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1. INTRODUCTION 

In this paper, we consider the following nonlinear Lyapunov systems of 
equations of the form 

T’(t) = A(t) T(t) + T(t) B(r) + F(‘(t, T(t)), a<t<b, (1.1) 

where A(t), B(t), and T(t) are square matrices of order IZ. We assume that 
components of A, B, and T are continuous functions on [a, b] and 
F:[a,b]xR”““+R”“” is continuous. We also assume that F(t, 0) = 0 on 
[a, b]. We seek a solution T(t) of (1.1) satisfying the following general 
boundary conditions 

MT(a) + NT(b) = CL, (1.2) 

(or ~~=,M,T(t,)=cx; here a=t,<t,< . . . <t,=b) where M,NER”“” 
(constant square matrices of order n) and u E R” x n (or Mi E R” x “). 

Boundary value problems (1.1) and (1.2) attracted the attention of such 
mathematicians as F. V. Atkinson [l], R. Bellman [2], et al., but its 
closed form solution is as yet unavailable. The problem (1.1) satisfying the 
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boundary conditions (1.2) naturally arises in a number of areas of Control 
Engineering, Dynamical Systems, Eco and Ecological Systems. 

This paper is organized as follows: In Section 2, we develop the variation 
of parameters formula for (1 .l ). Using this formula, we obtain our main 
existence and uniqueness theorems in Section 3. The results obtained are 
for the most part not known although we obtain novel results in some 
special cases. The results obtained in Section 2 pave a way for studying 
stability, asymptotic stability, uniform (asymptotic) stability, strong 
stability, restrictive stability, Lipschitz stability, etc. for the nonlinear 
Lyapunov system of first order equations. Work in this direction is in 
progress. 

2. GENERAL SOLUTION OF THE NONLINEAR SYSTEM 

In this section, we establish the general solution of the nonlinear 
Lyapunov system in terms of the fundamental matrices. Throughout this 
paper Y(t) stands for a fundamental matrix solution of the system T’ = AT 
and Z(t) stands for a fundamental matrix solution of T’(t) = B*(t) T(t) 
(* refers to the transpose of the complex conjugate matrix). We now 
present the following theorems: 

THEOREM 2.1. Any solution oj 

T’(t) = A(t) T(t) + T(t) B(t) (2.1) 

is of the form T(t) = Y(t) CZ*(t), where C is a constant square matrix of 
order n. 

ProoJ It can easily be verified that T(t) = Y(t) CZ*(t) is a solution of 
(2.1). To prove that every solution of (2.1) is of this form, let T be a solu- 
tion and let K be a square matrix of order n defined by K(t) = Y-‘(t) T(t). 
Then T(t)= Y(t) K(t). Now T(t)= Y(t) K(t)- Y’(t) K(t)+ Y(t) K’(t)= 
A(t) Y(t)K(t)+ Y(t)K(t)B(t)oK’(t) = K(t)B(t)oK*‘(t) = B*(t)K*(t). 
Since Z is a fundamental matrix of T’(t) = B*(t) T(t), it follows that there 
exists a constant square matrix C such that K* = ZC or K= C*Z*. Hence 
T(t) = YC*Z*. (Take C* = C.) 

THEOREM 2.2. Any solution of 

T’(t)=A(t) T(t)+ T(t)B(t)+F(t, T(T)) (2.2) 

is of the form T(t) = YCZ* + T(t), where T(t) is a particular solution of 

(2.2). 
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Proof. It can easily be verified that T(t) defined by T(t) = YCZ* + T(t) 
is a solution of (2.2). Now to prove that every solution of (2.2) is of this 
form, let T be any solution of (2.2) and let T be a particular solution of 
(2.2). Then T - T is a solution of (2.1) and hence by Theorem 2.1, T- T= 
YCZ* or T = YCZ* + T, and the proof of the theorem is complete. 

