicada, Universidad de La Laguna,
38071 La Laguna (Tenerife), Spain
E-mail: dicruz@ull.es

and

J. Rodríguez

Departamento de Análisis Matemático, Universidad de La Laguna,
38271 La Laguna (Tenerife), Spain
E-mail: joroguez@ull.es

Submitted by Brian Thomson

Received May 19, 1999

In this paper we study new Besov and Triebel-Lizorkin spaces on the basis of the Fourier-Bessel transformation. © 2001 Academic Press

Key Words: Fourier-Bessel transform; Bessel differential operators; Besov type spaces; Triebel-Lizorkin type spaces.

1. INTRODUCTION

The Fourier-Bessel transform is defined by ([2])

\[h_{\mu}(f)(y) = \int_{0}^{\infty} (xy)^{-\mu} J_{\mu}(xy) f(x) x^{2\mu+1} \, dx \quad (y \in I = (0, \infty)), \]

where \(J_{\mu} \) represents the Bessel function of the first kind and order \(\mu \geq -1/2 \) [15].

1To whom correspondence should be addressed.
We denote by L^p_1 ($1 \leq p < \infty$) the space of the measurable functions f defined on I such that
\[
\|f\|_{p, \mu} = \left(\int_0^\infty |f(x)|^p x^{2\mu+1} \, dx \right)^{1/p} < \infty.
\]
and by L^∞_μ the space of the essentially bounded measurable functions on I. We write L^p and $\|\cdot\|_p$ instead of L^p_1 and $\|\cdot\|_{p, \mu}$, respectively, when $\mu = -1/2$. It is known ([8, p. 997]) that h_μ is a continuous mapping from L^1_1 into L^∞_μ.

F. M. Cholewinski [4], D. T. Haimo [7], and I. I. Hirschman, Jr. [9] investigated a convolution operation associated with the Fourier-Bessel transform. To make the study of the Besov type spaces, the generalized convolution $\#$ plays an important role. If $f, g \in L^1_1$, the generalized convolution, $\#$ of f and g, is defined by
\[
(f \# g)(x) = \int_0^\infty f(y)(\tau_x g)(y) \, dy(y), \quad x \in I,
\]
where $dy(x) = x^{2\mu+1} dx$ and the generalized translation operator τ_x, is defined by
\[
(\tau_x g)(y) = \int_0^\infty D_\mu(x, y, z) g(z) \, dz(y)
\]
being $D_\mu(x, y, z) = \frac{2^{2\mu-1}y(\mu + 1)}{\gamma(1/2 + \mu)} (x y z)^{-2\mu} A(x, y, z)^{2\mu-1}(x, y, z \in I)$, where $A(x, y, z)$ is the area of a triangle with sides x, y, z, if the triangle exists, and $A(x, y, z) = 0$ otherwise. We denote by Δ_μ to the Bessel differential operator $x^{-\mu-1}Dx^{2\mu+1}D$. It is well known that for a suitable function u
\[
h_\mu(\Delta_\mu u)(x) = -x^2 h_\mu u(x). \quad (1.1)
\]

In this paper, the work is realized in the following space of generalized functions \mathcal{A}, defined by G. Altenburg in [1], that consists of those smooth, complex-valued functions $f = f(x), \quad x \in I = (0, \infty)$, such that the quantities
\[
\gamma_{m, k}(f) = \sup_{x \in I} |x^m (x^{-1} D)^k f(x)| \quad (m, k \in \mathbb{N})
\]
are finite. \mathcal{A} is a Fréchet space equipped with the topology generated by the family of seminorms $(\gamma_{m, k})_{(m, k) \in \mathbb{N} \times \mathbb{N}}$. The dual space of \mathcal{A} is denoted by \mathcal{A}'.

