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Abstract

This paper deals with local convexity properties of the quasihyperbolic metric in the punctured space. We consider convexity
and starlikeness of the quasihyperbolic balls.
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1. Introduction

The quasihyperbolic distance between two points x and y in a proper subdomain G of the Euclidean space Rn,
n � 2, is defined by

kG(x, y) = inf
α∈Γxy

∫
α

|dz|
d(z, ∂G)

,

where d(z, ∂G) is the (Euclidean) distance between the point z ∈ G and the boundary of G and Γxy is the collection
of all rectifiable curves in G joining x and y.

Since its introduction by F.W. Gehring and B.P. Palka [3] in 1976, the quasihyperbolic metric has been widely
applied in geometric function theory and mathematical analysis in general, see e.g. [9,13]. Quasihyperbolic geometry
has recently been studied by P. Hästö [4] and H. Lindén [5].

The purpose of this paper is to study the metric space (G, kG) and especially local convexity properties of quasi-
hyperbolic balls DG(x,M) defined by

DG(x,M) = {
z ∈ G: kG(x, z) < M

}
.

In the dimension n = 2 we call these balls disks and we often identify R2 with the complex plane C.
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Fig. 1. Boundaries of quasihyperbolic disks D
R2\{0}(x,M) with radii M = 1, M = 2 and M = κ .

M. Vuorinen suggested in [14] a general question about the convexity of balls of small radii in metric spaces. Our
work is motivated by this question and our main result Theorem 1.1 provides an answer in a particular case. For the
definition of starlike domains see Definition 2.9.

Theorem 1.1.

(1) For x ∈ Rn \ {0} the quasihyperbolic ball DRn\{0}(x,M) is strictly convex for M ∈ (0,1] and it is not convex for
M > 1.

(2) For x ∈ Rn \ {0} the quasihyperbolic ball DRn\{0}(x,M) is strictly starlike with respect to x for M ∈ (0, κ] and
it is not starlike with respect to x for M > κ , where κ is defined by (4.1) and has a numerical approximation
κ ≈ 2.83297.

Theorem 1.1 in the case n = 2 is illustrated in Fig. 1. O. Martio and J. Väisälä [7] have recently proved that if G is
convex then DG(x,M) is also convex for all x ∈ G and M > 0.

2. Quasihyperbolic balls with large and small radii

In this section we consider the behavior of quasihyperbolic balls with large and small radii.
Let us define φ-uniform domains, which were introduced by M. Vuorinen [12, 2.49], and consider quasihyperbolic

balls with large radii in φ-uniform domains. We use notation m(a,b) = min{d(a), d(b)}, where d(x) = d(x, ∂G).

Definition 2.1. Let φ : [0,∞) → [0,∞) be a homeomorphism. Then a domain G � Rn is φ-uniform if

kG(x, y) � φ

( |x − y|
m(x,y)

)
for all x, y ∈ G.

Lemma 2.2. Fix φ, let G be φ-uniform, x0 ∈ G and M > 0. If x ∈ G with m(x,x0) > |x − x0|/φ−1(M) then
x ∈ DG(x0,M).

Proof. Since φ is a homeomorphism m(x,x0) > |x − x0|/φ−1(M) implies

φ

( |x − x0|
m(x,x0)

)
< M

and since G is φ-uniform

kG(x, x0) � φ

( |x − x0|
m(x,x0)

)
< M.

Therefore x ∈ DG(x0,M). �
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Definition 2.3. Let δ ∈ (0,1) and r0 > 0 be fixed and G ⊂ Rn be a bounded domain. We say that G satisfies the
(δ, r0)-condition if for all z ∈ ∂G and r ∈ (0, r0] there exists x ∈ Bn(z, r) ∩ G such that d(x) > δr .

Theorem 2.4. Assume G is a bounded φ-uniform domain and satisfies the (δ, r0)-condition for a fixed δ ∈ (0,1) and
r0 > 0. Let us assume r1 ∈ (0, r0) and fix x0 ∈ G and z ∈ ∂G. Then d(DG(x0,M), z) < r1 for

M > φ

( |x0 − z| + r2

δr2

)
, (2.5)

where r2 = min{r1, d(x0)/2}.

