
Journal of Computational and Applied Mathematics 235 (2010) 916–926

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

New steps on Sobolev orthogonality in two variables
Cleonice F. Bracciali a, Antonia M. Delgado b, Lidia Fernández b, Teresa E. Pérez b,∗,
Miguel A. Piñar b
a DCCE, IBILCE, UNESP – Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
b Dpto. de Matemática Aplicada and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain

a r t i c l e i n f o

Article history:
Received 17 June 2009

MSC:
42C05
33C50

Keywords:
Orthogonal polynomials in two variables
Sobolev orthogonal polynomials
Classical orthogonal polynomials

a b s t r a c t

Sobolev orthogonal polynomials in two variables are defined via inner products involving
gradients. Such a kind of inner product appears in connection with several physical and
technical problems. Matrix second-order partial differential equations satisfied by Sobolev
orthogonal polynomials are studied. In particular, we explore the connection between the
coefficients of the second-order partial differential operator and the moment functionals
defining the Sobolev inner product. Finally, some old and new examples are given.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The name Sobolev is associated with polynomials that are orthogonal with respect to an inner product involving both
functions and their derivatives. This kind of polynomial has been widely studied during the last 20 years, and it constitutes
themain subject of a vast literature (see, for instance, [1–3] and the references therein). However, as far aswe know, Sobolev
orthogonal polynomials in several variables have been studied only in a very few particular cases. At the time of writing this
paper, the only references in the subject are [4–7].

The three last references [5–7] are related to orthogonal polynomials on the unit ball Bd
:= {x : ‖x‖ ≤ 1} of the Euclidean

space Rd, d ≥ 1.
In [6], the author considers an inner product motivated by an application in the numerical solution of the nonlinear

Poisson equation −1u = f (·, u) on the unit disk with zero boundary conditions (see [8]). This inner product is defined by

⟨f , g⟩∆ = αd

∫
Bd

∆[(1 − ‖x‖2)f (x)]∆[(1 − ‖x‖2)g(x)]dx, (1)

where ∆ is the usual Laplace operator, and αd = 1/(4d2vol(Bd)) so that ⟨1, 1⟩∆ = 1. The central symmetry of the inner
product plays an essential role in the construction of a basis of mutually orthogonal polynomials, which can be expressed
in terms of spherical harmonics: each element in the basis is the product of a spherical harmonic and a radial part given by
a Jacobi polynomial with parameters depending on its degree. The radial part of the polynomials turns out to be Sobolev
orthogonal polynomials in one variable.

In [7], the author considers two different inner products involving the gradient operator on the ball. Using the same
construction as above, a family of explicit orthonormal basis is constructed for both inner products. An interesting result
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obtained by the author is that the orthogonal polynomialswith respect to a Sobolev inner product satisfy a partial differential
equation for non-standard values of the parameter.

In [4], Lee and Littlejohn consider polynomials in two variables which satisfy an admissible (as defined in [9]) second-
order partial differential equation. They find conditions for the partial differential equation to have polynomial solutions
which are orthogonal with respect to a symmetric bilinear form.

However, the Lee and Littlejohn approach to Sobolev orthogonal polynomials seems to be incomplete, since there exist
non-admissible partial differential equations having Sobolev orthogonal polynomial solutions. Some interesting examples
are the orthogonal polynomials constructed in [10] using Jacobi polynomials in one variable.

In this work, we study families of polynomials in two variables satisfying second-order partial differential equations, and
we will connect this fact with Sobolev orthogonality. The structure of the paper is as follows. In Section 2, we recall some
basic properties of orthogonal polynomials in two variables. Section 3 is devoted to relating classical orthogonal polynomials
in two variables with a kind of Sobolev inner product.

A generalization of this Sobolev inner product is studied in Section 4, and we introduce the main results of this paper.
The relation between Sobolev orthogonality and partial differential equations is analyzed. Finally, Section 5 contains several
interesting examples. In particular, we deduce a Sobolev orthogonality for generalized classical families of polynomials in
two variables, namely simplex, ball and Koornwinder polynomials of Class III for non-standard values of the parameters.

2. Orthogonal polynomials in two variables

First, we introduce some notation. LetP denote the linear space of real polynomials in two variables, andPn the subspace
of polynomials of total degree not greater than n.

Let Mh×k(R) and Mh×k(P ) denote the linear spaces of h× k real and polynomial matrices, respectively. When h = k, the
second index will be omitted.

Given a matrix A, we denote by At its transpose, and by det A its determinant. As usual, we say that A is non-singular if
det A ≠ 0. Furthermore, we introduce Ih as the identity matrix of dimension h.

