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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

We have developed a mechanical model of the mixed-mode bending (MMB) test, whereby the specimen is considered as an 
assemblage of two identical sublaminates, modelled as Timoshenko beams. The sublaminates are partly connected by a linearly 
elastic–brittle interface, transmitting stresses along both the normal and tangential directions with respect to the interface plane. 
The model is described by a set of suitable differential equations and boundary conditions. Based on the explicit solution of this 
problem and following an approach already adopted to model buckling-driven delamination growth in fatigue, we analyse the 
response of the MMB test specimen under cyclic loads. Exploiting the available analytical solution, we apply a fracture mode-
dependent fatigue growth law. As a result, the number of cycles needed for a delamination to extend to a given length can be 
predicted. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of ECF21. 
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1. Introduction 

Composite laminates generally present strongly orthotropic fracture properties under both quasi-static and cyclic 
loads. Several experimental procedures and testing setups have been developed to determine the delamination 
toughness and to study fatigue behaviour of laminated specimens under pure and mixed fracture modes. Bak et al. 
(2014) have reviewed the available experimental observations, phenomenological models and computational 
simulation methods for delamination growth under fatigue loads in composite laminates. 
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Composite laminates generally present strongly orthotropic fracture properties under both quasi-static and cyclic 
loads. Several experimental procedures and testing setups have been developed to determine the delamination 
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The mixed-mode bending (MMB) test is used to characterise pre-cracked fibre-reinforced composite laminates 
under I/II mixed-mode fracture conditions. Within the context of linear elastic fracture mechanics (LEFM), the 
MMB test can be regarded as the superposition of the double cantilever beam (DCB) and end notched flexure (ENF) 
tests, respectively used to measure interlaminar fracture resistance under pure fracture modes I and II (ASTM 2013). 

We have developed an enhanced beam-theory (EBT) model of the MMB test, wherein the delaminated specimen 
is schematised as an assemblage of two identical sublaminates partly connected by a deformable interface. The 
sublaminates are modelled as extensible, flexible, and shear-deformable laminated beams. The interface is regarded 
as a continuous distribution of linearly elastic–brittle springs, transmitting stresses along both the normal and 
tangential directions with respect to the interface plane. The model is described by a set of suitable differential 
equations and boundary conditions. In Bennati et al. 2013a, through the decomposition of the problem into two 
subproblems related to the symmetric and antisymmetric parts of the loads, an explicit solution for the internal 
forces, displacements, and interfacial stresses has been deduced. In Bennati et al. 2013b, expressions for the 
specimen compliance, energy release rate, and mode mixity have also been determined. 

Here, following an approach already adopted in Bennati and Valvo (2006) to model buckling-driven delamination 
growth in fatigue, we analyse the response of the MMB test specimen under cyclic loads. Exploiting the available 
analytical solution, we apply a fracture mode-dependent fatigue growth law. As a result, the number of cycles 
needed for a delamination to extend to a given length can be predicted. 

 
Nomenclature 

A1 extensional stiffness of the sublaminates 
a length of the delamination 
B width of the specimen 
C1 shear stiffness of the sublaminates 
C specimen compliance 
c length of the lever arm 
D1 bending stiffness of the sublaminates 
Ex longitudinal Young’s modulus 
f, fI, fII, factors of fatigue crack law 
G energy release rate 
Gc critical energy release rate 
GI, GII mode I and mode II contributions to the energy release rate 
GIc, GIIc pure mode I and mode II critical energy release rates 
Gzx transverse shear modulus 
H thickness of the specimen 
h half-thickness of the specimen 
kx, kz elastic constants of the tangential and normal distributed springs 
L span of the specimen 
ℓ half-span of the specimen 
m,mI,mII exponents of fatigue crack law 
N number of cycles 
P load applied by the testing machine 
PI, PII loads responsible for fracture mode I and mode II 
Pd downward load applied at the mid-span section of the specimen 
Pu upward load applied at the left hand support of the specimen 
 non-dimensional crack length correction for mode mixture 
 load application point displacement 
i root of the characteristic equation, i = 1, 2 and 5 
I,II crack length correction factors for mode I and mode II 
 mode-mixity angle 
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1. Introduction 

