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Hepatitis B virus (HBV) replication is controlled by liver-enriched transcriptional factors, including
forkhead box protein A (FOXA) members. Here, we found that FOXA members are directly and indi-
rectly involved in HBV replication in human hepatic cells. HBV replication was elevated in HuH-7
treated with individual FOXA members-specific siRNA. Reciprocally, the downregulation of HBV
replication was observed in FOXA-induced HuH-7. However, the mechanism of downregulation is
different among FOXA members at the level of HBV RNA transcription, such as precore/pg RNA
and 2.1 kb RNA. In addition, FOXA1 and FOXA2 suppressed nuclear hormone receptors, such as
HNF4a, that are related to HBV replication.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Hepatitis B virus (HBV) is one of the major causes of acute and
chronic hepatitis leading to liver cirrhosis and to hepatocellular
carcinoma (HCC). HBV has a partially double-stranded circular
3.2 kb genome which carries four viral genes, C (for core and e anti-
gen), P (for DNA polymerase), S (for surface antigens), and X (for X
protein). The expression of viral transcripts is regulated by four
promoters (Cp, S1p, S2p, and Xp) and two enhancers (Enhancer I
and II) [1]. The binding of liver-specific transcriptional factors such
as hepatocyte nuclear factors (HNFs) and CCAAT/enhancer-binding
protein family (C/EBP) members to those promoters and enhancers
is thought to determine the liver tropism of HBV [2].

There are no cell culture systems that reflect the HBV life cycle
because differentiated phenotypes of the liver are partially dimin-
ished or changed in the culture. For example, the lack of
Na+/taurocholate cotransporting polypeptide (NTCP), which was
characterized as a functional HBV receptor, was reported in HuH-
7 and HepG2 cells [3]. It has also been reported that C/EBPa is
involved in the terminal differentiation of the liver and its upreg-
ulation in some HCC cell lines contributes to cell growth [4].
These results suggested that the intracellular environment of
HCC-derived cell lines, including the expression of liver-specific
transcriptional factors, was not suitable for HBV replication.

Forkhead box protein A (FOXA), also known as hepatic nuclear
factor 3 (HNF3), consists of three members, FOXA1 (HNF3a),
FOXA2 (HNF3b) and FOXA3 (HNF3c). FOXA is one of the liver-en-
riched transcriptional factors and plays important roles in both
liver development and liver metabolism [5,6]. FOXA is also thought
to be a key regulator of HBV replication, because all HBV promoters
and enhancers contain a FOXA-binding motif. In fact, FOXA has
been shown to activate the transcriptional activity of HBV promot-
ers and enhancers in a reporter assay [7–11]. However, pregenomic
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RNA (pgRNA) expression was repressed by FOXA2 in NIH3T3 cells
that stimulate HBV replication by transfecting both HBV- and
HNF4a-encoded plasmids [12]. Pervious studies were performed
using non-hepatic cells. Therefore, further studies using genome-
length HBV and human hepatic-derived cells will be needed to
understand the roles of FOXA members in HBV replication. There
are several reports indicating that HBV is regulated by FOXA2
in vivo. For instance, HBV replication was decreased in HBV trans-
genic mice transfected with rat FOXA2 [13]. Moreover, the dis-
tribution of HBV replication was negatively correlated with
FOXA2 expression in the liver of patients with chronic hepatitis B
[14]. These results suggested that, at the very least, FOXA2 nega-
tively regulated HBV replication. To further elucidate the role of
FOXA in HBV replication, studies describing other FOXA members
are required. In this report, we investigated the role of all FOXA
members in HBV replication using human hepatic-derived cell cul-
ture systems.
2. Materials and methods

2.1. HBV plasmid, antibodies, and siRNAs

HBV plasmid (pUC19/C_JPNAT) was kindly provided by Dr.
Tanaka (Nagoya City University). Anti-FOXA1 antibody (Ab)
(Anti-FOXA1 (ab2)) was obtained from Sigma (St. Louis, MO).
Anti-FOXA2 Ab (D56D6) was obtained from Cell Signaling
Technology (Beverly, MA). Anti-FOXA3 Ab (ab108454) and anti-
HNF4a Ab were obtained from Abcam (Cambridge, MA). Anti-
HBsAg (bs-1557G) Ab was obtained from Bioss (Boston, MA).
siRNAs were obtained as siGENOME SMARTpool siRNA (human
FOXA1: M-010319-01; human FOXA2: M-010089-01; human
FOXA3: M-010319001; and Non-Targeting siRNA Control pool:
D-001206-13) from Thermo Fisher Scientific (Waltham, MA).

2.2. Silencing of FOXA gene expression by RNA interference

HuH-7 cells were plated on a collagen-coated plate at a density
of 2 � 104 cells/cm2 and precultured in 10% FBS/DMEM for 24 h.
The precultured HuH-7 cells were transfected with control,
FOXA1-, FOXA2-, or FOXA3-specific siRNA by using a transfection
reagent, Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA).
Twenty-four hours after the treatment, the medium was replaced
and then the cells were transfected with pUC19/C_JPNAT using
FuGENE HD (Promega, Madison, WI). Finally, the medium was
replaced at 24 h after transfection and the samples were collected
2 days later.