Proof. Since G satisfies the (δ, r0)-condition and r2 < r0 we can choose x ∈ Bn(z, r2) ∩ G with d(x) > δr2. Now

m(x0, x) = min
{
d(x0), d(x)

} = d(x) > δr2

and |z − x| < r2. The inequality (2.5) is equivalent to

δr2 >
|x0 − z| + r2

φ−1(M)
.

Since |z − x| < r2 and by the triangle inequality

|x0 − z| + r2

φ−1(M)
>

|x0 − z| + |z − x|
φ−1(M)

� |x0 − x|
φ−1(M)

.

Now we have

m(x0, x) > δr2 >
|x0 − z| + r2

φ−1(M)
>

|x0 − x|
φ−1(M)

and by Lemma 2.2 we have x ∈ G ∩ DG(x0,M). Therefore

d
(
DG(x0,M), z

)
� |z − x| < r2 � r1

and the claim is clear. �
Corollary 2.6. Let G ⊂ Rn be a bounded φ-uniform domain and let G satisfy the (δ, r0)-condition. For a fixed
s ∈ (0, r0) and x ∈ G

G ⊂ DG

(
x,M(s)

) + Bn(s) = {
y + z: y ∈ DG

(
x,M(s)

)
, |z| < s

}
,

where

M(s) > max
z∈∂G

φ

( |x − z| + r

δr

)
and r = min{s, d(x)/2}.

Let us then point out that quasihyperbolic balls of small radii become more and more like Euclidean balls when
the radii tend to zero. We shall study the local structure of the boundary of a quasihyperbolic ball and show that the
boundary is round from the inside and cannot have e.g. outwards directed conical parts.

Definition 2.7. Let γ be a curve in domain G � Rn. If

kG(x, y) + kG(y, z) = kG(x, z)

for all x, z ∈ γ and y ∈ γ ′, where γ ′ is the subcurve of γ joining x and z, then γ is a geodesic segment or briefly a
geodesic. We denote a geodesic between x and y by Jk[x, y].

Theorem 2.8. For a proper subdomain G of Rn, M > 0 and y ∈ ∂DG(x,M), let Jk[x, y] be a geodesic segment of
the quasihyperbolic metric joining x and y. For z ∈ Jk[x, y] we have

Bn

(
z,

|z − y|
1 + u

)
⊂ DG(x,M),

where u = |z − y|/d(z).
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Proof. By [2, Lemma 1] there exists Jk[x, y]. By the choice of z we have

M = kG(x, y) = kG(x, z) + kG(z, y)

and by the triangle inequality for w ∈ DG(z, kG(z, y)) we have

kG(x,w) � kG(x, z) + kG(z,w) < M.

Now

DG

(
z, kG(z, y)

) ⊂ DG(x,M).

By [11, p. 347]

Bn
(
z,

(
1 − e−kG(z,y)

)
d(z)

) ⊂ DG

(
z, kG(z, y)

)
and therefore

Bn
(
z,

(
1 − e−kG(z,y)

)
d(z)

) ⊂ DG(x,M).

By [3, Lemma 2.1] kG(z, y) � log(1 + |z−y|
d(z)

) and therefore

(
1 − e−kG(z,y)

)
d(z) �

(
1 − d(z)

d(z) + |z − y|
)

d(z) = |z − y|
1 + u

for u = |z−y|
d(z)

. Now

Bn

(
z,

|z − y|
1 + u

)
⊂ Bn

(
z,

(
1 − e−kG(z,y)

)
d(z)

)
and the claim is clear. �

Now we have found a Euclidean ball Bn(z, r) inside the quasihyperbolic ball DG(x,M) with the following prop-
erty:

r

d(z, ∂DG(x,M))
→ 1, when z → ∂DG(x,M).

