Abstract The outbreak of Zika virus followed by an increase in cases of fetal microcephaly in Brazil in 2015 has raised the concern of the association of Zika virus infection with fetal microcephaly and other central nervous system (CNS) malformations. Most patients with Zika virus infection are asymptomatic. However, according to a previous report, the most common symptom in pregnant women with Zika virus infection and fetal microcephaly is rash. Reported prenatal ultrasound findings are microcephaly, lissencephaly, agenesis of corpus callosum, intracranial calcification, cerebellar atrophy, ventriculomegaly, brain hypoplasia, microophthalmia, abnormal amniotic fluid volume, abnormal cerebral blood flow, abnormal umbilical artery blood flow, hydrocephalus, intrauterine growth restriction, and arthrogryposis which are mostly CNS lesions. Pregnant women who have a traveling history in active infection areas should have serological testing for Zika virus infection. Targeted ultrasound examinations at 18–20 weeks of gestation and serial ultrasound follow-ups are also suggested. In the cases of fetal microcephaly, intracranial anatomy and extracranial abnormalities should be also carefully examined. Amniocentesis might be needed for suspected Zika virus infection, genetic abnormalities, or other congenital infection.

© 2016, Elsevier Taiwan LLC and the Chinese Taipei Society of Ultrasound in Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Zika virus is a flavivirus which was first isolated in rhesus monkeys in 1947 [1]. The primary transmission vector of Zika virus is Aedes mosquitoes. Sexual transmission from males to their partners [2–6] have also been reported. Severe outbreaks have been reported in countries in Africa and Asia, then the Pacific region (Yap island in 2007, French Polynesia in 2013), and more recently to the Americas (Brazil in 2015) [7]. In January, 2015, an outbreak in northeast Brazil was noted. Later, in September, an increased number of newborns with microcephaly and other central nervous system (CNS) abnormalities were reported at the infected area (at least 4783 suspected and 404 confirmed cases) which suggested that Zika virus infection might be teratogenic [8]. Further investigation showed positive Zika virus reverse transcription polymerase chain reaction (RT-PCR) results in the amniotic fluid and postmortem fetal brain of the fetuses with microcephaly [9]. Maternal–fetal vertical transmission was confirmed to be the other way of transmission and the cause of fetal abnormalities. Therefore, the possibility of Zika virus associated with fetal congenital CNS malformations was reported by the Center for Disease Control and Prevention (CDC) in January, 2016 [4].

Here we will discuss the possible prenatal fetal abnormalities associated with Zika virus infection, and the recommendations.

Clinical manifestations

Zika virus infection can be symptomatic (20%) or asymptomatic (80%). The major symptoms of Zika virus infection are maculopapular rash, fever, nonpurulent conjunctivitis, and arthralgia. Other less common symptoms are myalgia, headache, retro-orbital pain, edema, and vomiting [10]. Symptoms usually last from several days to 1 week. Although 80% patients are asymptomatic, 74% of mothers were reported to have a rash in the first 35 cases of microcephaly in Brazil [4]. Brasil et al [11] suggest that rash is the most common symptom (100%) in pregnant women with Zika virus infection. The second most common symptom is pruritus (94%) and the third is arthralgia (65%) (Table 1). In the preliminary report, fetal abnormalities were detected by Doppler ultrasonography in 12 of the 42 ZIKV-positive women (29%) regardless of the timing of maternal infection. Guillain-Barre syndrome has also been reported after Zika virus infection [12,13].

Laboratory diagnosis

Current laboratory diagnosis includes RT-PCR detection of virus RNA during the acute phase (5–7 days after the onset of symptoms) or serum immunoglobulin (Ig) M antibodies to Zika virus during the convalescent phase (from 4 days to 12 weeks after the onset of symptoms) [10,14]. In the case of a positive serous IgM antibodies test, plaque reduction neutralization test is also advised for exclusion of other flavivirus infections [15]. In the case of a suspected fetal Zika virus infection, RT-PCR of viral RNA has also been used in amniotic fluid [16], but the sensitivity and specificity is unknown.

The World Health Organization (WHO) interim guidance development group defines the diagnosis of Zika virus-related fetal brain/other abnormalities as “fetal brain/other abnormalities with a molecular or epidemiological link to Zika virus, and without other known conditions to cause fetal abnormalities” [10]. Therefore, conditions including genetic abnormalities, other congenital infection, or teratogenic agent exposure should be ruled out first.

