On the Largest kth Eigenvalues of Trees*

Shao Jia-yu

Department of Applied Mathematics
Tongji University
Shanghai 200092,
People's Republic of China

Submitted by Richard A. Brualdi

ABSTRACT

We consider the only remaining unsolved case $n \equiv 0 \pmod{k}$ for the largest kth eigenvalue of trees with n vertices. We give complete solutions for the cases $k = 2, 3, 4, 5$ and give some necessary conditions for extremal trees in general cases.

1. INTRODUCTION

Let G be a graph of order n. The eigenvalues of G are defined as those of its adjacency matrix $A(G)$. Now $A(G)$ is a symmetric $(0, 1)$ matrix, so the eigenvalues of $A(G)$ (and of G) are all real and can be ordered as

$$\lambda_1(G) \geq \lambda_2(G) \geq \cdots \geq \lambda_n(G).$$

We call $\lambda_k(G)$ the kth eigenvalue of G.

If T is a tree of order n, then T is bipartite, and its eigenvalues satisfy the relation $\lambda_i(T) = -\lambda_{n-i+1}(T)$ ($i = 1, 2, \ldots, n$). So it suffices to study those eigenvalues $\lambda_k(T)$ for $1 \leq k \leq [n/2]$. In this paper we always assume

*Research partially supported by the National Science Foundation of China.

© Elsevier Science Inc., 1995 0024-3795/95/$9.50
655 Avenue of the Americas, New York, NY 10010 SSDI 0024-3795(93)00236-S
that $1 \leq k \leq \lfloor n/2 \rfloor$.

There have been considerable attempts and some successes in finding the upper bounds for the eigenvalues of trees [1–4, 6]. An interesting unsolved problem in the study of the spectra of trees is to find "the best possible upper bound" for kth eigenvalues of trees of order n. In other words, let

$$T_n = \{T \mid T \text{ is a tree of order } n\},$$

and let

$$\overline{\lambda}_k(n) = \max\{\lambda_k(T) \mid T \in T_n\} \quad (1 \leq k \leq \lfloor n/2 \rfloor).$$

Then the above problem asks to determine the function $\overline{\lambda}_k(n)$ and (if possible) find a tree $T \in T_n$ with $\lambda_k(T) = \overline{\lambda}_k(n)$.

The case $k = 1$ was settled in 1957 [1], and it is now well known that $\lambda_1(T) \leq \sqrt{n-1}$ with equality if and only if T is the star $K_{1,n-1}$. But the cases when $2 \leq k \leq \lfloor n/2 \rfloor$ are not completely solved yet. In 1986, Hong Yuan [3] showed that

$$\overline{\lambda}_k(n) = \sqrt{\left\lfloor \frac{n-2}{k} \right\rfloor} \quad [\text{if } n \equiv 1(\text{mod } k)]$$

We further improved Hong's bound and obtained in [4] the following.

Theorem A [4].

$$\lambda_k(T) \leq \sqrt{\left\lfloor \frac{n}{k} \right\rfloor - 1} \quad (T \in T_n, \quad 1 \leq k \leq \lfloor n/2 \rfloor). \quad (1.1)$$

This bound is best possible for all $n \not\equiv 0(\text{mod } k)$ and for $k = 1$, while for $n \equiv 0(\text{mod } k), \quad k \neq 1$, the strict inequality in (1.1) holds.

So now the only remaining unsolved case for $\overline{\lambda}_k(n)$ is the case $n \equiv 0(\text{mod } k), \quad 2 \leq k \leq \lfloor n/2 \rfloor$. For this case, we write $n = kt(t \geq 2)$ and let

$$\overline{T}_{k,t} = \{T \in T_{kt} \mid \lambda_k(T) = \overline{\lambda}_k(kt)\}. \quad (1.2)$$

The trees in $\overline{T}_{k,t}$ are called the *extremal trees*. Our main results in this paper are the determination of the function $\overline{\lambda}_k(kt)$ and the sets $\overline{T}_{k,t}$ for $k = 2, 3, 4, 5$. We also give several necessary conditions for the trees in $\overline{T}_{k,t}$ (Theorem 3.1 and Theorem 6.1).

The following lemmas will be crucial for the results of this paper:

Lemma A [4]. For $T \in T_n$ and any positive integer a, there exists a
vertex $v \in V(T)$ such that there is one component of $T - v$ with order $\leq \max(n-1-a,a)$ and all the other components of $T - v$ have orders $\leq a$.

Lemma B (Cauchy interlacing theorem). Let V' be a vertex subset with k vertices of the graph G. Let $G - V'$ be the subgraph of G obtained by deleting all the vertices in V' together with their incident edges. Then

$$\lambda_i(G) \geq \lambda_i(G - V') \geq \lambda_{i+k}(G).$$

2. The Largest Second Eigenvalues of Trees with Even Order $N = 2T$

For the case $k = 2$, Neumaier [2] has shown that $\lambda_2(T) \leq \sqrt{(n-3)/2}$ if $T \in T_n$ with n odd (which is just the case $k = 2$ in the bound (1.1)]. But this bound does not hold for even n, as was pointed out by Hong [3]—it is just the remaining unsolved case $n \equiv 0 \pmod k$ (as mentioned in Section 1) for $k = 2$. In this section, we will completely settle this case by determining the value $\lambda_2(2t)$ and the set of extremal trees $T_{2,t}$.

Let $G_0 \in T_t$ as in Figure 1. Then by [5, Corollary], we know that

$$\lambda_2(T) > \lambda_2(G_0) \quad (\text{for } T \in T_t \backslash \{K_{1,t-1}, G_0\}).$$

Using this and the fact that $\lambda_i(G_0) = 0(3 \leq i \leq t - 2)$, we have for $T \in T_t \backslash \{K_{1,t-1}, G_0\}$ that

$$2\lambda_1^2(T) = 2(t-1) - 2\lambda_2^2(T) - \sum_{i=3}^{t-2} \lambda_i^2(T) < 2(t-1) - 2\lambda_2^2(G_0) = 2\lambda_1^2(G_0).$$

Thus we obtain

$$\lambda_1(T) < \lambda_1(G_0) \quad (T \in T_t \backslash \{K_{1,t-1}, G_0\}), \quad (2.1)$$

namely, $\lambda_1(G_0)$ is the second largest value among the values $\{\lambda_1(T) \mid T \in T_t\}$.

Remark 1. (See [5]).

$$\lambda_1(G_0) = \sqrt{\frac{t-1 + \sqrt{(t-3)^2 + 4}}{2}}. \quad (2.2)$$
LEMMA 2.1. Let $G^{(1)}_{2,t}, G^{(2)}_{2,t}, G^{(3)}_{2,t} \subseteq T_{2t}$ as in Figure (2). Then we have

$$\lambda_2(T) \leq \lambda_1(G_0) \quad (T \in T_{2t} \setminus \{G^{(1)}_{2,t}, G^{(2)}_{2,t}, G^{(3)}_{2,t}\}).$$

(2.3)

Proof. Take $a = t - 1$ in Lemma A. Then there exists $v_1 \in V(T)$ such that one component T_1 of $T - v_1$ has order $\leq t$ and the rest of the components of $T - v_1$ have orders $\leq t - 1$.