Geometrically this convergence means that the boundary of the quasihyperbolic ball must be round from the interior.
The boundary cannot have any cone shaped corners pointing outwards from the ball. However, there can be corners
in the boundary pointing inwards to the ball. An example in R2 \ {0} is the quasihyperbolic disk with M > π . This
example is considered in more detail in Remark 4.8.

Definition 2.9. Let G ⊂ Rn be a domain and x ∈ G. We say that G is starlike with respect to x if each line segment
from x to y ∈ G is contained in G. The domain G is strictly starlike with respect to x for x ∈ G if G is bounded and
each ray from x meets ∂G at exactly one point.

The following result considers starlikeness of quasihyperbolic balls in starlike domains. The same result was inde-
pendently obtained by J. Väisälä [10].

Theorem 2.10. If G � Rn is a starlike domain with respect to x, then the quasihyperbolic ball DG(x,M) is starlike
with respect to x.

Proof. We need to show that the function f (y) = kG(x, y) is increasing along each ray from x to ∂G. To simplify
notation we may assume x = 0.

Let y ∈ G \ {x} be arbitrary and denote a geodesic segment from x to y by γ . Let us choose any y′ ∈ (x, y) and
denote

γ ′ = |y′|
γ = cγ.
|y|
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Since G is starlike with respect to x the path γ ′ from x to y′ is in G. Therefore

kG(x, y′) �
∫
γ ′

|dz|
d(z)

=
∫
γ

c|dz|
d(cz)

.

Since G is starlike with respect to x we have d(cz) � cd(z) which is equivalent to

c

d(cz)
� 1

d(z)
.

Now

kG(x, y′) �
∫
γ

c|dz|
d(cz)

�
∫
γ

|dz|
d(z)

= kG(x, y)

and f is increasing along each ray from x to ∂G. �
For a domain G ⊂ Rn and quasihyperbolic ball DG(x,M), x ∈ G and M > 0, we define the points that can affect

the shape of DG(x,M) to be the set{
z ∈ ∂G: |z − y| = d(y) for some y ∈ DG(x,M)

}
.

Let G be a domain and fix x ∈ G and M > 0. Now by [11, p. 347] we know that DG(x,M) ⊂ Bn(x,Rd(x)), for
R = eM − 1, and therefore for each y ∈ DG(x,M) we have d(y) � d(x) + 2Rd(x) = d(x)(2eM − 1). This fact is
generalized in the following lemma.

Lemma 2.11. Let G � Rn be a domain, x ∈ G and y ∈ ∂G. Then the points that can affect the shape of the quasihy-
perbolic ball DG(x,M) for M ∈ (0,1] are in the closure of the set

Uy = Bn
(
x, |x − y|(2eM − 1

)) \ {
z ∈ Rn \ {y}: �x′yz � π/2 − 1, x′ = 2y − x

}
,

where �x′yz is the angle between line segments [x′, y] and [z, y] at y.

Proof. Let us consider G′ = Rn \ {y}. Now G ⊂ G′ and therefore DG(x,M) ⊂ DG′(x,M). Now the points that can
affect the shape of DG(x,M) need to be inside Bn(x, |x − y|(2eM − 1)).

Let z ∈ ∂DG′(x,M). Because M � 1 we have by (3.1) �xyz � 1. Therefore the points in{
z ∈ Rn \ {y}: �x′yz � π/2 − 1, x′ = 2y − x

}
do not affect the shape of DG′(x,M). Since DG(x,M) ⊂ DG′(x,M), the claim is clear. �
Theorem 2.12. For a domain G � Rn, M ∈ (0,1] and x ∈ G the quasihyperbolic ball DG(x,M) is starlike with
respect to x.

Proof. We denote

Vx = G ∩
( ⋂

y∈∂G

Uy

)
.