Pathogenesis

The pathogenesis of microcephaly and CNS malformations associated with Zika virus is still under investigation. One of the hypotheses is that Zika virus is neurotropic because neuronal degeneration, cellular infiltration and areas of softening are present in Zika virus-infected mouse brains [17], suggesting that Zika virus acts directly on neural progenitor cells and then causes CNS malformations. Another hypothesis is that the destruction of the CNS is through the immune system, where the antibodies formed following infection may act against the neuronal myelin sheath, because Guillain-Barre syndrome associated with Zika virus infection was also reported [12,13]. However, the relationship between the timing of maternal infection and fetal abnormalities are still under investigation.

Ultrasound findings

Reported possible ultrasound findings are microcephaly, lissencephaly, agenesis of corpus callosum, intracranial calcification, cerebellar atrophy, ventriculomegaly, brain hypoplasia, hydrocephalus, microphthalmia, abnormal amniotic fluid volume, abnormal cerebral blood flow, abnormal umbilical artery blood flow, intrauterine growth restriction, and arthrogryposis which are mostly CNS lesions (Table 2) [4,9,11,16,18–22].

The most common ultrasound finding is microcephaly. However, the incidence of microcephaly in Zika virus-infected pregnant women is not well-known. A recent prospective study estimated that the risk of microcephaly
in mothers with Zika virus infection in the 1st trimester is about 1% [23]. Although it seems low compared with other congenital malformations from other virus infections, the large number of microcephaly might be due to the high incidence of Zika virus infection during the outbreaks.

There is no unified consensus for the definite diagnosis of microcephaly. The Society for Maternal–Fetal medicine (SMFM) and WHO suggest the microcephaly is defined as fetal head circumference \(< 2 \text{ SD} \) below the mean for gestational age, and the pathologic microcephaly is fetal head circumference \(\geq 5 \text{ SD} \) below the mean for gestational age. However, microcephaly is not a diagnosis but a clinical finding. Further investigation of other abnormal findings is necessary for detailed assessments.

Perez et al [24] reported a woman in Spain at 17 weeks of gestation who had a positive detection of Zika virus IgG, IgM, and RNA in the serum. Later, Zika virus RNA was detected in amniotic fluid \((9.1 \times 10^4 \text{ copies/mL})\) by RT-PCR. An ultrasound scan at 19 weeks of gestation showed fetal malformation with bilateral hydrocephalus and arthrogryposis multiplex congenital were noted.

Sarno et al [19] also reported a case of pregnancy with hydrops fetalis, hydranencephaly, intracranial calcifications, destructive lesions of posterior fossa, and fetal demise. Zika virus RT-PCR was detected from extracts of fetal cerebral cortex, medulla oblongata, cerebrospinal fluid, and amniotic fluid. It provides the evidence that the Zika virus is not only associated with CNS malformation, but also may cause hydrops fetalis and fetal demise.

According to current case report series, evidence showed that Zika virus does not only cause CNS abnormalities, but also arthrogryposis, intrauterine growth restriction, hydrops fetalis, and even fetal demise. During ultrasound examinations for pregnant woman with suspected Zika virus infection, targeted organ examination has been recommended [15]. The biometry of head, including biparietal diameter, head circumference, frontal–thalamic distance, transcerebellar diameter, bilateral lateral ventricle, cistern magna, and nuchal thickness should be well-documented. And we should also notice if there are any abnormal cerebral gyral patterns, intracranial calcification, cataract, or microphthalmia. Fetal magnetic resonance imaging could provide more information on suspected brain abnormalities. The amniotic fluid index, umbilical artery blood flow, placental calcification, and limb posture also need further assessment.

Prognosis

Zika virus infection during pregnancy is often associated with CNS malformation, especially microcephaly which may cause intellectual disability or development delay. The head circumference is associated with prognosis, with smaller head circumference indicating a poorer prognosis. The prognosis might also be related to the timing of infection, which means infection during early pregnancy might have more severe neurological outcome, such as seizures, hearing and vision impairment, intellectual disability, and developmental impairment [8,22,25].