THEOREM 2.3. A particular solution of 

T’(t)=B*(t) T(t)+F*(t, T(t)) Y*-‘(t) (2.3) 

is of the form 

T(t) = Z(t) ?‘( Z-‘(s) F*(s, T(s)) Y*-‘(s) ds. 
u‘ 

Proof: Let Z be a fundamental matrix solution of T’(t) = B*(t) T(t). 
Write T(t) = Z(t) L(t). Now 

T(t)=Z(t)L(t)oZ’(t)L(t)+Z(t)L’(t) 

=B*(t)Z(t)L(t)+F*(t, T(t)) Y*-‘(t)oL’(t) 

= Z-‘(t) F*(t, T(t)) Y*(t)oL(t) 

= ‘Z-‘(s)F*(s, T(s)) Y*-‘(s)dsor T(t)=Z(t)L(t) 
s * 

=Z(t) j+(s) F*(s, T(s)) Y*-‘(s) ds. 
a 

THEOREM 2.4. A particular solution of the nonlinear Lyapunov system 
(2.2) is gioen by 

j’ Y-‘(s)P(s, T(s)) Z*-‘(s) ds Z*(t). 
a 1 

Proof Let Y(t) be a fundamental matrix solution of T’(t) = AT+ TB. 
Then the matrix T(t) = Y(t) K(t) is a solution of (2.2) if, and only 
if, K*‘(t)=B*(t)K*(t)+F*(t, T(t)) Y*-‘(t). Now by Theorem 2.3, a 
particular solution of K*(t) is of the form K*(t)=Z(t)fLZ-‘(s) 
F*(s, T(s)) Y*-‘(s) ds. Hence 

j’ Y-‘(s) P(s, T(s)) Z*-‘(s) ds Z*(t). 
u 1 
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THEOREM 2.5. Any solution c~f’ the nonlinear Lyapunov system (2.2) is of 
the form 

T(t)= Y(t)CZ*(t)+ Y(t) j’Y~-‘(s)F(s, T(s))Z*+‘(s)ds *(t). (2.4) 
[ 0 I 

Proof. It is easily verified that T defined by (2.4) is a solution of (2.2). 
Further, if T is any solution of (2.4), then 

(T-T)‘=A(T-T)+(T-T)B. 

Hence (T- T) is a solution of (2.1). It follows, that for some constant 
(n x n) square matrix C, 

T-i== YCZ*. 

Hence, 

T= T+ YCZ*. 

By Theorem 2.3 

T(t)= Y(t) ?” Y-‘(s)@, T(s)) Z*-‘(s) ds Z*(t)+ YCZ*. 
[ (1 1 

Substituting the general form of T(t) in the boundary condition matrix 
(1.2), we get 

MY(a) CZ*(a) + NY(b) CZ*(b) 

= ct - NY(b) 
[ 

j” Y-‘(s, T(s)) Z*-‘(s) ds- 
a 1 

which is equivalent to 

A,CB,+A,CB,=X, 

where A, = MY(a), A, = NY(b), B, = Z*(a), B, = Z*(b)! 

z*(b) 

and 

v-5 1 

(2.6) 

X= cI - NY(b) s” Y-‘(s) F(s, T(s)) Z*-‘(s) ds] Z*(b) 
a 

are all known matrices of orders (n x n). Moreover B, and B, are non- 
singular square matrices. In the next section we consider two special cases 
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of (2.6) and express the general solution of C in terms of the known 
matrices A,, B,, AZ, B,, and X. In the case of the multipoint boundary 
value problem we get 

i=l 

or 

i AiCB,=X, 
i=l 

(2.7) 

where A i = Mi Y( ti), Bi = Z*( ti), and 

x= ct- f: MiY(li) 
i=2 [ 

f” y-‘(s) F(s, T(s)) z*-‘(s) ds z*(ti). 
a 1 

3. ANALYSIS OF THE MATRIX C AND THE GENERAL SOLUTION OF r(t) 

In this section, we shall be concerned with the general form of the solu- 
tion C satisfying condition (2.6) (or (2.7)). The problem in its full 
generality is far from tractable, although the transformation to a vector 
equation allows us to use currently available numerical weapons for the 
solution of the problem (2.6). We use the following notation: 

If AEC”~” and BeCnxn, then their direct product (or tensor product) 
A and B, denoted by A @I B, is defined to be the partitioned matrix [4] 

and is in Cn2 xn2, With this, one can easily verify that if G = A, @ B[ + 
A, 0 Br, then (2.6) is equivalent to a system of vector equations 

Gc=x. (3.2) 

In fact, by viewing (2.6) as a system of n2 scalar equations for the elements 
of C, (3.2) is exactly the same set of equations written in a vector system. 
In order to make pronouncements about existence, uniqueness, and 
techniques for the solution of (3.2), we need some information about the 



510 MURTY, HOWELL, AND SIVASUNDARAM 

eigenvalues of G. We denote the set of all eigenvalues of the matrix A as 
a(A), the spectrum of A. 