Our paper is devoted to the study of the spaces of Besov, Nikol’skij, and Triebel-Lizorkin type defined on the basis of the Fourier-Bessel transform.
Such a Besov type space $B^s_{p,q,\mu}$ was introduced by Altenburg in [2]. We first define the Nikol’skij and Triebel-Lizorkin spaces $b^s_{p,q,\mu}$ and $F^s_{p,q,\mu}$ and give a characterization of $B^s_{p,q,\mu}$ in terms of $b^s_{p,q,\mu}$ and an embedding theorem between $B^s_{p,q,\mu}$ and $F^s_{p,q,\mu}$. Then, we prove a one-to-one mapping property of the Hankel potentials spaces W^s_{μ} given in [2], [5], or [10] and of the Besov type spaces $B^s_{p,q,\mu}$ that together with certain relation of density and some properties of Rademacher functions [12], [17] are used to characterize W^s_{μ} in terms of the Triebel-Lizorkin spaces $F^s_{p,q,\mu}$. In particular, we characterize a Sobolev type space L^s_{μ} Application is given to solve a differential equation involving the Bessel operator Δ.

2. NIKOL’SKIJ AND BESOV TYPE SPACES

In this section, we define Besov type spaces [2], Nikol’skij type spaces, and Triebel-Lizorkin type spaces and we demonstrate some relations among them.

Definition 2.1. Let $s \in \mathbb{R}$, for $1 \leq p < \infty$ we define the sequence spaces l^s_p as

$$l^s_p = \left\{ \xi : \xi = (\xi_j)_{j=0}^{\infty}, \xi_j \text{ complex}, \|\xi\|_{l^p} = \left(\sum_{j=0}^{\infty} (2^{jp} |\xi_j|^p) \right)^{1/p} < \infty \right\}.$$

and for $p = \infty$ we have

$$l^s_\infty = \left\{ \xi : \xi = (\xi_j)_{j=0}^{\infty}, \xi_j \text{ complex}, \|\xi\|_\infty = \sup_j 2^{jp} |\xi_j| < \infty \right\}. \quad (2.1)$$

In the case of $s = 0$ we denote l^0_p by l_p.

Definition 2.2. Let Φ be the collection of all systems $\{\varphi_j(x)\}_{j=0}^{\infty} \subset \mathcal{H}$ with the following properties:

(i) $\varphi_j(x) \in \mathcal{H}$, $h_\mu \varphi_j(x) \geq 0$ for $j = 0, 1, 2, 3, \ldots$

(ii) $\text{supp } h_\mu \varphi_j \subset \{x : 2^j - 1 \leq x \leq 2^{j+1} - 1\}$ for $j = 1, 2, 3, \ldots$, and $\text{supp } h_\mu \varphi_0 \subset \{x : x \leq 1\}$.

(iii) There exists a positive number c_1 such that

$$\left| (x^{-1}D)^k h_\mu \varphi_j(x) \right| \leq c_1 x^{-k} \quad (2.3)$$
for \(j = 1, 2, \ldots; 0 \leq k \leq \lfloor \mu \rfloor + 2 \) and \(x \in I \).

(iv) \(\sum_{j=0}^{\infty} h_{\mu} \varphi(x) = 1 \) for every \(x \in I \).

Proceeding as in [14, pp. 171–172] we can see that \(\Phi(I) \) is not empty.

The definitions of the Besov type spaces \(B_{p,q,\mu} \) (see [2]) and Nikol’skij type spaces are the following.

Definition 2.3. Let \(1 < p < \infty, 1 \leq q \leq \infty, \mu \geq -1/2 \) and \(s \in \mathbb{R} \). Then for any system of functions \(\{ \varphi_{j}\}_{j=0}^{\infty} \in \Phi \), the Besov type spaces are defined by

\[
B_{p,q,\mu} = \left\{ f \in \mathcal{D}': \|f\|_{B_{p,q,\mu}} = \|\{\varphi_{j}\#f\}\|_{q(L^{p})} < \infty \right\},
\]

being

\[
\| \cdot \|_{q(L^{p})} = \left(\sum_{j=0}^{\infty} (2^{j} \| \cdot \|_{L^{p}})^{q} \right)^{1/q}.
\]