We will show that Vx is strictly starlike with respect to x. By definition of Vx and Uy

Vx = Bn
(
x, d(x)

(
2eM − 1

))∖ ⋃
y∈∂G

Sy,

where Sy = {z ∈ Rn \ {y}: �x′yz � π/2 − 1, x′ = 2y − x} ∪ {y}. Let u ∈ Vx and denote R(u) = {z ∈ Rn: z =
x + t (u − x), t � 1} and v ∈ R(u) ∩ ∂Vx such that v′ ∈ R(u) ∩ ∂Vx implies |x − v| � |x − v′|. If v ∈
Sn−1(x, d(x)(2eM − 1)) then Vx ∩ ∂G = {v}. Otherwise v ∈ ∂Sy for some y ∈ ∂G and Vx ∩ ∂G = {v}. Therefore
Vx is strictly starlike with respect to x.

The set Vx contains all of the boundary points of G that affect the shape of DG(x,M). Therefore for fixed x ∈ G

we have DG(x,M) = DVx (x,M) and DG(x,M) is starlike with respect to x by Theorem 2.10, because Vx is starlike
with respect to x. �
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Remark 2.13. In Lemma 2.11 and Theorem 2.12 we could replace M ∈ (0,1] by M ∈ (0, α] and �x′yz � π/2 − 1
by �x′yz � π/2 − α for any α ∈ [1,π/2). This modified version of Theorem 2.12 was also proved by J. Väisälä [9,
Theorem 3.11].

3. Convexity of quasihyperbolic balls in punctured space

The set Rn \ {z}, z ∈ Rn, is called a punctured space. To simplify notation we may assume z = 0. In this section we
will find values M such that the quasihyperbolic ball DRn\{0}(x,M) is convex for all x ∈ Rn \ {0}.

Let us assume that x, y ∈ Rn \ {0} and that the angle ϕ between segments [0, x] and [0, y] satisfies 0 < ϕ � π . It
can be shown [6, p. 38] that

kRn\{0}(x, y) =
√

ϕ2 + log2 |x|
|y| . (3.1)

In particular, we see that kRn\{0}(x, y) = kRn\{0}(x, y1), where y1 is obtained from y by the inversion with respect
to Sn−1(|x|), i.e. y1 = y|x|2/|y|2. Hence this inversion maps the quasihyperbolic sphere {z ∈ Rn \ {0}: kRn\{0}(x, z) =
M} onto itself.

Quasihyperbolic balls are similar in Rn \ {0} for fixed M . In other words any quasihyperbolic ball of radius M can
be mapped onto any other quasihyperbolic ball of radius M by rotation and stretching.

We will first consider convexity of the quasihyperbolic disks in the punctured plane R2 \ {0} and then extend the
results to the punctured space Rn \ {0}.

By (3.1) we have a coordinate representation in the case n = 2

x = (|x| cosϕ, |x| sinϕ
) = (

e±
√

M2−ϕ2
cosϕ, e±

√
M2−ϕ2

sinϕ
)

(3.2)

for x ∈ ∂DR2\{0}(1,M) and −M � ϕ � M . By using this presentation we will prove the following result.

Theorem 3.3. For M > 1 and z ∈ R2 \ {0} the quasihyperbolic disk DR2\{0}(z,M) is not convex.

Proof. We may assume z = 1 and let x ∈ ∂DR2\{0}(z,M) be arbitrary. Assume M > 1. By (3.2) we have

x = (
e±

√
M2−ϕ2

cosϕ, e±
√

M2−ϕ2
sinϕ

)
,

where −M � ϕ � M .
If M > π/2, then the claim is clear by symmetry because Rex = e−M > 0 for ϕ = 0 and Rex < 0 for ϕ = ±M .
We will show that the function

f (ϕ) = e−
√

M2−ϕ2
cosϕ

is concave in the neighborhood of ϕ = 0 and the function

g(ϕ) = e−
√

M2−ϕ2
sinϕ

is increasing in (0,min{M, π
2 }). This will imply non-convexity of DR2\{0}(z,M).

First,

g′(ϕ) = e−
√

M2−ϕ2
(

cosϕ + ϕ sinϕ√
M2 − ϕ2

)

and this is clearly non-negative for 0 < ϕ < min{M, π
2 }. Therefore g(ϕ) is increasing.