Composite laminates generally present strongly orthotropic fracture properties under both quasi-static and cyclic 
loads. Several experimental procedures and testing setups have been developed to determine the delamination 
toughness and to study fatigue behaviour of laminated specimens under pure and mixed fracture modes. Bak et al. 
(2014) have reviewed the available experimental observations, phenomenological models and computational 
simulation methods for delamination growth under fatigue loads in composite laminates. 
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The mixed-mode bending (MMB) test is used to characterise pre-cracked fibre-reinforced composite laminates 
under I/II mixed-mode fracture conditions. Within the context of linear elastic fracture mechanics (LEFM), the 
MMB test can be regarded as the superposition of the double cantilever beam (DCB) and end notched flexure (ENF) 
tests, respectively used to measure interlaminar fracture resistance under pure fracture modes I and II (ASTM 2013). 

We have developed an enhanced beam-theory (EBT) model of the MMB test, wherein the delaminated specimen 
is schematised as an assemblage of two identical sublaminates partly connected by a deformable interface. The 
sublaminates are modelled as extensible, flexible, and shear-deformable laminated beams. The interface is regarded 
as a continuous distribution of linearly elastic–brittle springs, transmitting stresses along both the normal and 
tangential directions with respect to the interface plane. The model is described by a set of suitable differential 
equations and boundary conditions. In Bennati et al. 2013a, through the decomposition of the problem into two 
subproblems related to the symmetric and antisymmetric parts of the loads, an explicit solution for the internal 
forces, displacements, and interfacial stresses has been deduced. In Bennati et al. 2013b, expressions for the 
specimen compliance, energy release rate, and mode mixity have also been determined. 

Here, following an approach already adopted in Bennati and Valvo (2006) to model buckling-driven delamination 
growth in fatigue, we analyse the response of the MMB test specimen under cyclic loads. Exploiting the available 
analytical solution, we apply a fracture mode-dependent fatigue growth law. As a result, the number of cycles 
needed for a delamination to extend to a given length can be predicted. 
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2. Linear elastic interface model 

2.1. Mechanical model 

In the MMB test, a laminated specimen with a delamination of length a (Fig. 1b) is simply supported and loaded 
through a rigid lever (Fig. 1a). We denote with L = 2ℓ, B, and H the length, width, and thickness of the specimen, 
respectively. The delamination divides the specimen into two sublaminates, each of thickness h = H/2. The load 
applied by the testing machine, P, is transferred to the specimen as an upward load, Pu, and a downward load, Pd. 
The lever arm length, c, can be adjusted to vary the intensities of Pu and Pd, thus imposing a desired I/II mixed-mode 
ratio, GI/GII. According to ASTM (2013), the downward load, Pd, is applied at the mid-span cross section. Global 
reference x- and z-axes are fixed, aligned with the specimen longitudinal and transverse directions, respectively. 

According to the enhanced beam-theory (EBT) model, the sublaminates may have any stacking sequences, 
provided that they behave as plane beams and have no shear-extension or bending-extension coupling (Bennati et al. 
2013a). In line with classical laminated plate theory (Jones 1999), we denote with A1, C1, and D1 the sublaminate 
extensional stiffness, shear stiffness, and bending stiffness, respectively. For orthotropic specimens, A1 = Exh,  
C1 = 5 Gzxh/6, and D1 = Exh3/12, where Ex and Gzx are the longitudinal Young’s modulus and transverse shear 
modulus. The sublaminates are partly connected by a deformable interface, regarded as a continuous distribution of 
linearly elastic–brittle springs. We denote with kz and kx the elastic constants of the distributed springs respectively 
acting along the normal and tangential directions with respect to the interface plane (Fig. 1c). 

2.2. Compliance 

For a linearly elastic load-deflection response, the specimen compliance is C = /P, where P is the applied load 
and  is the displacement of the load application point. The compliance of the MMB test specimen turns out to be 
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are the roots of the characteristic equations of the governing differential problem (Bennati et al. 2013b). 
Eqs. (2) show that both CDCB and CENF are the sums of three contributions, respectively depending on the 

sublaminate bending stiffness (Euler-Bernoulli beam theory), the transverse shear deformability (Timoshenko’s 
beam theory), and the elastic interface. Both CDCB and CENF are expressed by cubic polynomials of the delamination 
length, a, except for an exponential term (negligible in most cases) appearing in the expressions for CENF. Thus, the 
EBT model provides a rationale for some semi-empirical relationships of the literature (Martin and Hansen 1997). 
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Fig. 1. MMB test: (a) loading lever; (b) laminated specimen; (c) detail of the crack tip region and elastic interface. 