Definition 2.4. For \(s \in \mathbb{R}, 1 < p < \infty, 1 \leq q \leq \infty, \mu \geq -1/2 \), we define

\[
b_{p,q,\mu} = \left\{ f : f \in \mathcal{D}', f = \sum_{j=0}^{\infty} a_{j}(x), \|a_{j}\|_{q(L^{p})} \leq\right.
\]

\[
= \left(\sum_{j=0}^{\infty} (2^{j} \|a_{j}(x)\|_{L^{p}})^{q} \right)^{1/q} < \infty \right\},
\]

and for \(q = \infty \), we set

\[
b_{p,q,\mu} = \left\{ f : f \in \mathcal{D}', f = \sum_{j=0}^{\infty} a_{j}(x), \|a_{j}\|_{q(L^{p})} \right.
\]

\[
= \sup_{i} 2^{i} \|a_{i}(x)\|_{L^{p}} < \infty \right\},
\]

where \(\text{supp} h_{\mu} a_{i} \subset \{ \xi : \sqrt{2^{i-1}} - 1 \leq \xi \leq \sqrt{2^{i+1}} - 1 \} \) for \(i = 1, 2, \ldots \) and \(\text{supp} h_{\mu} a_{0} \subset \{ \xi : \xi \leq 1 \} \).

By \(f = \sum_{i=0}^{\infty} a_{i}(x) \) will be understood that \(\sum_{i=0}^{\infty} a_{i}(x) \) converges in \(\mathcal{D}' \) to \(f \). The norm of \(b_{p,q,\mu} \) comes defined by

\[
\|f\|_{b_{p,q,\mu}} = \inf_{f = \sum a_{i}} \|a_{i}\|_{q(L^{p})}.
\]

Now, we can state the following theorem.
THEOREM 2.1. Let \((\varphi_j)^e_{j=0} \in \Phi\), \(s \in \mathbb{R}\), \(1 < p < \infty\), \(1 \leq q \leq \infty\), and \(\mu \geq -1/2\). Then \(B^s_{p, q, \mu} \equiv b^s_{p, q, \mu}\).

Proof. First, we prove that \(B^s_{p, q, \mu} \subset b^s_{p, q, \mu}\).

Let \(f \in B^s_{p, q, \mu}\). Given \((\varphi_j)^e_{j=0} \in \Phi\) we know that

\[
\left(\sum_{j=0}^{\infty} h_{\mu} \varphi_j \right)(\xi) = 1.
\]

Then

\[
f = h_{\mu} h_{\mu} f = h_{\mu} \left(\sum_{j=0}^{\infty} h_{\mu} \varphi_j \cdot h_{\mu} f \right) = \sum_{j=0}^{\infty} h_{\mu}(h_{\mu} \varphi_j \cdot h_{\mu} f) = \sum_{j=0}^{\infty} \varphi_j \# f.
\]

Therefore, taking \(a_j = \varphi_j \# f\), we achieved

\[
\|f\|_{b^s_{p, q, \mu}} \leq \|a_j\|_{L^q(\mathcal{D})} = \|\varphi_j \# f\|_{L^q(\mathcal{D})} = \|f\|_{b^s_{p, q, \mu}}.
\]

Then, we have \(B^s_{p, q, \mu} \subset b^s_{p, q, \mu}\).

Now, we will see that \(b^s_{p, q, \mu} \subset B^s_{p, q, \mu}\).

Let \(f \in b^s_{p, q, \mu}\) and \(f = \sum_{i=0}^{\infty} a_i(x)\) in the sense of the convergence in \(\mathcal{D}'\).

Consider \((\varphi_j)^e_{j=0} \in \Phi\); then

\[
(\varphi_j \# f)(x) = \sum_{i=0}^{\infty} (\varphi_j \# a_i(x)) = \sum_{i=j-1}^{j+1} (\varphi_j \# a_i)(x)
\]

since \(\varphi_j \# a_i = h_{\mu}(h_{\mu} \varphi_j \cdot h_{\mu} a_i) = 0\), for \(i > j + 1\) and \(i < j - 1\). Furthermore, if we define \(\varphi_j = a_j = 0\) for \(j < 0\), we have

\[
\|f\|_{b^s_{p, q, \mu}} = \|\varphi_j \# f\|_{L^q(\mathcal{D})} \leq \sum_{r=-1}^{1} \|\varphi_j \# a_{j+r}\|_{L^q(\mathcal{D})}.
\]

On the other hand, applying [6, Corollary 1.2, p. 656] with \(1 < p < \infty\) we get

\[
\|\varphi_j \# a_{j+r}\|_{L^q} \leq c_1 \|a_{j+r}\|_{L^q}
\]

being \(c_1\) a suitable positive constant.