Case 1. If A, and B, are nonsingular, then (2.6) is equivalent to 

C-ACB= Y, (3.3) 

where A= -(A;‘A,), B=(B,B;‘), and Y=A, ‘XB,]. 
Now to solve for C from (3.3), we have the following analysis: 

C-ACB= Yo[(Z@Z)-(A@BT)]c=y 

oIc-A@BTcy 

oIc-Gc= y (where G = A @ BT). 

Putting C = Y+ ACB in the second term on the LHS of (3.3), we get the 
following equivalent statements 

C-A(Y+ACB)B= Yoc-G(y+Gc)=y 

C-A2CB2= Y+AYBoc-G2c=y+Gy; 

similarly 

C-A3CB3= Y+AYB+A2YB20c-G3c= y+Gy+G*y 

. . . 

C-A”CB”= Y+AYB+A2YB2+ ... +A”YB”oc-G”c 

=y+Gy+G3y+ ... +G”-‘y. 

If the spectral radius of A and B are such that 

then A”YB” + 0 as n + co. In this case 

C= Y+ f A’YB’ 
j=l 

= (A;‘XB,‘)- 5 (A;‘XB,‘)(B,B;‘)‘. 
j=l 

Substituting the general form of C in (2.6), we get 
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T(t)= Y(t)[A,‘XB,‘] z*(t) 

- 
[ 

f (A;54,)‘(A,’ XB,‘)(B,B,‘)’ z*(b) z*(t) 
j=l 1 

I’ Y-‘(s)F(s, T(s)) Z*-‘(s) ds Z*(t) 
a 1 

= Y(t) A;’ 
{ [ 

a-NY(b) 

X Y-‘(s) F(s, T(s)) Z*-‘(s) 

- Y(t) f (A&) a- NY(b) 
j=l 

X Y-‘(s) F(s, T(s)) Z*-‘(s) ds ) 1 Z*(b) 

1 Z*(t). 

DEFINITION 3.1. The condition numbers of the fundamental matrix 
solutions Y(t) and Z(t) are defined as 

and 

cond(4 = ,y, Ilz(t)ll lz;;, IL-‘(f)ll. 

To obtain a unique solution of the two-point BVP, we define the 
iterations 

T’(t) = Y(t) sz*(t) - Y(t) A,‘NY(b) 

(s 

b 

X Y-‘(s) F(s, T”(s)) Z*-‘(s) ds 
a > 

x B,‘(ll,B-‘)‘Z*(t) 1 

+lb Y(t) Y-‘(s) F(s, T’-‘(s)) Z*-‘(s) ds Z*(t), 
L1 

409/167/2-15 



512 MURTY, HOWELL, AND SIVASUNDARAM 

where 

B=A,‘aB, ‘- f (A,‘A,)’ A f Q,‘(B2B;‘)‘. 
,=I 

At this stage, we assume that F satisfies a Lipschitz condition on 
[a, h] x R”““, i.e., 

Then 

IlFb T, (~1) - F(s, TAs))/I d K II T, - Tzll (K>O). 

IIT’( Ti-‘(f)ll G lIY(t)ll ll4’II IIWb)ll 

X 
0 

:’ /I Y-‘(s)11 K II T’- ‘(s) - T’-2(~)I/ ds) 

x II~*-‘(~)ll ll~*(~)ll IIKII Ilz*(t)ll 

+ II Y(t)ll f IIG42II’ ll&‘II IINY(b)ll 
j=l 

0 

h 

X 11 Y-‘(s)11 K II Tip ‘(3) - Tip2(s)ll ds 
a > 

x llz*~‘(~)ll llz*(b)ll ll~,‘ll II&ml’ Ilz*(t)ll 

+ II Y(t)11 
( 

jr II Y-‘(s)11 K/T’-‘(s)- T’-2(s)ll ds) 
a 

x IIz*-‘(s)ll Ilz*(t)ll. 