Second, by a straightforward computation we obtain

f ′(ϕ) = e−
√

M2−ϕ2
(

ϕ cosϕ√
M2 − ϕ2

− sinϕ

)
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and

f ′′(ϕ) = e−
√

M2−ϕ2
((M2 − √

M2 − ϕ2(M2 − 2ϕ2))) cosϕ + 2ϕ(ϕ2 − M2) sinϕ

(
√

M2 − ϕ2)3
.

Now f ′(0) = 0 and f ′′(0) = e−M(1/M − 1) < 0 and therefore f (ϕ) is concave in the neighborhood of ϕ = 0. �
Theorem 3.3 can easily be extended to the case n � 3.

Corollary 3.4. If M > 1 and z ∈ Rn \ {0}, then the quasihyperbolic ball DRn\{0}(z,M) is not convex.

Proof. Let us choose any y ∈ Rn \ {0} such that y �= tz for all t ∈ R. Now DRn\{0}(z,M)∩ span(0, y, z) is not convex
by Theorem 3.3 and therefore the quasihyperbolic ball DRn\{0}(z,M) cannot be convex. �

Let us now consider the convexity of the quasihyperbolic balls in the case M � 1 and n = 2.

Theorem 3.5. For 0 < M � 1 and z ∈ R2 \ {0} the quasihyperbolic disk DR2\{0}(z,M) is strictly convex.

Proof. Let z = 1 and x ∈ ∂DR2\{0}(z,M). By symmetry it is sufficient to consider the upper half C of ∂DR2\{0}(z,M),
which is given by

x = x(s) = (
es cosϕ, es sinϕ

)
, (3.6)

where M ∈ (0,π), s ∈ [−M,M] and ϕ = ϕ(s) = √
M2 − s2. Now ϕ′(s) = −s/ϕ(s) and therefore for s ∈ (−M,M)

x′(s) = es

ϕ(s)

(
a(s), b(s)

)
,

where a(s) = ϕ(s) cosϕ(s) + s sinϕ(s) and b(s) = ϕ(s) sinϕ(s) − s cosϕ(s). Now t (s) = (a(s), b(s)) is a tangent
vector of C for s ∈ [−M,M]. Equality t (s) = 0 is equivalent to s2 = −ϕ(s)2, which never holds. Since t (s) �= 0 for
all s ∈ [−M,M] the angle α(s) = arg t (s) is a continuous function on (−M,M). We need to show that α(s) is strictly
decreasing on [−M,M].

Since tanα(s) = b(s)/a(s) and cotα(s) = a(s)/b(s) it suffices to show that d(s) = b′(s)a(s) − a′(s)b(s) < 0 on
(−M,M). By a straightforward computation

d(s) = −M2(1 + s)

φ(s)
(3.7)

and α(s) is strictly decreasing on [−M,M]. Since t (s) → (0,M) as s → −M and t (s) → (0,−M) as s → M , α(s)

decreases from π/2 to −π/2 on C and the assertion follows. �
Remark 3.8. The boundary ∂DR2\{0}(1,M) is smooth since α(s) is continuous,

t (M) = (0,−M) and t (−M) = (0,M).

By using the symmetry of the quasihyperbolic balls we can extend Theorem 3.5 to the case of punctured space.

Lemma 3.9. Let the domain G ⊂ Rn be symmetric about a line l (i.e. is invariant under any rotation about l) and
G ∩ L be strictly convex for any plane L with l ⊂ L. Then G is strictly convex.

Proof. We may assume that the line l is the first coordinate axis of Rn to simplify notation. Let x, y ∈ ∂G and
z ∈ (x, y). Define Ax = {u ∈ G: u1 = x1} and Ay = {u ∈ G: u1 = y1}. Denote by H the convex hull of Ax ∪Ay . Now
z ∈ H and H \ (Ax ∩ Ay) ⊂ G and hence the assertion follows. �
Corollary 3.10. For 0 < M � 1 and z ∈ Rn \ {0} the quasihyperbolic ball DRn\{0}(z,M) is strictly convex.