Moreover, we define the total degree of a polynomial matrix A ∈ Mh×k(P ) as

deg A = max{deg ai,j(x, y), 1 ≤ i ≤ h, 1 ≤ j ≤ k} ≥ 0,

where ai,j(x, y) denotes the (i, j)-entry of A.
Before discussing our approach, we briefly give some general properties of bivariate orthogonal polynomials. For an

exhaustive description of this and other related subjects see, for instance, [11–15,9,16,17].
Let {µh,k}h,k≥0 be a double-indexed sequence of real numbers, and let u : P → R be a functional defined by means of

the moments µh,k = ⟨u, xhyk⟩, h, k = 0, 1, 2, . . . , and extended by linearity. Then we will say that u is amoment functional.
For any moment functional u, let us define the distributional partial derivatives and the product of a polynomial times u

(see, for instance, [12]) by

⟨ux, p⟩ = −⟨u, px⟩, ⟨uy, p⟩ = −⟨u, py⟩, ⟨pu, q⟩ = ⟨u, pq⟩, (2)

for any polynomials p(x, y) and q(x, y).
We say that a polynomial p ∈ Pn is orthogonal with respect to u if

⟨u, pq⟩ = 0, ∀q ∈ P , deg q < deg p.

The action of a moment functional u over polynomial matrices is defined as follows [11–13,17]:

⟨u, A⟩ = (⟨u, ai,j⟩)
h,k
i,j=1 ∈ Mh×k(R), ∀A ∈ Mh×k(P ).

Let A ∈ Mh×k(P ) be an arbitrary polynomial matrix. Then we define the left product of A times u in the following way:

⟨Au, B⟩ = ⟨u, AtB⟩, ∀B ∈ Mh×l(P ). (3)

Definition 2.1 ([14]). A polynomial system (PS) is a sequence of vectors {Pn}n≥0 of increasing size such that

Pn = (Pn,0, Pn−1,1, . . . , P0,n)t ∈ M(n+1)×1(P ),

where {Pn,0, Pn−1,1, . . . , P0,n} are polynomials of total degree n independent modulus Pn−1.

Definition 2.2. We say that a moment functional u is quasi-definite if there exists a PS {Pn}n≥0 satisfying

⟨u, PnPt
m⟩ = 0, n ≠ m,

⟨u, PnPt
n⟩ = Hn, n ≥ 0,

where Hn ∈ Mn+1(R) is a non-singular matrix. In such a case, the PS {Pn}n≥0 is said to be a weak orthogonal polynomial
system (WOPS) with respect to the quasi-definite moment functional u.

In the particular case whereHn is a diagonal matrix, wewill say that theWOPS {Pn}n≥0 is an orthogonal polynomial system
(OPS). Moreover, if Hn = In+1, we call {Pn}n≥0 an orthonormal polynomial system.
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In addition, a WOPS is called amonic WOPS if every polynomial contains only one monic term of highest degree; that is,

P̃h,k(x, y) = xhyk + R(x, y), h + k = n,
where R(x, y) ∈ Pn−1. Observe that, for a quasi-definite moment functional u, there exists a unique monic WOPS.

In this paper, we will need some differentiation tools. In fact, we will use the gradient operator ∇ , and the divergence
operator div, defined as usual. The extension of these operators formatrices is introduced in [18,19]. Let A, B0, B1 ∈ Mh×k(P )
be polynomial matrices. We define

∇A =


∂xA
∂yA


∈ M2h×k(P ), div


B0
B1


= ∂xB0 + ∂yB1 ∈ Mh×k(P ).

The previous definitions can be translated to the linear space of moment functionals using duality. We define the
distributional gradient operator acting over a moment functional in the following way:

∇u,

p0
p1


= −


u, div


p0
p1


= −⟨u, ∂xp0⟩ − ⟨u, ∂yp1⟩. (4)

Let A ∈ M2×k(P ) be an arbitrary polynomial matrix. The distributional divergence operator acting over Au is defined as
follows:

⟨div(Au), p⟩ = −⟨Au, ∇p⟩ = −⟨u, At
∇p⟩, (5)

for any polynomial p(x, y).

3. Motivation for Sobolev orthogonality: classical orthogonal polynomials in two variables

Definition 3.1 ([19]). Let u be a quasi-definite moment functional defined on the linear space of real polynomials in two
variables. Then u is said to be classical if there exist two matrix polynomials

Φ =


a b
b c


, Ψ =


d
e


,

with degΦ ≤ 2, degΨ ≤ 1, such that u satisfies the matrix Pearson-type distributional equation

div(Φu) = Ψ tu, (6)

and det⟨u, Φ⟩ ≠ 0.