Case 1. If $T_1 \not\cong K_{1,t-1}$, then $\lambda_1(T_1) \leq \max(\lambda_1(G_0), \sqrt{t-2}) = \lambda_1(G_0)$ [by (2.1)], so from Lemma B we have

$$\lambda_2(T) \leq \lambda_1(T - v_1) \leq \max(\lambda_1(T_1), \sqrt{t-2}) \leq \lambda_1(G_0).$$

Case 2. If $T_1 \cong K_{1,t-1}$. Let v_2 be the unique vertex in T_1 adjacent to v_1; then the component T_2 of $T - v_2$ containing v_1 has order t, and the rest of the components of $T - v_2$ have order $\leq t - 1$.

Since $T \not\in \{G^{(1)}_{2,t}, G^{(2)}_{2,t}, G^{(3)}_{2,t}\}$ and $T_1 \cong K_{1,t-1}$, we must have $T_2 \not\cong K_{1,t-1}$. Then by the same argument as in case 1, we can obtain $\lambda_2(T) \leq \lambda_1(G_0)$.
It is easy to compute the characteristic polynomials of $G_{2,t}^{(1)}, G_{2,t}^{(2)}, G_{2,t}^{(3)}$ as follows:

\[
P(G_{2,t}^{(1)}; \lambda) = \lambda^{2t-6} \{ \lambda^6 - (2t - 1)\lambda^4 + (t^2 - 3)\lambda^2 - (t - 2)^2 \},
\]

\[
P(G_{2,t}^{(2)}; \lambda) = \lambda^{2t-4} \{ \lambda^4 - (2t - 1)\lambda^2 + t^2 - t - 1 \},
\]

\[
P(G_{2,t}^{(3)}; \lambda) = \lambda^{2t-4} \{ \lambda^4 - (2t - 1)\lambda^2 + (t - 1)^2 \}.
\]

Now let

\[
g(y) = y^3 + (t - 2)y^2 - 2y - 1.
\]

Then we can write $P(G_{2,t}^{(1)}; \lambda) = \lambda^{2t-6} g(\lambda^2 - (t - 1))$, and we have

\[
\lambda_2(G_{2,t}^{(1)}) = \sqrt{t - 1 + \lambda_2(g)}, \tag{2.4}
\]

\[
\lambda_2(G_{2,t}^{(2)}) = \sqrt{\frac{2t - 1 - \sqrt{5}}{2}}, \tag{2.5}
\]

\[
\lambda_2(G_{2,t}^{(3)}) = \sqrt{\frac{2t - 1 - \sqrt{4t - 3}}{2}}, \tag{2.6}
\]

where $\lambda_2(g)$ is the second largest real root of the cubic polynomial $g(y)$.

The following theorem asserts that $\lambda_2(G_{2,t}^{(1)})$ is the largest second eigenvalue of the trees in T_{2t}.

Theorem 2.1.

\[
\lambda_2(T) \leq \lambda_2(G_{2,t}^{(1)}) \quad (T \in T_{2t}) \tag{2.7}
\]

with equality if and only if $T \cong G_{2,t}^{(1)}$. Thus

\[
\overline{T}_{2,t} = \{ G_{2,t}^{(1)} \} \tag{2.8}
\]

and

\[
\overline{\lambda}_2(2t) = \lambda_2(G_{2,t}^{(1)}) = \sqrt{t - 1 + \lambda_2(g)}. \tag{2.9}
\]

Proof. Without loss of generality we may assume $t \geq 5$. Noting $g(0) < 0$ and $g(-\frac{1}{2}) > 0$, we have $\lambda_2(g) > -\frac{1}{2}$. So

\[
\lambda_2(G_{2,t}^{(3)}) < \lambda_2(G_{2,t}^{(2)}) < \sqrt{\frac{2t - 3}{2}} < \lambda_2(G_{2,t}^{(1)}). \tag{2.10}
\]
On the other hand, we have

\[\lambda_1(G_0) < \sqrt{\frac{2t - 3}{2}} \quad (t \geq 5). \quad (2.11) \]

Combining (2.3), (2.10), and (2.11), we get the desired result.

We would like to mention here that Professor Hong Yuan had independently obtained the results in Theorem 2.1.

Remark 2. Let

\[X_k(t) = \max \{X_1(T) \mid T \in T_{2t} \setminus \{G^{(1)}_{2,t}\}\}. \]

Then from (2.2), (2.3), (2.5), and (2.10) we have

\[\lambda'_2(2t) = \lambda_2(G^{(2)}_{2,t}) \quad (t \geq 6). \quad (2.13) \]

This is also true for \(t = 2, 3, 5 \). But for \(t = 4 \), we have

\[\lambda'_2(2t) \approx 1.564 > \lambda_2(G^{(2)}_{2,t}) \approx 1.543 \quad (t = 4). \quad (2.14) \]

3. **SOME NECESSARY CONDITIONS FOR EXTREMAL TREES**

Now we consider the general case where \(n = kt \ (t \geq 2, k \geq 2) \). First give some definitions and notation.

Let \(X_{k,t} \) be the subset of trees in \(T_{kt} \) which consists of \(k \) disjoint stars \(S_1, \ldots, S_k \) of order \(t(S_1 \cong S_2 \cong \cdots \cong S_k \cong K_{1,t-1}) \) together with another \(k - 1 \) edges \(e_1, \ldots, e_{k-1} \) such that the two end vertices of each edge \(e_i \) \((i = 1, \ldots, k - 1)\) are noncentral vertices of different stars. We call \(S_1, \ldots, S_k \) the stars of this tree \(T \in X_{k,t} \), call the edges \(e_1, \ldots, e_{k-1} \) the nonstar edges of \(T \), and call the other edges the star edges of \(T \).

For example, we have \(X_{2,t} = \{G^{(1)}_{2,t}\} \).

Lemma 3.1. For \(k \geq 2 \), we have

\[\lambda_k(T) \leq \lambda'_2(2t) \quad (T \in T_{kt} \setminus X_{k,t}). \quad (3.1) \]

Proof. The case \(k = 2 \) is Theorem 2.1. In general we use induction on \(k \). Take \(a = t - 1 \) and \(v_1 \in V(T) \) in Lemma A such that one component
T_1 of $T - v_1$ has order $\leq (k - 1)t$ and the rest of the components of $T - v_1$ have order $\leq t - 1$. If $T_1 \not\in X_{k-1,t}$, then for $|V(T_1)| = (k - 1)t$ we have $\lambda_{k-1}(T_1) \leq \lambda'_2(2t)$ by induction, while for, $|V(T_1)| < (k - 1)t$ we have from Theorem A that

$$\lambda_{k-1}(T_1) \leq \sqrt{\frac{|V(T_1)|}{k-1} - 1} \leq \sqrt{t-2}.$$

Thus

$$\lambda_k(T) \leq \lambda_{k-1}(T - v_1) \leq \max(\lambda_{k-1}(T_1), \sqrt{t-2}) \leq \lambda'_2(2t).$$

If $T_1 \in X_{k-1,t}$, take a star $S_t \cong K_{1,t-1}$ in T_1 such that S_t does not contain the unique vertex in T_1 adjacent to v_1 and there is only one vertex (say v_2) in S_t incident to some nonstar edge of T_1. Then one component T_2 of $T - v_2$ has order $(k - 1)t$. Now $T \not\in X_{k,t}$ and $T_1 \in X_{k-1,t}$ imply $T_2 \not\in X_{k-1,t}$, so using the same argument for T_2 as for T_1, we get $\lambda_k(T) \leq \lambda'_2(2t)$.