Proof. By (3.1) the quasihyperbolic ball DRn\{0}(x,M) is symmetric about the line that contains x and 0. By Lem-
ma 3.9 and Theorem 3.5 DRn\{0}(x,M) is strictly convex for 0 < M � 1. �
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4. Starlikeness of quasihyperbolic balls in punctured space

In this section we will find the maximum value of the radius M for which the quasihyperbolic ball DRn\{0}(x,M)

is strictly starlike with respect to x. As in the previous section we will first consider the quasihyperbolic disks in the
punctured plane and then extend the results to the punctured space.

Let us define a constant κ as the solution of the equation

cos
√

p2 − 1 +
√

p2 − 1 sin
√

p2 − 1 = e−1 (4.1)

for p ∈ [1,π]. The proof of the next theorem shows that Eq. (4.1) has only one solution κ on [1,π] with numerical
approximation

κ ≈ 2.83297.

Remark 4.2. According to [1] the number κ was first introduced by P.T. Mocanu in 1960 [8]. Later V. Anisiu and
P.T. Mocanu showed [1, p. 99] that if f is an analytic function in the unit disk, f (0) = 0 and∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ � κ,

then f is starlike with respect to 0.

Theorem 4.3. The quasihyperbolic disk DR2\{0}(x,M) is strictly starlike with respect to x for 0 < M � κ and is not
starlike with respect to x for M > κ .

Proof. Because of symmetry we will consider ∂DR2\{0}(x,M) only above the real axis and by the similarity it is
sufficient to consider only the case x = 1. By Theorem 3.5 we need to consider M ∈ (1,π).

Let us denote by l(s) a tangent line of the upper half of ∂DR2\{0}(1,M). The angle between l(s) and the real axis
is described by the function α(s) defined in the proof of Theorem 3.5. The function α′(s) has the same sign than d(s)

in (3.7) and therefore α′(s) is positive on (−M,−1) and negative on (−1,M). We need to find M such that l(s),
s ∈ [−M,M], goes through point 1 exactly once. In other words, we need to find M such that l(−1) goes through 1.

Let us define functions a(s) and b(s) as in the proof of Theorem 3.5. Since a(−1) �= 0 for M ∈ (1,π), the tangent
line l(−1) goes through 1 if and only if

b(−1)

a(−1)
= x2

x1 − 1
, (4.4)

where x1 = es cosϕ(s) and x2 = es sinϕ(s). Eq. (4.4) is equivalent to

e cos
√

M2 − 1 + e
√

M2 − 1 sin
√

M2 − 1 − 1

(e − cos
√

M2 − 1)(
√

M2 − 1 cos
√

M2 − 1 − sin
√

M2 − 1)
= 0,

which holds if and only if M = κ .
We will finally show that M = κ is the only solution of (4.1) on (1,π). We define function h(x) = cosx +

x sinx − e−1 and show that it has only one root on (0,
√

π2 − 1). Since h′(x) = x cosx, h(0)1 − e−1 > 0 and
h(

√
π2 − 1) < h(11π/12) < 0 the function h has only one root on (0,

√
π2 − 1) and the assertion follows. �

Corollary 4.5. The quasihyperbolic ball DRn\{0}(x,M) is strictly starlike with respect to x for 0 < M � κ and is not
starlike with respect to x for M > κ .

Proof. By Theorem 4.3 the claim is true for n = 2. Let us assume n > 2 and choose x ∈ Rn \ {0} and M ∈ (0, κ].
Let us assume, on the contrary, that there exist y ∈ ∂DRn\{0}(x,M) and z ∈ (x, y) such that z ∈ ∂DRn\{0}(x,M). Now
z ∈ ∂DRn\{0}(x,M) ∩ span(0, x, y) and therefore DR2\{0}(x,M) is not strictly starlike with respect to x. This is a
contradiction by Theorem 4.3. �
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Remark 4.6. Let us consider the starlikeness property of the quasihyperbolic disk DR2\{0}(x,M) with respect to
any point z ∈ DR2\{0}(x,M). For M > 1 and z = (e−M + ε)x/|x|, where ε > 0, we can choose ε so small that
DR2\{0}(x,M) is not starlike with respect to z. On the other hand for M < λ ≈ 2.9648984, where λ is a solution of

cos
√

p2 − 1 +
√

p2 − 1 sin
√

p2 − 1 = e−1−p, (4.7)