Now, taking the norm of \(L^q_{\mathcal{D}}\) in (2.6) it follows that

\[
\|\varphi_j \# a_{j+r}\|_{L^q(\mathcal{D})} \leq c_1 \|a_{j+r}\|_{L^q(\mathcal{D})}.
\]

(2.7)}
Then from (2.5) we obtain
\[
\|f\|_{B^{s}_{p},v,a} = \left\| \left(\varphi_{j} \# f \right) \right\|_{L^{p}(\mathbb{R}^{d})} \leq c_{1} \sum_{r=-1}^{1} \|a_{j+r}\|_{L^{p}(\mathbb{R}^{d})}
\]
\[
\leq c_{2} \left\| a_{j} \right\|_{L^{p}(\mathbb{R}^{d})}.
\]
(2.8)

Taking the infimum on the right-hand side of (2.8) we get
\[
\|f\|_{B^{s}_{p},v,a} \leq c_{2} \cdot \|f\|_{B^{s}_{p},v,a}.
\]
Thus Theorem 2.1 is established.

Remark 2.1. Note that by Theorem 2.1, the spaces $B^{s}_{p,q,\mu}$ are independent of the functions $\{\varphi_{j}\}_{j=0}^{\infty} \in \Phi$.

We introduce new Triebel-Lizorkin type spaces as follows.

Definition 2.5. Let $1 < p < \infty$, $1 \leq q \leq \infty$, $\mu \geq -1/2$ and $s \in \mathbb{R}$. Then, for any system of functions $\{\varphi_{j}\}_{j=0}^{\infty} \in \Phi$, the Triebel-Lizorkin type spaces are defined by
\[
F^{s}_{p,q,\mu} = \left\{ f \in \mathcal{S}' : \|f\|_{F^{s}_{p,q,\mu}} = \left\| \left(\varphi_{j} \# f \right) \right\|_{L^{p}(\mathbb{R}^{d})} < \infty \right\},
\]
where
\[
\| \cdot \|_{L^{p}(\mathbb{R}^{d})} \right\|_{l^{q}} = \left\| \left(\sum_{j=0}^{\infty} (2^{j}\xi)^{\mu} \right)^{1/q} \right\|_{L^{p}(\mathbb{R}^{d})}.
\]
(2.9)

Theorem 2.2. Let $1 < p, q < \infty$, $\mu \geq -1/2$ and $s \in \mathbb{R}$, then
\[
B^{s}_{p,\min(p,q),\mu} \subset F^{s}_{p,q,\mu} \subset B^{s}_{p,\max(p,q),\mu},
\]
(2.10)
where \subset means continuous embedding.

Proof. We must demonstrate that
\[
B^{s}_{p,1,\mu} \subset F^{s}_{p,q,\mu} \subset B^{s}_{p,q,\mu},
\]
(2.11)
for $p \leq q$, and
\[
B^{s}_{p,q,\mu} \subset F^{s}_{p,q,\mu} \subset B^{s}_{p,\mu},
\]
(2.12)
for $q \leq p$. We will use the monotony of the l^{s}_{q} spaces and the trivial equality $B^{s}_{p,1,\mu} = F^{s}_{p,1,\mu}$.

First we will prove (2.11). Let \(f \in F_{p, q, \mu} \) and \(\{ \phi_j \}_{j=0}^\infty \in \Phi \),

\[
\|f\|_{B^r_{p, q, \mu}} = \left\| \left(\sum_{j=0}^\infty 2^{jr} \| \phi_j \# f \|_{L_{p, q}} \right)^{1/q} \right\|_{L_{p, q}}^{1/p} \\
= \left\| \left(\sum_{j=0}^\infty 2^{jr} \int_0^\infty |\phi_j \# f(x)|^q \, d\gamma(x) \right)^{1/q} \right\|_{L_{p, q}}^{1/p} \\
= \left\| \left(\int_0^\infty 2^{jr} |\phi_j \# f(x)|^q \, d\gamma(x) \right)^{1/q} \right\|_{L_{p, q}}^{1/p}.
\]