Condition (6) is equivalent to
P1[u] = (au)x + (bu)y − du = 0,
P2[u] = (bu)x + (cu)y − eu = 0.

Let

Ψ̃ = Ψ − (divΦ)t =


d − ax − by
e − bx − cy


.

If we define the operator L acting over P by means of
L[p] ≡ div (Φ∇p) + Ψ̃ t

∇p = a∂xxp + 2b∂xyp + c∂yyp + d∂xp + e∂yp,
then the formal Lagrange adjoint of L defined by

⟨L∗
[u], p⟩ = ⟨u, L[p]⟩, ∀p ∈ P , (7)

satisfies

L∗
[u] ≡ div (Φ∇u) − div (Ψ̃ u). (8)

It is easy to check that
L∗

[u] = (au)xx + 2(bu)xy + (cu)yy − (du)x − (eu)y
= (P1[u])x + (P2[u])y,

and, as a consequence, if u is classical, then L∗
[u] = 0.

The next theorem is devoted to characterizing multivariate classical orthogonal polynomials. The proof of these results
can be found in [19].

Theorem 3.1. Let u be a quasi-definitemoment functional and let {Pn}n≥0 be aWOPS associatedwith it. The following statements
are equivalent.
(i) u is classical in the sense of Definition 3.1.
(ii) There exist polynomial matrices Φ ∈ M2(P2), Ψ̃ ∈ M2×1(P1), and there exist matrices Λn ∈ Mn+1(R) such that

L[Pt
n] ≡ div (Φ∇Pt

n) + Ψ̃ t
∇Pt

n = Pt
nΛ

t
n,

and Λ1 ∈ M2(R) is a non-singular matrix.



C.F. Bracciali et al. / Journal of Computational and Applied Mathematics 235 (2010) 916–926 919

(iii) There exists a polynomial matrix Φ ∈ M2(P2), such that the {∇Pt
n}n≥1 satisfy the orthogonality relations

⟨u, (∇Pt
n)

tΦ∇Pt
m⟩ = 0, n,m ≥ 1, n ≠ m,

⟨u, (∇Pt
n)

tΦ∇Pt
n⟩ = Kn, n ≥ 1,

where Kn ∈ Mn(R) is a symmetric matrix, and K1 is non-singular.
If one of these three conditions holds, then the {Pn}n≥0 satisfy the following Sobolev orthogonality relations:

(Pn, Pt
n)S = ⟨u, PnPt

n⟩ + ⟨u, (∇Pt
n)

tΦ∇Pt
n⟩ = Hn + Kn,

(Pn, Pt
m)S = ⟨u, PnPt

m⟩ + ⟨u, (∇Pt
n)

tΦ∇Pt
m⟩ = 0, n ≠ m.

The relations above can be seen as a Sobolev flavor for classical orthogonal polynomials in two variables.

4. Sobolev inner products in two variables

In the previous theorem, we observe that classical orthogonal polynomials in two variables are solutions of a second-
order partial differential equation. Moreover, they satisfy some kind of Sobolev orthogonality. In this section, we generalize
the definition of Sobolev inner product andwe study Sobolev orthogonal polynomials as a solution of a second-order partial
differential equation.

Definition 4.1. Let u, v be two moment functionals defined on the linear space of polynomials in two variables. A Sobolev
bilinear form can be defined from u and v in the following way:

(f , g)S = ⟨u, fg⟩ + ⟨v, (∇f )tΘ∇g⟩

= ⟨u, fg⟩ +


v,


∂xf ∂yf

 
θ00 θ01
θ10 θ11

 
∂xg
∂yg


,

where θij(x, y) are fixed polynomials in two variables of degree less than or equal to 2.
In the following, u, v, and Θ will be chosen so that the Sobolev bilinear form (·, ·)S is an inner product.
A WOPS with respect to the Sobolev inner product (·, ·)S is called a Sobolev WOPS.