For a graph G, let $q(G)$ be the number of edges in a maximal matching of G, let $a_j(G)$ be the number of j-matchings (the matchings with j edges) of G. [We agree that $a_j(G) = 0$ for $j < 0$ and $j > q(G)$]. We also write

$$m_G(x) = \sum_{j=0}^{q(G)} (-1)^j a_j(G)x^{q(G)-j}$$

and

$$h_G(y) = m_G(y + a).$$

Then the characteristic polynomial of a tree $T \in \mathcal{T}_n$ is

$$P(T, \lambda) = \lambda^{n-2q(T)}m_T(\lambda^2) = \lambda^{n-2q(T)}h_T(\lambda^2 - a),$$

and thus

$$\lambda_k(T) = \sqrt{\lambda_k(m_T)} = \sqrt{a + \lambda_k(h_T)} \quad (k \leq q(T))$$

where $\lambda_k(m_T)$ and $\lambda_k(h_T)$ are the kth largest real roots of the polynomials $m_T(x)$ and $h_T(y)$.

Example. Let $S(n_1, \ldots, n_k) = K_{n_1} \cup \cdots \cup K_{n_k}$ be the disjoint union of k stars. Then $q(S(n_1, \ldots, n_k)) = k$,

$$a_j(S(n_1, \ldots, n_k)) = \sum_{1 \leq r_1 < r_2 < \cdots < r_j \leq k} n_{r_1}n_{r_2}\cdots n_{r_j},$$

(3.6)
and so

\[m_{S(n_1, \ldots, n_k)}(x) = \sum_{j=0}^{k} (-1)^j a_j(S(n_1, \ldots, n_k)) x^{k-j} \]

\[= \prod_{i=1}^{k} (x - n_i). \quad (3.7) \]

For convenience we sometime abbreviate the notation as:

\[S(a_{1_{r_1}}, a_{2_{r_2}}, \ldots, a_{j_{r_j}}) = S(a_{1_{(r_1)}}, a_{2_{(r_2)}}, \ldots, a_{j_{(r_j)}}). \quad (3.8) \]

Next we want to show the following necessary condition for a tree \(T \in T_{kt} \) to be extremal (i.e., in \(\bar{T}_{k,t} \)):

\[\bar{T}_{k,t} \subseteq X_{k,t}. \]

For this purpose, it will suffice (by Lemma 3.1) to find a tree \(T \in X_{k,t} \) satisfying \(\lambda_k(T) > \lambda_2(2t) \). We will look for such \(T \) in the subset \(X'_{k,t} \) (see Definition 3.2 below) of \(X_{k,t} \).

Definition 3.1. Let \(S_1, \ldots, S_k \) be the \(k \) stars of the tree \(T \in X_{k,t} \). Then the condensed tree \(\hat{T} \) of \(T \) is defined as \(V(\hat{T}) = \{S_1, \ldots, S_k\} \), and there is an edge \([S_i, S_j](i \neq j)\) in \(\hat{T} \) if and only if there exists some nonstar edge of \(T \) with one end in \(S_i \) and the other end in \(S_j \).

It is obvious that \(T \in T_k \) for \(T \in X_{k,t} \).

Definition 3.2. The subset \(X'_{k,t} \) of the set \(X_{k,t} \) consists of those trees \(T \) in \(X_{k,t} \) such that for any star \(S_i \) of \(T \), there is only one vertex in \(S_i \) incident to some nonstar edges of \(T \).

For example, in Figure 3 below we have \(G^{(1)}_{3,t} \in X'_{3,t}, G^{(2)}_{3,t} \not\in X'_{3,t} \).

It is obvious that if \(\hat{T} \in X'_{k,t} \), then \(T \) is completely determined by its condensed tree \(\hat{T} \).

From now on, we always write

\[a = t - 1 \quad (3.9) \]

and let (for \(u > 0 \))

\[f_u(y) = (y + a)y^2 - u^2(y + 1)^2 \quad (a = t - 1). \quad (3.10) \]
The cubic polynomial \(f_u(y) \) will play an important role in our studies.

Lemma 3.2. For \(u > 0 \), the cubic polynomial \(f_u(y) \) has three real roots, which we can write as \(\lambda_1(f_u) > \lambda_2(f_u) > \lambda_3(f_u) \). Furthermore, we have

\[
\lambda_3(f_u) \leq -1 < \lambda_2(f_u) < 0 < \lambda_1(f_u)
\]
(3.11)

and

\[
\lambda_2(f_\xi) < \lambda_2(f_u) \quad \text{(for} \quad 0 < u < \xi).
\]
(3.12)

Proof. The results are obvious for \(a = 1 \). Now for \(a \geq 2 \), we have \(f_u(0) = -u^2 < 0 \) and \(f_u(-1) = a - 1 > 0 \). Thus \(f_u(y) \) has three real roots, and (3.11) holds. Now if \(0 < u < \xi \), then

\[
f_u(\lambda_2(f_\xi)) = (\xi^2 - u^2)\{\lambda_2(f_\xi) + 1\}^2 > 0
\]
(3.13)

But \(\lambda_2(f_\xi) < 0 \) and \(f_u(y) \leq 0 \) for \(\lambda_2(f_u) \leq y < 0 \), so from (3.13) we must have \(\lambda_2(f_\xi) < \lambda_2(f_u) \).

Lemma 3.3. Let \(T \in X_{k,t}(t \geq 2) \), and let \(u_1 = \lambda_1(\widetilde{T}) \) be the largest eigenvalue of the condensed tree \(\widetilde{T} \). Then

\[
\lambda_k(T) = \sqrt{t - 1 + \lambda_2(f_{u_1})}.
\]
(3.14)

Proof. Let \(q(\widetilde{T}) = q; \) then \(q(T) = q + k \). Since any \(j \)-matching of \(T \) is a combination of some \(i \)-matching of \(\widetilde{T} \) and some \((j - i)\)-matching of some \(S((a - 1)(2i)a^{(k-2i)}) \) for some \(0 \leq i \leq j \), we have (where \(a = t - 1 \))

\[
a_j(T) = \sum_{i=0}^{j} a_i(\widetilde{T})a_{j-i}(S((a - 1)(2i)a^{(k-2i)})) \quad (0 \leq j \leq q + k),
\]

and

\[
\lambda_k(T) = \sqrt{t - 1 + \lambda_2(f_{u_1})}.
\]
(3.14)
Here we have used the substitution \(j' = j - i \). Noting further that \(a_i(\hat{T}) = 0 \) for \(i > q \) and \(a_j(S((a - 1)^{(2i)}a^{(k - 2i)})) = 0 \) for \(j' > k \), we have

\[
m_T(x) = \sum_{i=0}^{q} (-1)^i a_i(\hat{T}) x^{q-i} \left(\sum_{j'=0}^{k} (-1)^{j'} a_{j'}(S((a - 1)^{(2i)}a^{(k - 2i)})) x^{k-j'} \right)
\]

So

\[
m_T(x) = \sum_{j=0}^{q+k} (-1)^j \left(\sum_{i=0}^{j} a_i(\hat{T}) a_{j-i}(S((a - 1)^{(2i)}a^{(k - 2i)})) \right) x^{q+k-j}
\]

\[
= \sum_{i=0}^{q+k} (-1)^i a_i(\hat{T}) x^{q-i} \left(\sum_{j'=0}^{q+k-i} (-1)^{j'} a_{j'}(S((a - 1)^{(2i)}a^{(k - 2i)})) x^{k-j'} \right)
\]