DR2\{0}(x,M) is starlike with respect to z = (eM − ε)x/|x| for small enough ε > 0. This is also true for quasihyper-
bolic balls DRn\{0}(x,M). Eq. (4.7) can be obtained by similar computations as in the proof of Theorem 4.3.

Remark 4.8. For M � π we note that

lim
ϕ→M

b(s)

a(s)
= −∞ and lim

ϕ→−M

b(s)

a(s)
= ∞

and therefore DRn\{0}(x,M) smooth. For M > π the boundary ∂DRn\{0}(x,M) has two components. The upper half of
the larger boundary component is defined by (3.6) for s ∈ [m,M], where m = max{t ∈ (−M,M): sin

√
M2 − t2 = 0}.

Therefore

lim
ϕ→M

b(s)

a(s)
= −∞ and lim

ϕ→m

b(s)

a(s)
= −m cosϕ(m)

ϕ(m) cosϕ(m)
= − m

ϕ(m)
,

where |−m/ϕ(m)| < ∞, and DRn\{0}(x,M) is not smooth at (em sinϕ(m),0). Similarly the smaller boundary com-
ponent of ∂DRn\{0}(x,M) is not smooth at the point where it intersects the negative real axis. Note that by (3.1)
DR2\{0}(x,M) is not simply connected for M > π and is simply connected for M ∈ (0,π].

Proof of Theorem 1.1. The claim is clear by Corollaries 3.4, 3.10 and 4.5. �
The following lemma shows a property of the Euclidean radius of a quasihyperbolic ball.

Lemma 4.9. Let M ∈ (0, κ], z ∈ Rn \ {0} and x, y ∈ ∂DRn\{0}(z,M). Then �xz0 < �yz0 implies |x − z| < |y − z|.

Proof. Since M � κ the quasihyperbolic ball DRn\{0}(z,M) is strictly starlike with respect to z by Corollary 4.5 and
the angle �xz0 determines the point x uniquely up to a rotation about the line through 0 and z. By symmetry and
similarity it is sufficient to consider only the case n = 2 and z = 1. We will show that the function

f (s) = ∣∣x(s) − 1
∣∣2

is strictly increasing on (−M,M), where x(s) defined by (3.6). Now

f (s) = ∣∣x(s)
∣∣2 + 1 − 2

∣∣x(s)
∣∣ cosp(s) = e2s + 1 − 2es cosϕ(s)

for s ∈ [−M,M] and

f ′(s) = 2es

(
es − cosϕ(s) − s sinϕ(s)

ϕ(s)

)
.

If s ∈ (0,M), then

es − cosϕ(s) − s sinϕ(s)

ϕ(s)
� es − cosϕ(s) − s � es − 1 − s > 0

and f ′(s) > 0.
If s ∈ [−M,0), then es − cosϕ(s) − s sinϕ(s)/ϕ(s) > 0 is equivalent to e−t − cosϕ(t) + t sinϕ(t)/ϕ(t) > 0 for

t ∈ (0,M]. Because M < 3, by elementary calculus

e−t − cosϕ(t) + t sinϕ(t)

ϕ(t)
�

(
1 − t + t2

2
− t3

6

)
−

(
1 − ϕ(t)2

2
+ ϕ(t)4

24

)
+

(
t − t

ϕ(t)2

6

)

= 1

24

(
12M2 − M4 − 4M2t + 2M2t2 − t4) > 0

and also f ′(s) > 0. Therefore f is strictly increasing and the assertion follows. �
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Finally we pose an open problem concerning the uniqueness of short geodesics: are quasihyperbolic geodesics with
length less than π always unique?
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