Then, using Minkowski's inequality we obtain

\[
\|f\|_{B^r_{p, q, \mu}} \leq \left(\int_0^\infty \left(\sum_{j=0}^\infty 2^{jr} |\phi_j \# f(x)|^q \right)^{1/q} \, d\gamma(x) \right)^{1/p} \\
= \left\| \left(\sum_{j=0}^\infty 2^{jr} \| \phi_j \# f \|_{L_{p, q}} \right)^{1/q} \right\|_{L_{p, q}}^{1/p} \\
= \| \{ \phi_j \# f \} \|_{L_{p, q}} = \| f \|_{F_{p, q, \mu}} \leq \| \{ \phi_j \# f \} \|_{L_{p, q}} \\
= \| \{ \phi_j \# f \} \|_{L_{p, q}} = \| f \|_{B^r_{p, q, \mu}}.
\]

Now, we prove (2.12). For \(f \in B^r_{p, q, \mu} \) we have

\[
\|f\|_{B^r_{p, q, \mu}} = \left\| \left(\sum_{j=0}^\infty 2^{jr} \| \phi_j \# f \|_{L_{p, q}} \right)^{1/q} \right\|_{L_{p, q}}^{1/p} \\
= \left\| \left(\sum_{j=0}^\infty 2^{jr} \| \phi_j \# f \|_{L_{p, q}} \right)^{1/q} \right\|_{L_{p, q}}^{1/p} \\
= \| \{ \phi_j \# f \} \|_{L_{p, q}} = \| f \|_{B^r_{p, q, \mu}}.
\]

3. A NEW CHARACTERIZATION OF THE HANKEL POTENTIALS SPACES

In this section we prove a lifting property, a classical equality for the Fourier transform ([14]), characterizing the Hankel potentials in terms of
the Triebel-Lizorkin spaces and also we see an application. For this we need to recall the definition of Hankel potentials given in [2, 5].

The definition of Hankel potentials H^s_μ of a function $u \in \mathscr{S}$ of order $s, s \in \mathbb{R}$, $(\mu \geq -1/2)$ is

$$
(H^s_\mu u)(x) = h_\mu \left((1 + x^2)^{-s/2} h_\mu(u) \right)(x).
$$

For $s \in \mathbb{R}$ and $1 \leq p < \infty$ in ([2, Definition 5, p. 55], [5, Definition 2.3, p. 86]) we can see the Hankel potentials spaces

$$
W^{s, p}_\mu = W^{s, p}_\mu(I) = \{ \phi \in \mathscr{S} : H^s_\mu \phi \in L^p(I) \}.
$$

The norm in $W^{s, p}_\mu(I)$ is defined by

$$
\| \phi \|_{s, p, \mu} = \| \phi \|_{W^{s, p}_\mu} = \| H^s_\mu \phi \|_{p, \mu}.
$$

Moreover, \mathscr{S} is dense in $W^{s, p}_\mu(I)$ (See [2, 5]).

Now, we see in the following theorem a lifting property.

Theorem 3.1. Let $\sigma, s \in \mathbb{R}$, $\mu \geq -1/2$, $1 < p < \infty$, and $1 \leq q < \infty$. Then H^s_μ is a linear bounded one-to-one operator from $W^{s, p}_\mu$ onto $W^{s+\sigma, p}_\mu$ and from $B^s_{p, q, \mu}$ onto $B^{s+\sigma, q, \mu}$.

Proof. Consider $\{ \phi_j \}_{j=0}^\infty \in \Phi$. We define $\{ \psi_j \}_{j=0}^\infty$ as follows

$$
\psi_j = \phi_j \# h_\mu \left((1 + x^2)^{\sigma/2} 2^{j\sigma} \right).
$$

A straightforward manipulation leads to $\{ \psi_j \}_{j=0}^\infty \in \Phi$. Thus

$$
H^s_\mu f \# \psi_j = h_\mu \left(h_\mu \psi_j \cdot h_\mu H^s_\mu f \right) = h_\mu \left(h_\mu \psi_j \cdot (1 + x^2)^{-\sigma/2} h_\mu f \right) = h_\mu \left(2^{j\sigma} h_\mu \psi_j \cdot h_\mu f \right) = 2^{j\sigma} f \# \psi_j.
$$

Now, the result follows immediately as in [14, pp. 180–181].