In this work, we are going to study the first interesting case of this kind of Sobolev inner product, whereΘ is a non-scalar
diagonal matrix; that is,

(f , g)S = ⟨u, fg⟩ + ⟨v, (∇f )tΘ∇g⟩

= ⟨u, fg⟩ +


v,


∂xf ∂yf

 
θ0 0
0 θ1

 
∂xg
∂yg


, (9)

where θ0(x, y) and θ1(x, y) are fixed polynomials in two variables of degree less than or equal to 2.
Let us denote by {Qn}n≥0 a SobolevWOPS associated with the inner product (·, ·)S defined in (9); that is, {Qn}n≥0 satisfies

(Qn, Qt
n)S = ⟨u, QnQt

n⟩ + ⟨v, (∇Qt
n)

tΘ∇Qt
n⟩ = H̃n,

(Qn, Qt
m)S = ⟨u, QnQt

m⟩ + ⟨v, (∇Qt
n)

tΘ∇Qt
m⟩ = 0, n ≠ m,

where H̃n ∈ Mn+1(R) is non-singular.

4.1. Particular cases

In [7], the author analyzes orthogonal polynomials for Sobolev inner products on the ball, involving the usual gradient
operator ∇ . In particular, he deals with two Sobolev inner products defined by

⟨f , g⟩I :=
λ

ωd

∫
Bd

∇f (x) · ∇g(x)dx +
1
ωd

∫
Sd−1

f (x)g(x)dωd, λ > 0 (10)

and

⟨f , g⟩II :=
λ

ωd

∫
Bd

∇f (x) · ∇g(x)dx + f (0)g(0), λ > 0, (11)

where the normalizing constants are chosen in such a way that ⟨1, 1⟩I = ⟨1, 1⟩II = 1. These Sobolev inner products are
particular cases of (9) with θ1 = θ2 = 1.

A family of explicit orthonormal bases is constructed for both inner products. The bases in [7] are similar to the one
constructed in [6]. These bases depend again on Jacobi polynomials. An interesting consequence of those explicit formulas
is that the Fourier expansion of a function f with respect to these orthogonal bases can be computed without the use of the
derivatives of f .

It is well known (see [11]) that, for µ > −1, orthogonal polynomials of degree n with respect to the weight function
Wµ(x) = (1 − ‖x‖2)µ on the unit ball in Rd satisfy a partial differential equation, which can be written in the following
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compact form:
∆ − ⟨x, ∇⟩

2
− (2µ + d)⟨x, ∇⟩


p = −n(n + 2µ + d)p. (12)

The singular case of the values µ = −1, −2, . . . is studied in [5]. Explicit polynomial solutions are constructed and the
equation for µ = −2, −3, . . . has complete polynomial solutions if the dimension d is odd. An interesting result obtained
by the authors is that the orthogonal polynomials with respect to the inner product ⟨·, ·⟩II which were studied in [7], satisfy
(12) for µ = −1.

In [4], Lee and Littlejohn consider polynomials in two variables which satisfy an admissible (as defined in [9]) second-
order partial differential equation of the form

apxx + 2bpxy + cpyy + dpx + epy = λp, (13)

where a, b, and c are second-degree polynomials in x and y, d and e are polynomials of total degree one, λ is an eigenvalue
parameter, and such that the polynomial satisfying (13) are orthogonal with respect to a symmetric bilinear form defined
by

φ(f , g) = ⟨σ , fg⟩ + ⟨τ , fxgx⟩, (14)

with σ and τ being moment functionals acting on polynomials. This bilinear form is a particular case of (9) with θ1 = 1 and
θ2 = 0.

They find conditions for the partial differential equation (13) to have polynomial solutions which are orthogonal with
respect to a symmetric bilinear form φ(·, ·). From these results they deduce that themoment functionals σ and τ are closely
connected. In fact, if both linear functionals are quasi-definite, they can prove that, under some additional hypotheses, there
exists a polynomial f (x, y) of degree ≤2 such that τ = f (x, y)σ and, if {Pn}n≥0 is a Sobolev OPS with respect to φ(·, ·), then
{Pn}n≥0 is a WOPS with respect to σ , and {∂xPn}n≥0 contains a WOPS relative to τ .

However, the result does not reduce to the quasi-definite situation as they show in one of their examples. The differential
equation

xpxx + pyy + xpx − ypy + np = 0,

has a PS {Pn}n≥0 as solutions, with Pn = (Pn,0, . . . , P0,n)t , where every polynomial Pn−k,k is the product of a generalized
Laguerre polynomial (of parameter α = −1) and an Hermite polynomial. In this case σ and τ get the distributional
representations

σ = δ(x) ⊗ e−
1
2 y

2
dx dy,

τ = e−xe−
1
2 y

2
dx dy.