Here we have used the substitution \(j' = j - i \). Noting further that \(a_i(\hat{T}) = 0 \) for \(i > q \) and \(a_j(S((a - 1)^{(2i)}a^{(k - 2i)})) = 0 \) for \(j' > k \), we have

\[
m_T(x) = \sum_{i=0}^{q} (-1)^i a_i(\hat{T}) x^{q-i} \left(\sum_{j'=0}^{k} (-1)^{j'} a_{j'}(S((a - 1)^{(2i)}a^{(k - 2i)})) x^{k-j'} \right)
\]

\[
= \sum_{i=0}^{q} (-1)^i a_i(\hat{T}) x^{q-i} m_{S((a - 1)^{(2i)}a^{(k - 2i)})} (x)
\]

\[
= \sum_{i=0}^{q} (-1)^i a_i(\hat{T}) x^{q-i} (x - a + 1)^{2i} (x - a)^{k-2i}
\]

\[
= (x - a)^{k-2q} (x - a + 1)^{2q} \sum_{i=0}^{q} (-1)^i a_i(\hat{T}) \left(\frac{x(x - a)^2}{(x - a + 1)^2} \right)^{q-i}
\]

\[
= (x - a)^{k-2q} (x - a + 1)^{2q} m_{\hat{T}} \left(\frac{x(x - a)^2}{(x - a + 1)^2} \right).
\]

Note that

\[
m_{\hat{T}}(x) = \prod_{i=1}^{q} (x - u_i^2), \quad (3.15)
\]

where \(u_1 > u_2 > \cdots > u_q > 0 \) are the \(q \) positive eigenvalues of \(\hat{T} \). So we have

\[
m_T(x) = (x - a)^{k-2q} (x - a + 1)^{2q} \prod_{i=1}^{q} \left(\frac{x(x - a)^2}{(x - a + 1)^2} - u_i^2 \right)
\]

\[
= (x - a)^{k-2q} \prod_{i=1}^{q} \left\{ x(x - a)^2 - u_i^2(x - a + 1)^2 \right\}.
\]

Thus by definition,

\[
h_T(y) = m_T(y + a) = y^{k-2q} \prod_{i=1}^{q} \left\{ y^2(y + a) - u_i^2(y + 1)^2 \right\}
\]
\[y^{k-2q} \prod_{i=1}^{q} f_{u_i}(y). \]

(3.16)

Now from (3.11) we see that \(h_T(y) \) has \(q \) positive roots and \(k - 2q \) zero roots, so \(\lambda_k(h_T) \) is the \(q \)th largest negative root of \(h_T(y) \). By (3.11) and (3.12), we further see that

\[\lambda_k(h_T) = \min\{\lambda_2(f_{u_1}), \ldots, \lambda_2(f_{u_q})\} = \lambda_2(f_{u_1}), \]

(3.17)

so from (3.5) we obtain (where \(a = t - 1 \))

\[\lambda_k(T) = \sqrt{t - 1 + \lambda_2(f_{u_1})}. \]

An immediate consequence of Lemma 3.2 and Lemma 3.3 is:

Corollary 3.1. Let \(T* \in X'_k \), with \(\hat{T}^* = P_k \) (a path with \(k \) vertices). Then

\[\lambda_k(T) < \lambda_k(T^*) \quad \text{for} \quad T \in X'_k \backslash \{T^*\}. \]

(3.18)

Corollary 3.2.

\[\lambda_k(T^*) > \lambda'_2(2t) \quad (t \geq 5). \]

(3.19)

Proof. Let

\[u_1 = \lambda_1(\hat{T}^*) = \lambda_1(P_k) = 2 \cos \frac{\pi}{k+1}. \]

Then

\[\lambda_k(T^*) = \sqrt{t - 1 + \lambda_2(f_{u_1})}, \]

(3.20)

and from (2.13),

\[\lambda'_2(2t) = \lambda_2(G_{2,t}^{(2)}) = \sqrt{t - 1 + \frac{1 - \sqrt{5}}{2}} \quad (t \geq 5). \]

We want \(\lambda_2(f_{u_1}) > (1 - \sqrt{5})/2 \). Now

\[f_{u_1}(y) = y^2(y + a) - 4 \left(\cos^2 \frac{\pi}{k+1} \right) (y + 1)^2, \]
\[f_{u_1} \left(\frac{1 - \sqrt{5}}{2} \right) > 0 \quad \text{for} \quad a = t - 1 \geq 3, \]

and \((1 - \sqrt{5})/2 < 0\), so \((1 - \sqrt{5})/2 < \lambda_2(f_{u_1})\).

Now we can obtain the following necessary condition for extremal trees.

Theorem 3.1. For \(k \geq 2 \) and \(t \geq 3(t \neq 4) \), we have

\[\overline{T}_{k,t} \subseteq X_{k,t}. \]

Proof. The case \(t \geq 5 \) follows from Lemma 3.1 and Corollary 3.2. The case \(t = 3 \) and \(k = 2 \) can be checked directly (see [7]), so we only need to consider the case \(t = 3 \) and \(k \geq 3 \).

Let \(T^* \in X'_{k,3} \) as in Corollary 3.1 (now \(t = 3 \)). Then from (3.20) and (3.12) we have

\[\lambda_k(T^*) = \sqrt{t - 1 + \lambda_2(f_{u_1})} = \sqrt{2 + \lambda_2(f_{\lambda_1(p_k)})} \geq \sqrt{2 + \lambda_2(f_2)}, \tag{3.21} \]

where \(f_2(y) = y^2(y + 2) - 4(y + 1)^2 \) (now \(a = t - 1 = 2 \)). By studying Table 2 in [7, Appendix] for the case \(k = 3 \) (\(n = kt = 9 \)), we find the following fact:

\[\lambda_3(T) < 1.160 \quad (T \in \mathcal{T}_9 \setminus X_{3,3}), \]

so by using a similar inductive argument to the one for Lemma 3.1 we can show that

\[\lambda_k(T) < 1.160 \quad (T \in \mathcal{T}_k \setminus X_{k,3}, \quad k \geq 3). \tag{3.22} \]

On the other hand, by direct computation we have

\[f_2(-0.6544) = (0.6544)^2(1.3456) - 4 \times (0.3456)^2 \]
\[\geq (0.65)^2 \times \frac{4}{3} - 4 \times (0.35)^2 > 0, \]

so \(\lambda_2(f_2) > -0.6544 \), and thus \(1.160 \approx \sqrt{2 + \lambda_2(f_2)} \). Combining this with (3.21) and (3.22), we have

\[\lambda_k(T) < \lambda_k(T^*) \quad (T \in \mathcal{T}_k \setminus X_{k,3}, \quad k \geq 3), \]

and so we obtain

\[\overline{T}_{k,3} \subseteq X_{k,3} \quad (k \geq 3). \]
Using Lemma 3.3, we can also derive a lower bound for $\bar{\lambda}_k(kt)$ and prove that $\bar{\lambda}_k(kt)$ is a decreasing function of k (when t is fixed).