Since CDCB depends on kz (through 1 and 2) and CENF depends on kx (through 5), the elastic interface constants 
can be evaluated experimentally from DCB and ENF tests (Bennati and Valvo 2014). Alternatively, their values 
may be estimated by establishing an energy equivalence (Valvo et al. 2015), obtaining 
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2.3. Energy release rate 

Under I/II mixed-mode fracture conditions, the energy release rate can be written as G = GI + GII, where GI and 
GII are the contributions related to fracture modes I and II, respectively. For the MMB test specimen, 
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are the loads responsible for fracture modes I and II, respectively. By substituting Eqs. (2) into (5), we obtain 

   
2 2 2

2 2I II 1
I I II II2 2 2

1 1 1 1

and ,
16 4

    


A
D D A D

P P hG a h G a h
B B h

 (7) 

where 

2

I II
1 11 1 5

1 1

2

21 an1 1 1 1 1 1 12d
4

 
  

   
        






D D
AC Dz

x
hk

hh h k h
 (8) 

are crack length correction parameters (Bennati et al. 2013b). Eqs. (8) can be regarded as a generalisation for 
multidirectional laminates of the formulas given by the ASTM (2013) for unidirectional specimens. 
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are the roots of the characteristic equations of the governing differential problem (Bennati et al. 2013b). 
Eqs. (2) show that both CDCB and CENF are the sums of three contributions, respectively depending on the 

sublaminate bending stiffness (Euler-Bernoulli beam theory), the transverse shear deformability (Timoshenko’s 
beam theory), and the elastic interface. Both CDCB and CENF are expressed by cubic polynomials of the delamination 
length, a, except for an exponential term (negligible in most cases) appearing in the expressions for CENF. Thus, the 
EBT model provides a rationale for some semi-empirical relationships of the literature (Martin and Hansen 1997). 
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Fig. 1. MMB test: (a) loading lever; (b) laminated specimen; (c) detail of the crack tip region and elastic interface. 
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2.3. Energy release rate 

Under I/II mixed-mode fracture conditions, the energy release rate can be written as G = GI + GII, where GI and 
GII are the contributions related to fracture modes I and II, respectively. For the MMB test specimen, 
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are the loads responsible for fracture modes I and II, respectively. By substituting Eqs. (2) into (5), we obtain 
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are crack length correction parameters (Bennati et al. 2013b). Eqs. (8) can be regarded as a generalisation for 
multidirectional laminates of the formulas given by the ASTM (2013) for unidirectional specimens. 
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2.4. Mode mixity 

To characterise the relative contributions of fracture modes I and II, we introduce the mode-mixity angle, 
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which is most conveniently used in fatigue criteria (Kardomateas et al. 1995, Bak et al. 2014). For the MMB test 
specimen, by substituting Eqs. (6) and (7) into (9) and simplifying, we obtain 
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Eq. (10) can be solved with respect to c to obtain the lever arm length corresponding to a desired mode mixity, 
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Eq. (12) shows that pure mode I fracture ( = 0°) would require c = −ℓ. This corresponds, however, to a negative 
value of P. Hence, pure mode I tests cannot be performed by using the MMB equipment. Conversely, pure mode II 
fracture ( = 90°) is obtained for c = ℓ/3. Lever arm lengths below such value also result in pure mode II fracture, 
however with contact and friction between the sublaminates, which may alter the test results. 

Figure 2 (a) shows the mode-mixity angle, , as a function of the lever length, c, non-dimensionalised by the 
half-span of the specimen, ℓ, for three values of . The blue curve corresponds to the simple beam theory model, 
where no crack length correction parameter is considered; the orange and red curves correspond to delamination 
lengths of 50 and 30 mm, respectively. The black dashed line identifies the asymptotic value of the mode-mixity 
angle, equal to about 18°, which would require an infinite lever arm length, c. 