By [2, Satz 1, p. 57], Theorem 2.1 and Theorem 2.2 we obtain the following theorem.

Theorem 3.2. Let $s \in \mathbb{R}$, $1 < p < \infty$, $1 \leq q < \infty$, $\mu \geq -1/2$. Then \mathscr{S} is a dense in $b^s_{p, q, \mu}$, and if $1 < p, q < \infty$, \mathscr{S} is dense in $F^s_{p, q, \mu}$.

To obtain a new characterization of the Hankel potentials spaces, we need to prove in advance the following lemma.

Lemma 3.1. Let $s \in \mathbb{R}$, let $\{ \phi_j \}_{j=0}^\infty \in \Phi$ and let $\{ r_j \}_{j=0}^\infty$ be the Rademacher functions (see [12, p. 104] or [17, Chapter V, Theorem 8.4, p. 213]). Then, for every p with $1 < p < \infty$ and for all $t \in (0, 1)$, there are some constants A_t,

\(i = 1, 2,\) such that
\[
\|h_\mu(m_\mu h_\mu f)\|_{p, \mu} \leq A_i \|f\|_{p, \mu},
\]
being
\[
m_1(x) = \sum_{j=0}^{\infty} 2^j r_j(t)(1 + x^2)^{-s/2} h_\mu \varphi_j(x)
\]
and
\[
m_2(x) = \left(\sum_{j=0}^{\infty} (h_\mu \varphi_j)^2(x) \right)^{-1}.
\]

Proof. We can see without difficulty that \(m_1\) satisfies
\[
|(x^{-D})^k m_1(x)| \leq A_s x^{-k},
\]
for \(k = 0, 1, \ldots, [\mu] + 2\) and \(i = 1, 2\). Then applying [6, Corollary 1.2, p. 656] we obtain the desired result.

Next, we prove that for particular cases the Triebel-Lizorkin type spaces are reduced to the Hankel potentials spaces.

Theorem 3.3. If \(s \in \mathbb{R}, \mu \geq -1/2\) and \(1 < p < \infty\) we have
\[
F_{s, p, 2, \mu}(I) = W_{s, p, 2}^\mu(I),
\]
where \(\|f\|_{W_{s, p, 2}^\mu(I)}\) is an equivalent norm in \(F_{s, p, 2, \mu}(I)\).

Proof. We shall see that there exist \(c_1, c_2\) positive constants such that
\[
c_1 \|f\|_{s, p, \mu} \leq \left(\sum_{j=0}^{\infty} 2^{j/2} |\varphi_j|^2 \right)^{1/2} \leq c_2 \|f\|_{s, p, \mu}.
\] (3.1)

By Theorem 3.2 we know that \(\mathcal{H}\) is dense in \(F_{s, p, 2, \mu}\) for \(1 < p < \infty\). Then, it is not difficult to see that the functions \(f \in L^p_{\mu}\) with \(\text{supp } h_\mu f\) compact are dense both in \(W_{\mu, p}^s\) and in \(F_{s, p, 2, \mu}\) for \(1 < p < \infty\). Therefore it is enough to prove (3.1) for functions of this type. Note that in this case the infinite sum in (3.1) is actually finite.

Initially, we will prove the estimate on the right-hand side.