4.2. Sobolev orthogonality and second-order partial differential equations

Let u and v be two moment functionals, and let

Θ =


θ0 0
0 θ1


be a diagonal polynomial matrix, where θ0(x, y) and θ1(x, y) are fixed polynomials in two variables of degree less than or
equal to 2, such that the expression

(f , g)S = ⟨u, fg⟩ + ⟨v, (∇f )tΘ∇g⟩ (15)

defines a Sobolev inner product. In this section, we will use the Pearson-type operators

P1[p] = (ap)x + (bp)y − dp,
P2[p] = (bp)x + (cp)y − ep,

and the second-order partial differential operator introduced in Section 3:

L[p] ≡ apxx + 2bpxy + cpyy + dpx + epy. (16)

Theorem 4.1. The following statements are equivalent.

(i) L is symmetric with respect to the Sobolev inner product; that is,

(L[p], q)S = (p, L[q])S, ∀p, q ∈ P .

(ii) v satisfies the Pearson-type equations

P1[θ0v] = ax(θ0v), P1[θ1v] = cx(θ0v) + 2by(θ1v),

P2[θ0v] = ay(θ1v) + 2bx(θ0v), P2[θ1v] = cy(θ1v),
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and the functionals u and v are related by

2P1[u] + (ay(θ1v)x)y − (cx(θ0v)y)y − (axy − dx)(θ1v)y + (cxy − ey)(θ0v)y = 0,
2P2[u] + (cx(θ0v)y)x − (ay(θ1v)x)x − (cxy − ex)(θ0v)x + (axy − dy)(θ1v)x = 0.

Proof. Using properties (3)–(5), we get

(L[p], q)S = ⟨u, L[p]q⟩ + ⟨v, (∇L[p])tΘ∇q⟩
= ⟨L[p]u, q⟩ − ⟨div (Θ∇L[p]v), q⟩
= ⟨L[p]u − div (Θ∇L[p]v), q⟩.

On the other hand, using also (7), the second term expands as

(p, L[q])S = ⟨u, pL[q]⟩ + ⟨v, (∇p)tΘ∇L[q]⟩
= ⟨L∗

[pu], q⟩ − ⟨L∗
[div (Θ∇pv)], q⟩

= ⟨L∗
[pu] − L∗

[div (Θ∇pv)], q⟩.

Therefore, (L[p], q)S = (p, L[q])S is equivalent to

M[p] := L[p]u − div (Θ∇L[p]v) − L∗
[pu] + L∗

[div (Θ∇pv)] = 0, ∀p ∈ P .

ExpandingM[p] in terms of the partial derivatives of p, and after symbolic calculations, we get

M[p] =

3−
m=0

m−
i=0

αm
i ∂m−i

x ∂ i
yp,

where the coefficients of the partial derivatives of order three are

α3
0 = 2(P1[θ0v] − axθ0v),

α3
1 = 2(P2[θ0v] − ayθ1v − 2bxθ0v),

α3
2 = 2(P1[θ1v] − cxθ0v − 2byθ1v),

α3
3 = 2(P2[θ1v] − cyθ1v),

the coefficients of the partial derivatives of second order are

α2
0 =

1
2
(3∂xα3

0 + ∂yα
3
1),

α2
1 = ∂xα

3
1 + ∂yα

3
2,

α2
2 =

1
2
(∂xα

3
2 + 3∂yα3

3),

the coefficients of the partial derivatives of first order are

α1
0 =

1
2
((α3

0)xx + (α3
1)xy) − 2P1[u] − (ay(θ1v)x)y + (cx(θ0v)y)y + (axy − dx)(θ1v)y − (cxy − ey)(θ0v)y,

α1
1 =

1
2
((α3

3)yy + (α3
2)xy) − 2P2[u] − (cx(θ0v)y)x + (ay(θ1v)x)x + (cxy − ex)(θ0v)x − (axy − dy)(θ1v)x,

and the term without derivatives is

α0
0 = −L∗

[u].

Therefore, the condition M[p] = 0 is equivalent to αm
i = 0, for all 0 ≤ i ≤ m ≤ 3, which is equivalent to (ii), and the

theorem holds. �

The symmetry of the operator L and some additional hypotheses imply the Sobolev orthogonality of the solutions of the
PDE.

Proposition 4.2. Let L be a second-order partial differential operator as (16), and assume that it is symmetric with respect to the
Sobolev inner product (15); that is,

(L[p], q)S = (p, L[q])S, ∀p, q ∈ P . (17)

Let {Qn}n≥0 be a PS and let Λ̃n ∈ Mn+1(R) be a sequence of matrices with Λ̃0 = (0) satisfying

σ(Λ̃n) ∩ σ(Λ̃m) = ∅, ∀n ≠ m, (18)

L[Qn] = Λ̃nQn, n ≥ 0, (19)

where σ(Λ̃n) denotes the spectrum of the matrix Λ̃n. Then {Qn}n≥0 is a WOPS for (·, ·)S .
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Proof. The symmetry of L on polynomials is equivalent to

(L[Qn], Qt
m)S = (Qn, L[Qt

m])S, ∀m, n ≥ 0;

therefore,

Λ̃n(Qn, Qt
m)S = (Qn, Qt

m)SΛ̃
t
m, ∀m, n ≥ 0.