Practical recommendations

Pregnant woman with traveling history

All health providers should ask the pregnant woman about her traveling history. Patients with two or more symptoms of suspected Zika virus infection (fever, rash, pruritus, arthralgia, or conjunctivitis) during or within 2 weeks of travel should be tested for Zika virus infection [26]. Recent updated recommendations suggest that serological testing for Zika virus can be offered to asymptomatic pregnant women with traveling history [27].

Evidence of maternal Zika virus infection

The SMFM and CDC recommend targeted ultrasounds at the gestational age of 18–20 weeks for pregnant women with evidence of Zika virus [26,28]. If abnormalities are found, amniocentesis for Zika virus RT-PCR is suggested. Magnetic resonance imaging might be helpful for further evaluation. However, serial ultrasound should be performed every 3–4 weeks in patients with no abnormalities detected at the gestational age of 18–20 weeks because microcephaly might be noted at late pregnancy.

If pregnant women with positive Zika virus infection history experience a fetal loss, the fetal tissues, umbilical cord, and placenta should be sent for RT-PCR and immunohistochemical staining tests for Zika virus.

Microcephaly

The SMFM and the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) both suggest that when microcephaly alone is noted at prenatal ultrasound, if head circumference is \(> 2 \text{ SD} \) below the mean for gestational age, intracranial anatomy and extracranial abnormalities should also be carefully examined. Follow-up sonography should be performed in 3–4 weeks if no intracranial abnormalities are noted. In the case of progressive microcephaly or with other brain abnormalities, the ISUOG suggest further assessment such as amniocentesis for Zika

Table 2 Ultrasound findings associated with Zika virus infection in pregnancy.

<table>
<thead>
<tr>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcephaly</td>
</tr>
<tr>
<td>Lissencephaly</td>
</tr>
<tr>
<td>Agenesis of corpus callosum</td>
</tr>
<tr>
<td>Intracranial calcification</td>
</tr>
<tr>
<td>Cerebellar atrophy</td>
</tr>
<tr>
<td>Ventriculomegaly</td>
</tr>
<tr>
<td>Brain hypoplasia</td>
</tr>
<tr>
<td>Hydrocephalus</td>
</tr>
<tr>
<td>Microphthalmia</td>
</tr>
<tr>
<td>Abnormal amniotic fluid volume</td>
</tr>
<tr>
<td>Abnormal cerebral blood flow</td>
</tr>
<tr>
<td>Abnormal umbilical artery blood flow</td>
</tr>
<tr>
<td>Intrauterine growth restriction</td>
</tr>
<tr>
<td>Arthrogryposis</td>
</tr>
</tbody>
</table>

Practical recommendations

Pregnant woman with traveling history

All health providers should ask the pregnant woman about her traveling history. Patients with two or more symptoms of suspected Zika virus infection (fever, rash, pruritus, arthralgia, or conjunctivitis) during or within 2 weeks of travel should be tested for Zika virus infection [26]. Recent updated recommendations suggest that serological testing for Zika virus can be offered to asymptomatic pregnant women with traveling history [27].

Evidence of maternal Zika virus infection

The SMFM and CDC recommend targeted ultrasounds at the gestational age of 18–20 weeks for pregnant women with evidence of Zika virus [26,28]. If abnormalities are found, amniocentesis for Zika virus RT-PCR is suggested. Magnetic resonance imaging might be helpful for further evaluation. However, serial ultrasound should be performed every 3–4 weeks in patients with no abnormalities detected at the gestational age of 18–20 weeks because microcephaly might be noted at late pregnancy.

If pregnant women with positive Zika virus infection history experience a fetal loss, the fetal tissues, umbilical cord, and placenta should be sent for RT-PCR and immunohistochemical staining tests for Zika virus.

Microcephaly

The SMFM and the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) both suggest that when microcephaly alone is noted at prenatal ultrasound, if head circumference is \(> 2 \text{ SD} \) below the mean for gestational age, intracranial anatomy and extracranial abnormalities should also be carefully examined. Follow-up sonography should be performed in 3–4 weeks if no intracranial abnormalities are noted. In the case of progressive microcephaly or with other brain abnormalities, the ISUOG suggest further assessment such as amniocentesis for Zika virus.
virus RT-PCR should be considered [14], and also for genetic abnormalities or other congenital infection.

References