Let \(f \in W_{\mu, p}^s\) then \(f = G_\xi \# g\); i.e.,
\[
h_\mu f(\xi) = (1 + \xi^2)^{-s/2} h_\mu g(\xi).
\]
Applying Lemma 3.1 we have for all \(t \in (0, 1) \)

\[
\left\| \sum_{j=0}^{\infty} r_j(t) 2^{j/\varphi_j} f \right\|_{p, \mu} \leq A_1 \|g\|_{p, \mu} = A_1 \|f\|_{p, \mu}.
\]

Thus, it follows that

\[
\int_0^1 \left\| \sum_{j=0}^{\infty} r_j(t) 2^{j/\varphi_j} f \right\|_{p, \mu} \, dt \leq A_1 \|f\|_{p, \mu}. \tag{3.2}
\]

Using the right-hand inequality of ([12, p. 104] or [17, Chapter V, Theorem 8.4, p. 213]) with \(p = 1 \) and the Minkowski’s inequality we obtain

\[
\left\| \left(\sum_{j=0}^{\infty} \left| 2^{j/\varphi_j} f \right|^2 \right)^{1/2} \right\|_{p, \mu} \leq c \left\| \int_0^1 \left(\sum_{j=0}^{\infty} r_j(t) 2^{j/\varphi_j} f \right) \, dt \right\|_{p, \mu}
\]

\[
\leq c \left\| \int_0^1 \sum_{j=0}^{\infty} r_j(t) 2^{j/\varphi_j} f \right\|_{p, \mu} \, dt.
\]

Now, by (3.2) we have

\[
\left\| \left(\sum_{j=0}^{\infty} \left| 2^{j/\varphi_j} f \right|^2 \right)^{1/2} \right\|_{p, \mu} \leq c \|f\|_{p, \mu},
\]

being \(c \) a suitable positive constant.

Therefore we achieve that \(f \in F_{p, \mu}^s \).

Now, we will see the converse inequality. For this we will use duality. Let \(f \in F_{p, \mu}^s \) and

\[
k = h_\mu \left(\sum_{j=0}^{\infty} \left(h_\mu \varphi_j \right)^2 \cdot h_\mu g \right).
\]

Applying Lemma 3.1 with \(m_2(x) = (\sum_{j=0}^{\infty} (h_\mu \varphi_j)^2)^{-1} \) we obtain

\[
\|g\|_{p, \mu} = \left\| h_\mu \left(\sum_{j=0}^{\infty} \left(h_\mu \varphi_j \right)^2 \cdot h_\mu g \right) \right\|_{p, \mu}
\]

\[
\leq A_2 \left\| h_\mu \left(\sum_{j=0}^{\infty} \left(h_\mu \varphi_j \right)^2 \cdot h_\mu g \right) \right\| = A_2 \|k\|_{p, \mu}. \tag{3.4}
\]
Now, consider \(u \in L^q_q(I) \) to be a function such that \(\|u\|_{q,\mu} = 1 \), supp \(h_\mu u \) is compact \((1/p + 1/q = 1) \), and

\[
\int_0^\infty u(x)k(x)\,d\gamma(x) \geq \frac{1}{2}\|k\|_{p,\mu}.
\]
(3.5)

Let \(w \) a function defined by \(h_\mu w(\xi) = (1 + \xi^2)^{\mu/2}h_\mu u(\xi) \); i.e., \(u = G_\mu w \) and \(f = G_\mu g \), as above, so that \(h_\mu f \cdot h_\mu w = h_\mu g \cdot h_\mu u \). Then from (3.3)–(3.5) we obtain

\[
\|f\|_{s,\mu} = \|g\|_{p,\mu} \leq c \int_0^\infty u(x)k(x)\,d\gamma(x) = c \int_0^\infty h_\mu u(\xi)h_\mu k(\xi)\,d\gamma(\xi)
\]

\[
= c \int_0^\infty h_\mu u(\xi) \sum_{j=0}^\infty (h_\mu \varphi_j)^2h_\mu g(\xi)\,d\gamma(\xi)
\]

\[
= c \int_0^\infty \sum_{j=0}^\infty (2^{-j}\mu f(\xi)(h_\mu \varphi_j)(\xi))
\]

\[
\times (2^{-j}(h_\mu w)(\xi)(h_\mu \varphi_j)(\xi))\,d\gamma(\xi),
\]

for certain constants \(c > 0 \). Hence, by Plancherel's formula and the Cauchy and Hölder inequalities we get

\[
\|f\|_{s,\mu} = c \int_0^\infty \sum_{j=0}^\infty \left(2^{-j}\mu \varphi_j f(x)(\varphi_j \#w)(x)\right)\,d\gamma(x)
\]