Ifm ≠ n, the matrix (Qn, Qt
m)S is a solution of the equation Λ̃nX − XΛ̃t

m = 0. Then, using (18) and Theorem 4.4.6 in [20],
we conclude that (Qn, Qt

m)S = 0, ∀n ≠ m.
Finally, since (·, ·)S is an inner product and {Qn}n≥0 is a PS, we can easily deduce that the matrix H̃n = (Qn, Qt

n)S is
non-singular. �

The next theorem provides a partial reciprocal for the above proposition.

Theorem 4.3. Let {Qn}n≥0 be a Sobolev WOPS associated with the Sobolev inner product (15). Then the following statements are
equivalent.

(i) L is symmetric; that is,

(L[p], q)S = (p, L[q])S, ∀p, q ∈ P .

(ii) For n ≥ 1, there exist Λ̃n ∈ Mn+1(R) satisfying

L[Qn] = Λ̃nQn,

and Λ̃nH̃n = H̃nΛ̃
t
n, where H̃n = (Qn, Qt

n)S .

Proof. (i) ⇒ (ii) Since the operator L preserves the degree of the polynomials,

L[Qn] =

n−
i=0

AiQi,

where Ai ∈ M(n+1)×(i+1)(R). Form ≤ n, using the Sobolev inner product, we obtain

(L[Qn], Qt
m)S =

n−
i=0

Ai(Qi, Qt
m)S = AmH̃m.

On the other hand, using the symmetry of L, we get

(L[Qn], Qt
m)S = (Qn, L[Qt

m])S = 0, form < n.

This implies that Am = 0, form < n, and so L[Qn] = AnQn. Then (ii) holds with Λ̃n = An.
(ii) ⇒ (i) It suffices to prove (i) for a basis of polynomials. Obviously,

(L[Qn], Qt
m)S = Λ̃n(Qn, Qt

m)S =


0, n ≠ m,

Λ̃nH̃n, n = m,

(Qn, L[Qt
m])S = (Qn, Qt

m)SΛ̃
t
m =


0, n ≠ m,

H̃nΛ̃
t
n, n = m,

and (i) clearly follows. �

5. Examples

5.1. Classical orthogonal polynomials on the simplex

Classical polynomials on the simplex (see [11]) are orthogonal with respect to the weight function ω(x, y) = xαyβ(1 −

x − y)γ , with α, β, γ > −1, on the standard simplex

T = {(x, y) : x, y ≥ 0, 1 − x − y ≥ 0}.

They satisfy the partial differential equation

L[p] ≡ x(1 − x)∂xxp − 2xy∂xyp + y(1 − y)∂yyp + ((α + 1) − (α + β + γ + 3)x) ∂xp

+ ((β + 1) − (α + β + γ + 3)y) ∂yp = λnp, (20)

where λn = −n(n + α + β + γ + 3) and n = deg p.
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An orthogonal basis of polynomials is given by the following set of monic polynomials [11]:

V (α,β,γ )

n−k,k (x, y) =

n−k−
i=0

k−
j=0

(−1)(n+i+j)

n − k

i

 
k
j


(α + i + 1)n−k−i(β + j + 1)k−j

(α + β + γ + n + i + j + 2)n−i−j
xiyj, (21)

for n ≥ k ≥ 0. From this expression, we can easily deduce that

∂

∂x
V (α,β,γ )

n−k,k (x, y) = (n − k)V (α+1,β,γ+1)
n−k−1,k (x, y), (22)

∂

∂y
V (α,β,γ )

n−k,k (x, y) = kV (α,β+1,γ+1)
n−k,k−1 (x, y), (23)

and therefore they are orthogonal with respect to the Sobolev inner product

(f , g)S =

∫
T
fgxαyβ(1 − x − y)γ dx dy +

∫
T
(∇f )tΘ(∇g)xαyβ(1 − x − y)γ+1 dx dy,

where

Θ =


x 0
0 y


.