Theorem 3.2.

$$\sqrt{t - 2} < \bar{\lambda}_k(kt) < \sqrt{t - 1} \quad (t \geq 2).$$

Proof. The upper bound is just a part of the conclusions in Theorem A. For the lower bound, from (3.11) we have $\lambda_2(f_u) > -1$, so

$$\bar{\lambda}_k(kt) \geq \lambda_k(T^*) = \sqrt{t - 1 + \lambda_2(f_u)} > \sqrt{t - 2}.$$

Thus by the Cauchy interlacing theorem we have

$$\lambda_{k+1}(T) \leq \sqrt{[\frac{|V(T_1)|}{k}]} - 1 \leq \sqrt{t - 2} < \bar{\lambda}_k(kt).$$

Thus by the Cauchy interlacing theorem we have

$$\lambda_{k+1}(T) \leq \lambda_k(T - v) \leq \max(\lambda_k(T_1), \sqrt{t - 2}) \leq \bar{\lambda}_k(kt) \quad (T \in T_{(k+1)t}).$$

It follows that $\bar{\lambda}_{k+1}((k + 1)t) \leq \bar{\lambda}_k(kt)$.

Theorem 3.3. For fixed $t \geq 2$, we have

$$\bar{\lambda}_k(kt) \geq \bar{\lambda}_{k+1}((k + 1)t) \quad (k = 1, 2, \ldots).$$

Proof. Let $T \in T_{(k+1)t}$. Take $a = t - 1$ and $v \in V(T)$ in Lemma A such that one component T_1 of $T - v$ has order $\leq kt$ and the rest of the components have orders $\leq t - 1$. If $|V(T_1)| = kt$, then surely $\lambda_k(T_1) \leq \bar{\lambda}_k(kt)$. If $|V(T_1)| < kt$, we also have

$$\lambda_k(T_1) \leq \sqrt{[\frac{|V(T_1)|}{k}]} - 1 \leq \sqrt{t - 2} < \bar{\lambda}_k(kt).$$

4. **The Cases $K = 3$ and $K = 4$**

We first settle the case $k = 3$ by determining the value $\bar{\lambda}_3(3t)$ and the extremal tree set $\mathcal{F}_{3,t}$. We see from Theorem 3.1 that $\mathcal{F}_{3,t} \subseteq X_{3,t}$, but by definition we find (see Figure 3).

$$X_{3,t} = \{G_{3,t}^{(1)}, G_{3,t}^{(2)}\}. \quad (4.1)$$
So it will suffice to compare \(\lambda_3(G_{3,t}^{(1)}) \) and \(\lambda_3(G_{3,t}^{(2)}) \).

Lemma 4.1.

\[
\lambda_3\left(G_{3,t}^{(2)}\right) < \lambda_3\left(G_{3,t}^{(1)}\right) \quad (t \geq 3).
\]

Proof. Write \(T_i = G_{3,t}^{(i)} \) \((i = 1, 2)\). Then \(q(T_2) = 5, q(T_1) = 4, \) and \(a_j(T_2) = a_j(T_1) + a_{j-2}(S(a-1, a-1, a-2)) \). \((4.3)\)

Thus

\[
m_{T_2}(x) = \sum_{j=0}^{5} (-1)^j a_j(T_1)x^{5-j} + \sum_{j=0}^{5} (-1)^j a_{j-2}(S(a-1, a-1, a-2))x^{5-j}
\]

\[
= x m_{T_1}(x) + m_{S(a-1, a-1, a-2)}(x)
\]

\[
= x m_{T_1}(x) + (x-a+1)^2(x-a+2),
\]

so

\[
h_{T_2}(y) = m_{T_2}(y+a) = (y+a)h_{T_1}(y) + (y+1)^2(y+2). \quad (4.4)
\]

Now \(T_1 \in X_{3,t}^{1} \), so by Lemma 3.3, (3.16), and (3.17) we have

\[
h_{T_1}(y) = y f_{\sqrt{2}}(y),
\]

\[
-1 < \lambda_3(h_{T_1}) < 0, \quad (4.5)
\]

and \(\lambda_3(h_{T_1}) \), is the largest negative root of \(h_{T_1}(y) \), which implies that

\[
h_{T_1}(y) \geq 0 \quad \text{[for \ } \lambda_3(h_{T_1}) \leq y \leq 0]\]

So by (4.4) and (4.6) we have

\[
h_{T_2}(y) > 0 \quad \text{[for \ } \lambda_3(h_{T_1}) \leq y \leq 0]\]

(4.7)

On the other hand, \(\lambda_3(T_2) = \sqrt{t-1 + \lambda_3(h_{T_2})} < \sqrt{t-1} \) by (3.5) and Theorem 3.2, so \(\lambda_3(h_{T_2}) < 0 \) is a negative root of \(h_{T_2}(y) \). Combining this with (4.7), we have \(\lambda_3(h_{T_2}) < \lambda_3(h_{T_1}) \) and thus obtain

\[
\lambda_3(T_2) = \sqrt{a + \lambda_3(h_{T_2})} < \sqrt{a + \lambda_3(h_{T_1})} = \lambda_3(T_1).
\]

From Lemma 4.1, Theorem 3.1, and (4.1), we immediately get the following solution for \(k = 3 \).
THEOREM 4.1. For $t \geq 5$, we have

$$\overline{T}_{3,t} = \{G_{3,t}^{(1)}\}$$

and

$$\overline{\lambda}_3(3t) = \lambda_3(G_{3,t}^{(1)}) = \sqrt{t - 1 + \lambda_2(f_{\sqrt{2}})},$$

where $f_{\sqrt{2}}(y) = y^2(y + a) - 2(y + 1)^2$ \((a = t - 1)\).

Next we consider the case $k = 4$ \((t \geq 5)\). From Theorem 3.1 we have

$$\overline{T}_{4,t} \subseteq X_{4,t},$$

while by definition we find that \(x_{4,t} = \{c_1, \ldots, c_t\}\).

(4.8)

LEMMA 4.2. For any $1 \leq i, j \leq 6$, we have

$$\lambda_5(T_i) \leq \lambda_4(T_i) \leq \lambda_3(T_j).$$

(4.9)

Proof. Take an induced subgraph H_i of T_i which is a disjoint union of four stars, each of which has order $\geq t - 1$ (the existence of such H_i can be seen from the structure of T_i). Then

$$\lambda_4(T_i) \geq \lambda_4(H_i) \geq \sqrt{t - 2}. \quad (4.10)$$

On the other hand, we have from Theorem A that

$$\lambda_5(T_j) \leq \sqrt{\left[\frac{4t}{5}\right] - 1} \leq \sqrt{t - 2} \quad (4.11)$$

So we get the first inequality in (4.9).

Next we take an induced subgraph F_j of T_j with order $3t$ (by deleting some suitable star of T_j) such that F_j is either a disjoint union of three stars $K_{1,t-1}$ or a disjoint union of a $K_{1,t-1}$ and $G_{2,t}^{(1)}$. Then by Theorem 3.3 we obtain

$$\lambda_3(T_j) \geq \lambda_3(F_j) \geq \lambda_2(G_{2,t}^{(1)}) = \overline{\lambda}_2(2t) \geq \overline{\lambda}_4(4t) \geq \lambda_4(T_i),$$

(4.12)

which gives the second inequality in (4.9).
COROLLARY 4.1. For $1 \leq i, j \leq 6$, $i \neq j$, we have:

1. If $h_{T_j}(\lambda_4(h_{T_i})) > 0$, then $\lambda_4(h_{T_i}) > \lambda_4(h_{T_j})$.
2. If $h_{T_j}(\lambda_4(h_{T_i})) < 0$, then $\lambda_4(h_{T_i}) < \lambda_4(h_{T_j})$.