\[
\leq c \int_0^\infty \left(\sum_{j=0}^\infty \left(2^{-j}\mu \varphi_j f(x)\right)^2\right)^{1/2}
\]

\[
\times \left(\sum_{j=0}^\infty \left(2^{-j}(\varphi_j \#w)(x)\right)^2\right)^{1/2}\,d\gamma(x)
\]

\[
\leq c \left\| \left(\sum_{j=0}^\infty 2^{-j}\mu |\varphi_j \#f|^2\right)^{1/2} \right\|_{p,\mu} \left\| \left(\sum_{j=0}^\infty 2^{-j}\mu |\varphi_j \#w|^2\right)^{1/2} \right\|_{p,\mu}. (3.6)
\]

Then by the right-hand side of inequality of (3.1) we achieve

\[
\left\| \left(\sum_{j=0}^\infty 2^{-j}\mu |\varphi_j \#w|^2\right)^{1/2} \right\|_{q,\mu} \leq c_2 \|w\|_{-s,q,\mu} = c_2 \|u\|_{q,\mu} = c_2. (3.7)
\]

Therefore, combining (3.6) and (3.7) the proof is finished.
As a consequence of Theorem 3.3 we obtain the following results.

Corollary 3.1. If \(s \in \mathbb{N} \) and \(1 < p < \infty \) then \(F^{2s}_{p,2,\mu}(I) = L_{\mu}^{s,p}(I) \), where

\[
L_{\mu}^{s,p}(I) = \{ T \in \mathcal{H}' : T \in L_{\mu}^{1,loc} \text{ and } \Delta_{\mu}^{j}T \in L_{\mu}^{p} \text{, } 0 \leq j \leq s \}.
\]

Proof. It follows from Theorem 3.3 and of the equality (known for the Fourier transform as Calderón’s theorem) given in [5]; i.e., \(L_{\mu}^{s,p} = W_{\mu}^{2s,p} \) for \(1 < p < \infty \).

Moreover by Theorem 3.3 and using Theorem 2.2 we can obtain similar results to those previously obtained in [13, Theorem 15] and [12, p. 155, Theorem 5] for the Fourier transform. Namely, for \(s \in \mathbb{R} \), we have

\[
B_{p,2,\mu}^{s} \subset W_{\mu}^{s,p} \subset B_{p,\mu}^{s}, \quad 2 \leq p < \infty, \quad (3.8)
\]

\[
B_{p,\mu}^{s} \subset W_{\mu}^{s,p} \subset B_{p,2,\mu}^{s}, \quad 1 < p \leq 2. \quad (3.9)
\]

Finally, we give an application to solve a differential equation.

Theorem 3.4. Let \(f \in B_{p,q,\mu}^{s} \). Then there exists \(u \in \mathcal{H}' \) such that

\[
(E - \Delta_{\mu})^m u = f,
\]

where \(E \) is the identity operator and \(m \in \mathbb{N} \setminus \{0\} \).

Proof. Consider \(f \in B_{p,q,\mu}^{s} \). We want to obtain a distribution \(u \in \mathcal{H}' \) such that

\[
(E - \Delta_{\mu})^m u = f. \quad (3.10)
\]

Applying the Fourier-Bessel transform and by (1.1) we obtain

\[
(1 + \xi^2)^k h_{\mu}u = h_{\mu}f \text{ in } \mathcal{H}'.
\]

Then \(u = h_{\mu}(1 + \xi^2)^{-m}h_{\mu}f = H_{\mu}^{2m}f \) and by Theorem 3.1 we have that the solution of (3.10) as \(u \in B_{p,q,\mu}^{s+2m} \).

Acknowledgments

The authors are thankful to Professor A. A. Kilbas for his valuable comments and suggestions.

References

2. G. Altenburg, Eine Realisierung der Theorie der abstrakten Besov-Räume $B_s^p(A)$ $(s > 0, 1 \leq p \leq \infty)$ und der Lebesgue-Räume $H_{p,n}^s$ auf der Grundlage Besselscher Differentialoperatoren, Z. Anal. Anwendungen 3, No. 1 (1984), 43–63.