Here, as for the following pictures, the geometrical and mechanical properties (Table 1) correspond to the 
glass/epoxy specimens tested under static loads by Benzeggagh and Kenane (1996) and fatigue loads by Kenane and 
Benzeggagh (1997). In particular, the specimens were realised from a quasi-unidirectional 16-ply laminate with 52 
vol% of E-glass fibre and M10 epoxy resin (VICOTEX). In fatigue tests, Kenane and Benzeggagh (1997) assumed 
that the mixed-mode ratios remained constant, while the delamination length increased from 25 to 65 mm. 
According to the EBT model, as well as for the ASTM (2013), the mode mixity depends indeed on the delamination 
length, a. Figure 2 (b) shows, however, that this dependence is quite limited in the considered range of a. 

     Table 1. Geometrical and mechanical properties of the MMB test specimen. 

Specimen size (mm) Elastic constant (GPa) 

Span, L 130 Longitudinal Young’s modulus, Ex 36.2 

Thickness, 2h 6 Transversal Young’s modulus, Ez 10.6 

Width, B 20 Shear modulus, Gzx 5.6 
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Fig. 2. (a)  versus c/ℓ; (b)  versus a for the values of c considered by Benzeggagh and Kenane (1996). 

3. Delamination growth under quasi-static loads 

Under I/II mixed-mode fracture conditions, the critical energy release rate, Gc, equals an intermediate value 
between those measured in pure modes I, GIc, and II, GIIc. Many criteria for determining Gc as a function of the 
mode-mixity are available in the literature. Here, we assume the following elliptical criterion: 

2 2

I II

I II

1.
   

    
   c c

G G
G G

  (13) 

By expressing GI = G cos2 and GII = G sin2, in line with Eq. (9), it can be shown that Eq. (13) is equivalent to 
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Fig. 3. (a) GI versus GII at the delamination onset; (b) Gc versus . 
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To characterise the relative contributions of fracture modes I and II, we introduce the mode-mixity angle, 
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which is most conveniently used in fatigue criteria (Kardomateas et al. 1995, Bak et al. 2014). For the MMB test 
specimen, by substituting Eqs. (6) and (7) into (9) and simplifying, we obtain 

 
1

2
1 1

3arctan 1 4 ,c h
c

 


    




D A   (10) 

where 

I 1 2

II 5

1 1
1

a h a
a h a

  


 
  

 
 

.  (11) 

Eq. (10) can be solved with respect to c to obtain the lever arm length corresponding to a desired mode mixity, 

 
 

2
1 1

2
1 1

1 4 cot

3 1 4 cot

h
c

h

 

 

 


 


D A

D A
.  (12) 

Eq. (12) shows that pure mode I fracture ( = 0°) would require c = −ℓ. This corresponds, however, to a negative 
value of P. Hence, pure mode I tests cannot be performed by using the MMB equipment. Conversely, pure mode II 
fracture ( = 90°) is obtained for c = ℓ/3. Lever arm lengths below such value also result in pure mode II fracture, 
however with contact and friction between the sublaminates, which may alter the test results. 

Figure 2 (a) shows the mode-mixity angle, , as a function of the lever length, c, non-dimensionalised by the 
half-span of the specimen, ℓ, for three values of . The blue curve corresponds to the simple beam theory model, 
where no crack length correction parameter is considered; the orange and red curves correspond to delamination 
lengths of 50 and 30 mm, respectively. The black dashed line identifies the asymptotic value of the mode-mixity 
angle, equal to about 18°, which would require an infinite lever arm length, c. 

Here, as for the following pictures, the geometrical and mechanical properties (Table 1) correspond to the 
glass/epoxy specimens tested under static loads by Benzeggagh and Kenane (1996) and fatigue loads by Kenane and 
Benzeggagh (1997). In particular, the specimens were realised from a quasi-unidirectional 16-ply laminate with 52 
vol% of E-glass fibre and M10 epoxy resin (VICOTEX). In fatigue tests, Kenane and Benzeggagh (1997) assumed 
that the mixed-mode ratios remained constant, while the delamination length increased from 25 to 65 mm. 
According to the EBT model, as well as for the ASTM (2013), the mode mixity depends indeed on the delamination 
length, a. Figure 2 (b) shows, however, that this dependence is quite limited in the considered range of a. 

     Table 1. Geometrical and mechanical properties of the MMB test specimen. 