Proof. From (4.9) we have that

$$\lambda_5(h_{T_i}) \leq \lambda_4(h_{T_i}) \leq \lambda_3(h_{T_i}).$$

Now all the roots of $h_{T_i}(y)$ are real, since all the eigenvalues of T_i are real, so

$$h_{T_i}(y) = \prod_{k=1}^{q(T_i)} \left\{ y - \lambda_k(h_{T_i}) \right\}.$$
Write \(b = \lambda_4(h_{T_j}) \). If \(h_{T_j}(b) > 0 \), then from (4.13) we have
\[
\lambda_1(h_{T_j}) \geq \lambda_2(h_{T_j}) \geq \lambda_3(h_{T_j}) > b > \lambda_5(h_{T_j}) \geq \cdots
\]
and so
\[
b - \lambda_4(h_{T_j}) = h_{T_j}(b) \cdot \left(\prod_{k=1}^{3} \{b - \lambda_k(h_{T_j})\} \right)^{-1} \left(\prod_{k=5}^{n} \{b - \lambda_k(h_{T_j})\} \right)^{-1} < 0.
\]
Thus (1) follows, and similar arguments will prove (2).

Now we compute the polynomials \(h_{T_i}(y)(i = 1, \ldots, 6) \). First we have
\[
q(T_1) = q(T_2) = q(T_6) = 6, \quad q(T_4) = 5, \quad q(T_3) = q(T_5) = 7; \quad (4.15)
\]
and (where \(a = t - 1 \))
\[
\begin{align*}
a_j(T_1) &= a_j(S(a^{(4)})) + 3a_{j-1}(S(a^{(2)}(a-1)^{(2)})) + a_{j-2}(S((a-1)^{(4)})), \\
a_j(T_2) &= a_j(S(a^{(4)})) + 3a_{j-1}(S(a^{(2)}(a-1)^{(2)})) + a_{j-2}(S((a-1)^{(4)})) + a_{j-2}s(a,a-1,a-1,a-2), \\
a_j(T_3) &= a_j(S(a^{(4)})) + 3a_{j-1}(S(a^{(2)}(a-1)^{(2)})) + a_{j-2}(S((a-1)^{(4)})) + 2a_{j-2}s(a,a-1,a-1,a-2) + a_{j-3}(S((a-1)^{(2)}(a-2)^{(2)})}, \\
a_j(T_4) &= a_j(S(a^{(4)})) + 3a_{j-1}(S(a^{(2)}(a-1)^{(2)})), \\
a_j(T_5) &= a_j(S(a^{(4)})) + 3a_{j-1}(S(a^{(2)}(a-1)^{(2)})) + 2a_{j-2}s(a,a-1,a-1,a-2), \\
a_j(T_6) &= a_j(S(a^{(4)})) + 3a_{j-1}(S(a^{(2)}(a-1)^{(2)})) + 3a_{j-2}s(a,a-1,a-1,a-2) + a_{j-3}(S((a-3)(a-1)^{(3)})).
\end{align*}
\]
Thus we have
\[
m_{T_1}(x) = \sum_{j=0}^{6} (-1)^{j} a_j(T_1)x^{6-j} = x^2 \sum_{j=0}^{4} (-1)^{j} a_j(S(a^{(4)}))x^{4-j}
\]
\[-3x \sum_{j=0}^{4} (-1)^j a_j \left(S(a^{(2)}(a-1)^{(2)}) \right) x^{4-j} \]
\[+ \sum_{j=0}^{4} (-1)^j a_j \left(S((a-1)^{(4)}) \right) x^{4-j} \]
\[= x^2(x-a)^4 - 3x(x-a)^2(x-a+1)^2 + (x-a+1)^4 \]
and so
\[h_{T_1}(y) = m_{T_1}(y+a) = (y+a)^2 y^4 - 3(y+a)y^2(y+1)^2 + (y+1)^4. \quad (4.16)\]

Similarly,
\[h_{T_2}(y) = (y+a)^2 y^4 - 3(y+a)y^2(y+1)^2 \]
\[+ (y+1)^4 + y(y+1)^2(y+2), \quad (4.17)\]
\[h_{T_3}(y) = (y+a)^3 y^4 - 3(y+a)^2 y^2(y+1)^2 + (y+a)(y+1)^4 \]
\[+ 2(y+a)y(y+1)^2(y+2) - (y+1)^2(y+2)^2, \quad (4.18)\]
\[h_{T_4}(y) = (y+a)^4 y^4 - 3(y+a)^2 y^2(y+1)^2 \]
\[+ 3(y+a)y(y+1)^2 \times (y+2) - (y+3)(y+1)^3. \quad (4.19)\]

Lemma 4.3. For \(t \geq 3 \), we have
\[\lambda_4(h_{T_i}) < \lambda_4(h_{T_1}) \quad (i = 2, 3, 4, 5, 6). \quad (4.22)\]

Proof. By Theorem A and (4.10), we have
\[\sqrt{t-2} \leq \lambda_4(T_i) = \sqrt{t-1 + \lambda_4(h_{T_1})} < \sqrt{t-1} \quad (i = 1, \ldots, 6). \quad (4.23)\]
Also clearly \(h_{T_1}(-1) \neq 0 \), so we always have
\[-1 < \lambda_4(h_{T_i}) < 0 \quad (i = 1, \ldots, 6). \quad (4.24)\]
Now
\[h_{T_2}(y) = h_{T_1}(y) + y(y+1)^2(y+2), \]
so
\[h_{T_2}(\lambda_4(h_{T_1})) < 0, \]
and thus (by Corollary 4.1)

$$\lambda_4(h_{T_2}) < \lambda_4(h_{T_1}).$$

(4.25)

Also

$$h_{T_3}(y) = (y + a)h_{T_2}(y) + (y + a)y(y + 1)^2(y + 2) - (y + 1)^2(y + 2)^2,$$

so

$$h_{T_3}(\lambda_4(h_{T_2})) < 0$$

and

$$\lambda_4(h_{T_3}) < \lambda_4(h_{T_2}).$$

(4.26)

Also

$$h_{T_4}(y) = (y + a)h_{T_4}(y) + (y + 1)^4,$$

so

$$h_{T_4}(\lambda_4(h_{T_4})) > 0$$

and

$$\lambda_4(h_{T_4}) < \lambda_4(h_{T_1}).$$

(4.27)

Also

$$h_{T_5}(y) = (y + a)h_{T_4}(y) + 2y(y + 1)^2(y + 2),$$

so

$$h_{T_5}(\lambda_4(h_{T_4})) < 0$$

and

$$\lambda_4(h_{T_5}) < \lambda_4(h_{T_4}).$$

(4.28)

Also

$$h_{T_6}(y) = (y + a)h_{T_5}(y) + (y + a)y(y + 1)^2(y + 2) - (y + 3)(y + 1)^3,$$

so

$$h_{T_6}(\lambda_4(h_{T_5})) < 0$$

and

$$\lambda_4(h_{T_6}) < \lambda_4(h_{T_5}).$$

(4.29)

Combining (4.25)–(4.29), we obtain (4.22).