In the singular case γ = −1, the monic PS

Qn = (V (α,β,−1)
n,0 , V (α,β,−1)

n−1,1 , . . . , V (α,β,−1)
0,n )t , n ≥ 0,

defined by (21), still satisfies the partial differential equation (20), with Λ̃n = λnIn+1. However, {Qn}n≥0 is not a sequence
of orthogonal polynomials on the simplex since ω(x, y) for γ = −1 is not a weight function on T .

On the other hand, λn ≠ λm for n ≠ m, and then Theorem 4.1 and Proposition 4.2 provide the orthogonality with respect
to the Sobolev inner product

(f , g)S = ⟨u, fg⟩ + ⟨v, (∇f )tΘ(∇g)⟩,

where u and v satisfy
(x − x2)ux − xyuy = (α − (α + β − 1)x)u,
−xyux + (y − y2)uy = (β − (α + β − 1)y)u,

(24)

and 
(x − x2)vx − xyvy = (α − (α + β)x)v,

−xyvx + (y − y2)vy = (β − (α + β)y)v.
(25)

A solution for (25) is the usual moment functional on the simplex for γ = 0:

⟨v, f ⟩ =

∫
T
f (x, y)xαyβ dx dy,

and a very simple computation shows that a solution of (24) can be given by means of

⟨u, f ⟩ =

∫ 1

0
f (x, 1 − x)xα(1 − x)β dx.

Observe that u is non-positive definite and (1− x− y)u = 0. Then, the generalized simplex polynomials {V (α,β,−1)
n−k,k (x, y)}n≥k≥0

are orthogonal with respect to the Sobolev inner product

(f , g)S =

∫ 1

0
f (x, 1 − x)g(x, 1 − x)xα(1 − x)β dx +

∫
T
(∇f )tΘ(∇g)xαyβ dx dy,

where

Θ =


x 0
0 y


.

5.2. Sobolev orthogonal polynomials on the ball

Now, we consider classical orthogonal polynomials on the unit ball. Using our results, we will provide a Sobolev
orthogonality for those PSs corresponding to non-standard values of the parameter.

Typically, classical orthogonal polynomials on the unit ball in R2 are related to the weight function defined by

ωµ(x, y) = (1 − x2 − y2)µ, µ > −1.
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In [10], an orthogonal basis for this weight function is given, and it can be written in terms of monic Gegenbauer
polynomials as

P (µ)

n,k (x, y) = C


µ+k+ 1

2


n−k (x)(1 − x2)k/2C (µ)

k (y(1 − x2)−1/2).

Here, C (µ)
n (x) stands for the n-th monic Gegenbauer polynomial which is orthogonal with respect to the weight function

(1 − x2)µ on the interval [−1, 1].
From this expression, and using the well-known differential properties of Gegenbauer polynomials, it is easy to see that

the partial derivatives with respect to x and y are

∂

∂x
P (µ)

n,k (x, y) = (n − k)P (µ+1)
n−1,k (x, y) + α

(µ)

n,k P
(µ+1)
n−1,k−2(x, y),

∂

∂y
P (µ)

n,k (x, y) = kP (µ+1)
n−1,k−1(x, y),

and so the PS {Q(µ)
n }n≥0, given by Q(µ)

n = (P (µ)

n,0 , . . . , P (µ)
n,n )t , is a WOPS associated with the Sobolev inner product

(f , g)S =

∫
B2

fg(1 − x2 − y2)µdxdy +

∫
B2

(fxgx + fygy)(1 − x2 − y2)µ+1dxdy.

Moreover, it is well known (see [11]) that P (µ)

n,k satisfies the partial differential equation

L[p] ≡ (x2 − 1)pxx + 2xypxy + (y2 − 1)pyy + (3 + 2µ)xpx + (3 + 2µ)ypy = λnp, (26)

with λn = n(n + 2µ + 2).
Now, let µ = −1. Then, classical orthogonality on the ball does not hold any more, since ωµ is not a weight function.

Nevertheless, taking into account the hypergeometric representation for Gegenbauer polynomials [21]

C (µ)
n (x) =

n!
2nΓ (n + µ + 1/2)

[n/2]−
m=0

(−1)mΓ (n − m + µ + 1/2)
m!(n − 2m)!

(2x)n−2m, n ≥ 0,

the definition of P (µ)

n,k (x, y) makes perfect sense even in the case when µ = −1. Also, the polynomials P (µ)

n,k (x, y) still satisfy
(26).

Then, using Theorem 4.1 for the Sobolev inner product (15), with Θ = I2, the symmetry of Lwith respect to (·, ·)S holds
if and only if the functionals u and v satisfy

(x2 − 1)ux + xyuy = −2xu,
xyux + (y2 − 1)uy = −2yu,

(27)
(x2 − 1)vx + xyvy = 0,
xyvx + (y2 − 1)vy = 0.