Specimen size (mm) Elastic constant (GPa) 

Span, L 130 Longitudinal Young’s modulus, Ex 36.2 

Thickness, 2h 6 Transversal Young’s modulus, Ez 10.6 

Width, B 20 Shear modulus, Gzx 5.6 
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Fig. 2. (a)  versus c/ℓ; (b)  versus a for the values of c considered by Benzeggagh and Kenane (1996). 
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Fig. 3. (a) GI versus GII at the delamination onset; (b) Gc versus . 
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Figures 3 (a) and 3 (b) respectively show the elliptical criterion Eq. (13) in the plane of GI and GII and the critical 
energy release rate, Gc, as a function of  as given by Eq. (14). The plots have been obtained by assuming 
GIc = 350.0 J/m2 and GIIc = 1500.0 J/m2. It should be noted that such values do not correspond to those measured in 
pure mode I and II tests by Benzeggagh and Kenane (1996), but are adopted here because of the good fit with their 
experimental results for mixed-mode tests, as re-interpreted through the EBT model (the squares in Fig. 3). 

Figure 4 shows the theoretical predictions of the EBT model for static tests with different values of c in the plane 
of the applied load, P, and displacement, . For each value of c, an initial linear elastic branch is followed by 
curvilinear one, which corresponds to static delamination growth. The maximum value of load was obtained as 
follows. First,  is computed from Eq. (10) and Gc from Eq. (14). Then, GI and GII are determined from Eq. (9) and 
P from Eqs. (6) and (7). Lastly, the displacement,  = C P, is determined by using Eq. (1). The same procedure was 
used for the curvilinear branches, whereas the delamination length, a, monotonically increases from 25 to 65 mm. 

 
Fig. 4. P versus  in quasi-static tests (a varying from 25 to 65 mm). 

4. Delamination growth under cyclic loads 

To illustrate the application of the EBT model to delamination growth under cyclic loads, we consider the MMB 
fatigue tests on glass/epoxy specimens carried out by Kenane and Benzeggagh (1997). Among the many proposed 
criteria for fatigue delamination growth (Bak et al. 2014), we choose the law proposed by Kardomateas et al. (1995) 
for load cycles, where the energy release rate oscillates between Gmin and Gmax: 

 
   

max

ˆ
,ˆ1

m
Gda f

dN G









  (15) 

where N is the number of load cycles performed, 
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and f() and m() are two mode-dependent parameters. It is assumed that 
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where the parameters fI, mI and fII, mII should be determined through pure mode I and II fatigue tests, respectively. 
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Fig. 5. a versus N for (a) Gmax = 200 J/m2 and (b) max = c/2, for the values of c considered by Kenane  and Benzeggagh (1997). 

 
Figure 5 shows the theoretical predictions of the EBT model for delamination growth under cyclic loads, as 

obtained by numerical integration of Eq. (15). Curves in figure 5 (a) correspond to load cycles conducted between 
Gmin = 0 and Gmax = 200 J/m2. Instead, curves in figure 5 (b) have been obtained by supposing that the imposed 
displacement varies between 0 and one half of the displacement corresponding to the onset of static delamination. 
From the results of pure mode I and II fatigue tests by Kenane and Benzeggagh (1997), we have calculated the 
following numerical values: fI = 3.37 × 10-4 mm/cycles, mI = 1.885, fII = 4.9673 × 10-8 mm/cycles and mII = 4.14. 

5. Conclusions 

We have presented an application of the EBT model to describe the MMB test specimen response under static 
and cyclic loads. The numerical values adopted have to be considered illustrative. For a complete characterisation of 
materials and validation of the theoretical model, it will be necessary to carry out ad hoc experimental tests. 
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Figures 3 (a) and 3 (b) respectively show the elliptical criterion Eq. (13) in the plane of GI and GII and the critical 
energy release rate, Gc, as a function of  as given by Eq. (14). The plots have been obtained by assuming 
GIc = 350.0 J/m2 and GIIc = 1500.0 J/m2. It should be noted that such values do not correspond to those measured in 
pure mode I and II tests by Benzeggagh and Kenane (1996), but are adopted here because of the good fit with their 
experimental results for mixed-mode tests, as re-interpreted through the EBT model (the squares in Fig. 3). 