Note that $T_1 = G_{4,1}^{(1)} \in X_{4,t}^t$ and $\widehat{T_1} = P_4$, so by (3.20) we have

$$\lambda_4(T_1) = \sqrt{t - 1 + \lambda_2(f_{\lambda_1(P_4)})},$$
where $\lambda_1(P_4) = 2\cos(\pi/5)$. Thus we obtain:

Theorem 4.2. For $t \geq 5$, we have

$$\overline{T}_{4,t} = \{G_{4,t}^{(1)}\}$$

and

$$\overline{\lambda}_4(4t) = \lambda_4(G_{4,t}^{(1)}) = \sqrt{t - 1 + \lambda_2(f_2\cos(\pi/5))}.$$

5. THE CASE $K = 5$

Let $T^* \in X_{5,t}'$ with $\overline{T^*} = P_5$ as in Corollary 3.1. Note also $G_{4,t}^{(4)} \in X_{4,t}'$ with $G_{4,t}^{(4)} = K_{1,3}$. So by Lemma 3.3 we have

$$\lambda_5(T^*) = \sqrt{t - 1 + \lambda_2(f_1(P_5))}$$

and

$$\lambda_4(G_{4,t}^{(4)}) = \sqrt{t - 1 + \lambda_2(f_1(K_{1,3}))}.$$

Now $\lambda_1(P_5) = 2\cos(\pi/6) = \sqrt{3} = \lambda_1(K_{1,3})$, so we have

$$\lambda_5(T^*) = \lambda_4(G_{4,t}^{(4)}). \quad (5.1)$$

Lemma 5.1. If $T \in X_{5,t}$ and $\overline{T} \neq P_5$, then

$$\lambda_5(T) \leq \lambda_5(T^*).$$

Proof. By assumption $\overline{T} \in T_5 \backslash\{P_5\}$, so \overline{T} has an induced subgraph isomorphic to $K_{1,3}$, and thus there exists a vertex $v \in V(T)$ such that $T - v = H \cup K_{1,t-2}$, where $H \in X_{4,t}$ and $H = K_{1,3}$. By (4.8) we have $H \in \{G_{4,t}^{(4)}, G_{4,t}^{(5)}, G_{4,t}^{(6)}\}$, where $\lambda_4(G_{4,t}^{(6)}) < \lambda_4(G_{4,t}^{(5)}) < \lambda_4(G_{4,t}^{(4)})$ [see (4.28), (4.29)]. So by the Cauchy interlacing theorem we have

$$\lambda_5(T) \leq \lambda_4(T - v) \leq \max(\lambda_4(H), \sqrt{t - 2}) \leq \lambda_4(G_{4,t}^{(4)}) = \lambda_5(T^*).$$
Now let (see Figure 5)

\[Y_{5,t} = \{ T \in X_{5,t} \mid \hat{T} = P_3 \} = \{ G_{5,t}^{(1)}, G_{5,t}^{(2)}, \ldots, G_{5,t}^{(6)} \}. \]
(5.2)

Write \(G_i = G_{5,t}^{(i)}(i = 1, \ldots, 6) \). From Lemma 5.1, we need to compare \(\lambda_5(G_i)(i = 1, \ldots, 6) \), or equivalently to compare those \(\lambda_5(h_{G_i})(i = 1, \ldots, 6) \).

For any \(T \in X_{k,t} \), by deleting a vertex \(v \) in a star corresponding to a pendant vertex (vertex with degree 1) of \(\hat{T} \) such that \(v \) is also incident to some nonstar edge of \(T \), and using induction on \(k \), we can find an induced subgraph \(H \) of \(T \) such that \(H \) is a disjoint union of \(k \) stars \(K_{1,t-2} \). So we always have

\[\lambda_k(T) \geq \lambda_k(H) = \sqrt{t - 2} \quad (T \in X_{k,t}). \]
(5.3)

It follows as in the case \(k = 4 \) that

\[\lambda_6(G_j) \leq \sqrt{t - 2} \leq \lambda_5(G_i) \quad (1 \leq i, j \leq 6). \]
(5.4)
On the other hand, by deleting a suitable star (the middle star in Figure 5) of each \(G_j \) we can find an induced subgraph \(F_j \) of \(G_j \) such that \(F_j \cong G_{2,t}^{(1)} \cup G_{2,t}^{(1)} \), and thus

\[
\lambda_4(G_j) \geq \lambda_4(F_j) = \lambda_2(G_{2,t}^{(1)}) = \lambda_2(2t) \geq \lambda_5(5t) \geq \lambda_5(G_i). \tag{5.5}
\]

Therefore (as in case \(k = 4 \))

\[
\lambda_6(h_{G_i}) \leq \lambda_5(h_{G_i}) \leq \lambda_4(h_{G_i}) \quad (1 \leq i, j \leq 6) \tag{5.6}
\]
and we have (as in Corollary 4.1) that

- if \(h_{G_j}(\lambda_5(h_{G_i})) > 0 \), then \(\lambda_5(h_{G_i}) > \lambda_5(h_{G_j}) \); \tag{5.7}
- if \(h_{G_j}(\lambda_5(h_{G_i})) < 0 \), then \(\lambda_5(h_{G_i}) < \lambda_5(h_{G_j}) \). \tag{5.8}

Also we have, as in \(k = 4 \), that

\[-1 < \lambda_5(h_{G_i}) < 0 \quad (i = 1, \ldots, 6). \tag{5.9}\]

Now we compute

\[
h_{G_1}(y) = (y + a)^2y^5 - 4(y + a)y^3(y + 1)^2 + 3y(y + 1)^4, \tag{5.10}
\]
\[
h_{G_2}(y) = (y + a)^2y^5 - 4(y + a)^2y^3(y + 1)^2 + 3(y + a)y(y + 1)^4 + (y + a)y^2(y + 1)^2(y + 2) - (y + 1)^4(y + 2), \tag{5.11}
\]
\[
h_{G_3}(y) = (y + a)^2y^5 - 4(y + a)y^3(y + 1)^2 + 3y(y + 1)^4 + 3y^2(y + 1)^4(y + 2), \tag{5.12}
\]
\[
h_{G_4}(y) = (y + a)^3y^5 - 4(y + a)^2y^3(y + 1)^2 + 3(y + a)y(y + 1)^4 + 2(y + a)y^2(y + 1)^2(y + 2) - (y + 1)^4(y + 2)
- y(y + 1)^2(y + 2)^2, \tag{5.13}
\]
\[
h_{G_5}(y) = (y + a)^3y^5 - 4(y + a)^2y^3(y + 1)^2 + 3(y + a)y(y + 1)^4 + 2(y + a)y^2(y + 1)^2(y + 2) - 2(y + 1)^4(y + 2), \tag{5.14}
\]
\[
h_{G_6}(y) = (y + a)^4y^5 - 4(y + a)^3y^3(y + 1)^2 + 3(y + a)^2y(y + 1)^4 + 3(y + a)^2y^2(y + 1)^2(y + 2) - 2(y + a)(y + 1)^4(y + 2)
- 2(y + a)y(y + 1)^2(y + 2)^2 + (y + 1)^2(y + 2)^3. \tag{5.15}
\]

Note that \(h_{G_1}(y) = yf_{\sqrt{3}}(y)f_1(y) \) and \(f_{\sqrt{3}}(\lambda_5(h_{G_1})) = 0 \), and we have

\[
h_{G_2}(y) = (y + a)h_{G_1}(y) + f_{\sqrt{3}}(y)(y + 1)^2(y + 2) + 2(y + 1)^4(y + 2),
\]
From (5.16)-(5.20) and (5.9) we get

\[h_{G_i}(\lambda_5(h_{G_i})) > 0 \quad (i = 2, 3, 4, 5, 6) \]

and thus obtain

\[\lambda_5(h_{G_i}) < \lambda_5(h_{G_1}) \quad (i = 2, 3, 4, 5, 6). \]