Using definition (3.1), we get 

/IT’(t)-T’-‘(t)l( <cond(Y)cond(Z) 

x jg* IIA;‘A,lI’ ll&‘ll WJv)ll IK’II 

Let 

cond( Y) cond(Z) 
a=(1 - llA;‘A,Il IIB2B;‘Il) 

x KCIIA;‘II ll~;‘ll IN’(~)11 + 11~ 1. 
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Then 

IIT’( T’-‘(t)11 <a IIT’-‘- T’-‘11 (b-a) 

<a* )ITi-2-Ti-311 (b-a)* 

. . . 

aip’ (IT’- To\1 (b-a)‘-‘. 

Thus T is a contraction operator and hence by the Banach fixed point 
theorem T has a unique fixed point and this fixed point is the unique solu- 
tion of TPBVP. The above theory can easily be generalized to multipoint 
BVPs. In order to avoid monotony, we omit the proof. 

Case 2. Suppose A, is invertible. Then the system of equations (2.6) is 
equivalent to 

AC+CB= Y, (3.4) 

where A=A;‘A,, B=B,B;‘, and Y=A;‘XB;‘. One of the most effec- 
tive methods of solving the matrix equation (3.4) is the Bartels-Stewart 
algorithm [S]. Key to this technique is the orthogonal reduction of A and 
B to triangular form using the Q&algorithm for eigenvalues. The method 
of finding the general solution to the system (3.4) is the following: 

Let AER”~“, BER”~” be given matrices and define the linear trans- 
formation 4: R” x ” + R” x ’ by [3] 

qS(C)=AC+CB= Y. (3.5) 

This linear transformation is nonsingular if and only if A and -B have no 
eigenvalues in common; i.e., if a is an eigenvalue of A with corresponding 
eigenvector u and p is an eigenvalue of B with corresponding eigenvector 
u, then 

Thus (A + 11) is an eigenvalue of the system (3.5), which can therefore be 
solved if and only if 

li+Pj#O 

for all i, j = 1, 2, . . . . n. When A and B can be reduced to the diagonal form 
by similarity transformations, i.e., 

Up’AU=diag(l,, &, . . . . A,)= A, 

V’BV= diag(pi, pl, . . . . cl,) = B,, 
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then (3.5) is equivalent to 

(u-‘AU)(V ‘CV)+(U-‘CV)(v-‘BV)=U-‘YN. 

Solving this system involves the following four steps: 

Step 1. Transform A and B into diagonal forms by similarity trans- 
formations to get 

A, = U-‘AU and B, = V’BV. 

Step 2. Solve UF= YV for F. 

Step 3. Solve the transformed system 

A,X,+X,B,=F for X, . 

Step 4. Solve the system 

cv= ux 

for C. 

From these four steps the solution of the system (3.5) is easily obtained 
as 

c= ix, v-l, 

where 

and 

P= u-‘YV. 

Now substituting the general form of C in the variation of parameters 
formula, we obtain 

T(t) = YuX, Y-‘Z* + Y(t) 1’ YP”(s) F(s, T(s)) Z*-‘(s) ds Z*(t). 
a 1 

Assuming that F satisfies a Lipschitz condition on [a, b] x R” x “, we get as 
before 
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II?‘(t) - T’-‘(?)\I < cond( Y) cond(Z) 1” K 11 T’- l- T’-*ll ds 
a 

6cond( Y) cond(Z)K IIT’-‘- T’-*/I (b-a)2 

6 cond( Y) cond(Z) K* )I Tip2 - Tip311 (b-a)’ 

< cond( Y) cond(Z) K’- ’ 1) T’ - ToI1 (b-a)‘- ‘. 

If c1= cond( Y) cond(Z) Kip ‘(b-a)‘-’ < 1, then T is a contraction map 
and hence by Banach fixed point theorem T has a unique solution of the 
TPBVP. 
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