Figure 4 shows the theoretical predictions of the EBT model for static tests with different values of c in the plane 
of the applied load, P, and displacement, . For each value of c, an initial linear elastic branch is followed by 
curvilinear one, which corresponds to static delamination growth. The maximum value of load was obtained as 
follows. First,  is computed from Eq. (10) and Gc from Eq. (14). Then, GI and GII are determined from Eq. (9) and 
P from Eqs. (6) and (7). Lastly, the displacement,  = C P, is determined by using Eq. (1). The same procedure was 
used for the curvilinear branches, whereas the delamination length, a, monotonically increases from 25 to 65 mm. 

 
Fig. 4. P versus  in quasi-static tests (a varying from 25 to 65 mm). 
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Fig. 5. a versus N for (a) Gmax = 200 J/m2 and (b) max = c/2, for the values of c considered by Kenane  and Benzeggagh (1997). 

 
Figure 5 shows the theoretical predictions of the EBT model for delamination growth under cyclic loads, as 

obtained by numerical integration of Eq. (15). Curves in figure 5 (a) correspond to load cycles conducted between 
Gmin = 0 and Gmax = 200 J/m2. Instead, curves in figure 5 (b) have been obtained by supposing that the imposed 
displacement varies between 0 and one half of the displacement corresponding to the onset of static delamination. 
From the results of pure mode I and II fatigue tests by Kenane and Benzeggagh (1997), we have calculated the 
following numerical values: fI = 3.37 × 10-4 mm/cycles, mI = 1.885, fII = 4.9673 × 10-8 mm/cycles and mII = 4.14. 

5. Conclusions 

We have presented an application of the EBT model to describe the MMB test specimen response under static 
and cyclic loads. The numerical values adopted have to be considered illustrative. For a complete characterisation of 
materials and validation of the theoretical model, it will be necessary to carry out ad hoc experimental tests. 

References 

ASTM D6671/D6671M-13e1, 2013. Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber 
Reinforced Polymer Matrix Composites. ASTM International, West Conshohocken, PA. 

Bak, B.L.V., Sarrado, C., Turon, A., Costa, J., 2014. Delamination under fatigue loads in composite laminates: a review on the observed 
phenomenology and computational methods. Applied Mechanics Reviews 66, 060803. 

Bennati, S., Fisicaro, P., Valvo, P.S., 2013 a. An enhanced beam-theory model of the mixed-mode bending (MMB) test – Part I: literature review 
and mechanical model. Meccanica 48, 443–462. 

Bennati, S., Fisicaro, P., Valvo, P.S., 2013 b. An enhanced beam-theory model of the mixed-mode bending (MMB) test – Part II: applications and 
results. Meccanica 48, 465–484. 

Bennati, S., Valvo, P.S., 2006. Delamination growth in composite plates under compressive fatigue loads. Composites Science and Technology 
66, 248–254. 

Bennati, S., Valvo, P.S., 2014. An experimental compliance calibration strategy for mixed-mode bending tests, Procedia Materials Science 3, 
1988-1993. 

Benzeggagh, M.L., Kenane, M., 1996. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites 
with mixed-mode bending apparatus. Composites Science and Technology 56, 439-449. 

Jones, R.M., 1999. Mechanics of composite materials, 2nd edition. Taylor & Francis Inc., Philadelphia. 
Kardomateas, G.A., Pelegri, A.A., Malik, B., 1995. Growth of internal delaminations under cyclic compression in composite plates. Journal of 

the Mechanics and Physics of Solids 43, 847–868. 
Kenane, M., Benzeggagh, M.L., 1997. Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue 

loading. Composites Science and Technology 57, 597–605. 
Martin, R.H., Hansen, P.L., 1997. Experimental compliance calibration for the mixed-mode bending (MMB) specimen. In: Armanios, E.A. (Ed.), 

Composite Materials: Fatigue and Fracture (Sixth Volume), ASTM STP 1285, pp. 305–323. 
Valvo, P.S., Sørensen, B.F., Toftegaard, H.L., 2015. Modelling the double cantilever beam test with bending moments by using bilinear 

discontinuous cohesive laws, ICCM 20 – 20th International Conference on Composite Materials. Copenhagen, Denmark. 

3 4 5 6 7 8 9 10
25

35

45

55

65

log10(N)

 a
 [m

m
]

 

 
30
35
40
50
60
90

 c [mm]

4 5 6 7 8
25

35

45

55

65

log10(N)

 a
 [m

m
]

 

 
30
35
40
50
60
90

 c [mm]
a b 