Combining Lemma 5.1 (where \(T^* = G_1 = G_{5,t}^{(1)} \)) and (5.21), we have:

Theorem 5.1. For \(t \geq 5 \),

\[\bar{\lambda}_5(5t) = \lambda_5(G_{5,t}^{(1)}) = \sqrt{t - 1 + \lambda_2(f_{\sqrt{3}})}. \]

We would also like to point out that by direct verifications as in (5.16)-(5.21), we can actually show that the strict inequality holds in Lemma 5.1. Thus we also have

\[\bar{T}_{5,t} = \{G_{5,t}^{(1)}\}. \]

6. SOME FURTHER NECESSARY CONDITIONS FOR EXTREML TRES

A further necessary condition for \(T \in \bar{T}_{k,t} \) which is stronger than \(\bar{T}_{k,t} \subseteq X_{k,t} \) is that if \(T \in \bar{T}_{k,t} \), then \(T \in X_{k,t} \) and \(\Delta(\hat{T}) \leq 3 \), where \(\Delta(\hat{T}) \) is the maximal degree of the condensed tree \(\hat{T} \). We will prove this in Theorem 6.1.
Let (see Figure 6)

\[W_{5,t} = \{H_1, H_2, \ldots, H_5\} = \{T \in X_{5,t} \mid \hat{T} = K_{1,4}\} \quad (6.1) \]

Lemma 6.1. For \(t \geq 3 \), we have

\[\lambda_5(H_1) > \lambda_5(H_i) \quad (i = 2, 3, 4, 5; \quad k = 1, 2, \ldots). \quad (6.2) \]

Proof. We have \(H_1 \in X'_{5,t} \) and \(\hat{H}_1 = K_{1,4} \), so by Lemma 3.3 we have

\[\lambda_5(H_1) = \sqrt{t - 1 + \lambda_2(f_{\lambda_1(K_{1,4})})}. \]

By (3.20) we also have

\[\lambda_k(kt) \geq \sqrt{t - 1 + \lambda_2(f_{\lambda_1(P_k)})}. \]

Now

\[\lambda_1(K_{1,4}) = 2 > \lambda_1(P_k) = 2 \cos \frac{\pi}{k+1}, \]
so \(\lambda_2(f_{\lambda_1(K_{1,4}}) < \lambda_2(f_{\lambda_1(P_5)}) \) and \(\lambda_k(kt) > \lambda_5(H_1) \).

On the other hand, direct computations give

\[
\begin{align*}
 h_{H_1}(y) &= (y + a)y^5 - 4y^3(y + 1)^2, \\
 h_{H_2}(y) &= (y + a)^2y^5 - 4(y + a)y^3(y + 1)^2 + 3y^2(y + 1)^2(y + 2), \\
 h_{H_3}(y) &= (y + a)^2y^5 - 4(y + a)y^3(y + 1)^2 + 4y^2(y + 1)^2(y + 2), \\
 h_{H_4}(y) &= (y + a)^3y^5 - 4(y + a)^2y^3(y + 1)^2 + 5(y + a)y^2(y + 1)^2 \\
 &\quad \times (y + 2) - 2y(y + 1)^3(y + 3), \\
 h_{H_5}(y) &= (y + a)^4y^5 - 4(y + a)^3y^3(y + 1)^2 + 6(y + a)^2y^2(y + 1)^2 \\
 &\quad \times (y + 2) - 4(y + a)y(y + 1)^3(y + 3) + (y + 1)^4(y + 4).
\end{align*}
\]

Using similar arguments to (5.6) and (5.9), we also have

\[-1 < \lambda_5(h_{H_i}) < 0 \quad (i = 1, \ldots, 5) \tag{6.8}\]

and

\[
\lambda_6(H_j) \leq \lambda_5(H_i) < \sqrt{t - 1} \leq \lambda_4(F_j) \leq \lambda_4(H_j) \quad (i, j = 1, 2, \ldots, 5), \tag{6.9}
\]

where \(F_j \) is an induced subgraph of \(H_j \) which is a disjoint union of four stars \(K_{1,t-1} \). Then we verify that

\[h_{H_{i+1}}(\lambda_5(h_{H_i})) > 0 \quad (i = 1, 2, 3, 4), \]

and so, by the same reasoning as before, we obtain

\[\lambda_5(H_5) < \lambda_5(H_4) < \lambda_5(H_3) < \lambda_5(H_2) < \lambda_5(H_1). \]

Lemma 6.1 implies that if \(T \in \overline{T}_{5,t} \) then \(T \in X_{5,t} \) and \(\Delta(\overline{T}) \leq 3. \) Now the following theorem shows that this holds for general \(k. \)

Theorem 6.1. Let

\[Z_{k,t} = \{T \in X_{k,t} | \Delta(T) \leq 3\}. \tag{6.10} \]

Then for \(k \geq 2 \) and \(t \geq 5 \), we have

\[\overline{T}_{k,t} \subseteq Z_{k,t}. \tag{6.11} \]
Proof. The case \(k = 2, 3, 4, 5 \) follows from the preceding results. In general we show the following inequality for \(k \geq 5 \) by using induction on \(k \):

\[
\lambda_k(T) \leq \lambda_5(H_1), \quad T \in X_{k,t} \setminus Z_{k,t}.
\] (6.12)

For \(k = 5 \), (6.12) follows from (6.2). For \(k \geq 6 \) and \(T \in X_{k,t} \setminus Z_{k,t} \), we have \(\hat{T} \in T_k \) with \(\Delta(\hat{T}) \geq 4 \), so by deleting a suitable vertex \(v \) in a suitable star of \(T \) corresponding to a pendant vertex of \(\hat{T} \), we will have

\[
T - v = T_1 \cup K_{1,t-2}
\] (6.13)

with \(T_1 \in X_{k-1,t} \) and \(\Delta(\hat{T}_1) \geq 4 \); therefore \(T_1 \in X_{k-1,t} \setminus Z_{k-1,t} \). Now by induction \(\lambda_{k-1}(T_1) \leq \lambda_5(H_1) \) and so

\[
\lambda_k(T) \leq \lambda_{k-1}(T - v) \leq \max(\lambda_{k-1}(T_1), \sqrt{t-2}) \leq \lambda_5(H_1).
\]

Thus (6.12) holds. Combining this with Lemma 6.1, we have

\[
\lambda_k(T) < \lambda_k(kt) \quad (T \in X_{k,t} \setminus Z_{k,t}),
\] (6.14)

and so (6.11) holds.

From the results in cases \(k = 2, 3, 4, 5 \) and the necessary conditions given in Theorem 6.1, it is quite reasonable to propose the following conjecture:

Conjecture. For \(t \geq 2 \), we have

\[
\overline{\mathcal{T}}_{k,t} = \{G^{(1)}_{k,t}\}
\]

and

\[
\overline{\lambda}_k(kt) = \sqrt{t-1 + \lambda_2(f_{\lambda_1(P_k)})},
\]

where

\[
f_{\lambda_1(P_k)}(y) = f_{2\cos(\pi/(k+1))}(y) = y^2(y + t - 1) - 4\left(\cos^2\frac{\pi}{k + 1}\right)(y + 1)^2,
\]

and \(\{G^{(1)}_{k,t}\} \) is the tree in Figure 7.

Remark. We have also verified that this conjecture is true for the case \(k = 6 \).
REFERENCES

3 Hong Yuan, The kth largest eigenvalue of a tree, Linear, Algebra Appl. 73:151–155 (1986).

Received 22 October 1990