(28)

Moreover, since λn ≠ λm for n ≠ m, Proposition 4.2 guarantees that {Q(−1)
n }n≥0 is a WOPS with respect to (·, ·)S .

In such a case, the linear functional v, as a solution of (28), is still classical, and it is associated with the weight function
ω0(x, y) = 1,

⟨v, p⟩ =

∫
B2

p(x, y) dx dy.

However, the Pearson-type equation for the linear functional u does not admit a classical solution of this kind, but we can
give a solution of (27) via a line integral over the unit sphere on R2, S1 = {x ∈ R2

: ‖x‖ = 1}:

⟨u, f ⟩ =

∫
S1

f (x, y) dω =

∫ 2π

0
f (cos(t), sin(t))dt,

where dω stands for the measure on S1.
In that way, generalized ball polynomials {Q(−1)

n }n≥0 can be seen as a WOPS associated with the Sobolev inner product

(f , g)S =

∫
S1

f (x, y)g(x, y)dω +

∫
B2

(∇f )t(∇g) dx dy.

We should mention here that this Sobolev inner product is a particular case of (10), which was previously studied
in [7,5].



C.F. Bracciali et al. / Journal of Computational and Applied Mathematics 235 (2010) 916–926 925

5.3. Class III of Koornwinder polynomials

In [10], Koornwinder studied seven examples of two-variable analogues of the Jacobi polynomials. For α, β > −1, if we
denote by P (α,β)

n the standard Jacobi polynomial on [−1, 1], the Koornwinder polynomials of Class III are given by

P (α,β)

n,k (x, y) = P


α,β+k+ 1

2


n−k (2x − 1)x

1
2 kP (β,β)

k


x−

1
2 y


, n ≥ k ≥ 0,

and they are orthogonal with respect to the weight function ω(x, y) = (1 − x)α(x − y2)β , on the region
R = {(x, y) : y2 < x < 1},

which is bounded by a straight line and a parabola.
Koornwinder showed that these polynomials satisfy the second-order partial differential equation

L[p] ≡ 2x(1 − x)pxx + 2y(1 − x)pxy +
1
2
(1 − x)pyy + (2β + 3 − (2α + 2β + 5)x)px − (α + 1)ypy = λn,kp, (29)

where λn,k = −(n − k)(2n + 2α + 2β + 3) − (1 + α)k, k = 0, 1, . . . , n.
Moreover, using the well-known property for the derivatives of Jacobi polynomials, we get

∂

∂y
P (α,β)

n,k (x, y) =
1
2
(k + 2β + 1)P (α,β+1)

n−1,k−1(x, y). (30)

Then, Koornwinder polynomials of Class III are orthogonal with respect to the Sobolev inner product

(f , g)S =

∫
R
fg(1 − x)α(x − y2)β dx dy +

∫
R
(∇f )tΘ(∇g)(1 − x)α(x − y2)β+1 dx dy,

where

Θ =


0 0
0 1


.

On the other hand, for α > −1 and β = −1, the polynomials

P (α,−1)
n,k (x, y) = P (α,k−1/2)

n−k (2x − 1)xk/2P (−1,−1)
k (x−1/2y), n ≥ k ≥ 0,

where

P (−1,−1)
n (x) = (x − 1)n2F1


−n, −n + 1; −2n + 2;

2
1 − x


,

define a PS which even satisfies (29) and (30).
Consider the Sobolev inner product

(f , g)S = ⟨u, fg⟩ + ⟨v, (∇f )tΘ∇g⟩,
where

Θ =


0 0
0 1


.

Using Theorem 4.1, L is symmetric if and only if u and v satisfy
2x(1 − x)ux + y(1 − x)uy = −2((α − 1)x + 1)u,

y(1 − x)ux +
1
2
(1 − x)uy = −αyu

and 
2x(1 − x)vx + y(1 − x)vy = −2αxv,

y(1 − x)vx +
1
2
(1 − x)vy = −αyv.

A solution for the above equations is

⟨v, f ⟩ =

∫
R
f (x, y)(1 − x)α dx dy,

and

⟨u, f ⟩ =

∫ 1

−1
f (y2, y)(1 − y2)α dy,

and a direct computation shows that the PS {P (α,−1)
n,k }n≥k≥0 is orthogonal with respect to the Sobolev inner product

(f , g)S =

∫ 1

−1
f (y2, y)g(y2, y)(1 − y2)α dy +

∫
R
fy(x, y)gy(x, y)(1 − x)α dx dy.
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