2.3. Establishment of Tet-inducible FOXA-expressing cells

Tet-inducible FOXA-expressing HuH-7 cells were established
using a Retro-X™ Tet-On Advanced Inducible Expression System
(Takara-Bio Inc., Shiga, Japan). Briefly, we infected HuH-7 cells with
a retrovirus vector, pRetroX-Tet-On Advanced, and used G418 to
select the cells with stable RetroX-Tet-On Advanced HuH-7 clones.
We next infected the clone with a retrovirus vector, either
pRetroX-Tight-Pur-FOXA1, FOXA2 or FOXA3 and selected the cells
with puromycin to generate Tet-inducible FOXA-expressing HuH-7
cells (HuH-7/Tet/FOXA). HuH-7/Tet/FOXA cells were plated on a
collagen-coated plate at a density of 6 � 104 cells/cm2 and precul-
tured in 10% tetracycline-free FBS (Takara) containing DMEM for
24 h, and then the medium was replaced with ±1 lg/ml doxycy-
cline (dox)-containing medium to induce FOXA expression. At
the same time point, cells were transfected with pUC19/C_JPNAT
using FuGENE HD. The medium was replaced at 24 h after transfec-
tion and samples were collected 3 days later.
2.4. Western blot analysis

Total cellular protein was extracted with RIPA buffer (25 mM
Tris–HCl, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 1% sodium
deoxycholate, 0.1% SDS) containing protease inhibitor cocktail
(Roche, Basel, Switzerland). The protein concentration was deter-
mined using a BCA protein assay kit (Thermo). Five micrograms
of total protein extract was subjected to SDS–PAGE. After the elec-
trophoresis, proteins that had migrated on the gel were transferred
onto a PVDF membrane (Millipore, Billerica, MA). The membrane
was blocked with a skim milk solution. The membrane was first
incubated with the primary Ab and then with the horseradish
peroxidase-conjugated secondary Ab. The protein bands were
visualized by using a Western Lightning Plus ECL (PerkinElmer
Inc., Waltham, MA). The intensity of each band was quantified with
image analyzer (Image J, NIH, Bethesda, MD, USA).

2.5. Detection of HBV RNA

Total RNA was extracted from cells by using Isogen reagent
(Nippon Gene, Tokyo, Japan). Total RNA was treated with RNase-
free DNase I (Promega) to remove contaminated plasmid DNA.
Northern blot was performed to detect HBV transcripts. Five
micrograms of DNase-treated total RNA was subjected to
agarose/formaldehyde gel electrophoresis, then transferred onto
Hybound P+ membrane (GE). HBV RNA was hybridized with DIG-
labeled 0.4 kb HBV DNA probe designed at X ORF, then detected
by DIG detection kit (Roche). Real-time RT-PCR was performed to
analyze precore and pregenomic RNA (pgRNA) levels by the fluo-
rescent dye SYBR Green I method using the SYBR Premix Ex Taq,
Perfect Real Time (Takara) with a LightCycler Nano System
(Roche Diagnostics, Basel, Switzerland). The primer pairs for pre-
core RNA or precore/core RNA were designed according to previous
report [15]. The level of pgRNA was calculated by subtracting the
value of precore RNA from that of precore/core RNA.

2.6. Detection of capsid associated HBV DNA

Intracellular capsid HBV DNA was detected by Southern blot as
described previously with minor modifications [16,17]. Briefly, cells
were lyzed with 1% NP-40, 1 mM EDTA, 50 mM Tris–HCl (pH7.5) and
protease inhibitor cocktails (Roche), then centrifuged to remove
nuclei. The supernatant was treated with DNase I, and then proteins
were digested with SDS and proteinase K (Wako Pure Chemical
Industries, Ltd., Osaka, Japan). Nucleic acid was purified with 2 times
phenol/chloroform extractions and ethanol precipitation. Southern
blot was performed by using DIG High Prime DNA Labeling and
Detection Kit (Roche). DIG-labeled 3.2 kb whole HBV genome
(C_JPNAT) was used to detect HBV replicative intermediates.

2.7. Detection of HBV DNA in the culture supernatant

The supernatant of HuH-7 cells after transfection of HBV plas-
mid was centrifuged at 15000 rpm for 5 min to remove cell debris.
The supernatant was treated with DNase I in the presence of
100 mM MgCl2 and 10 mM CaCl2 at 37 �C, then the reaction was
stopped by the addition of EDTA. Viral DNA was extracted with a
DNeasy Blood and Tissue Kit (Qiagen, Venlo, Netherlands). Real-
time PCR was performed to detect HBV DNA with the specific pri-
mers described previously [18].

2.8. Analysis of host gene expression

Real-time RT-PCR was performed to detect host gene expression
as described elsewhere. The primer pairs used in this experiment
were showed in supplementary Table S1.
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2.9. Statistical analysis

Data represent the mean ± standard error of at least triplicate
experiments. P-value were determined by Student’s t-Test.
⁄P < 0.05, ⁄⁄P < 0.01.

3. Results

3.1. FOXA gene silencing increased HBV replication

To clarify the role of FOXA2 in HBV replication, we performed
silencing of the FOXA2 gene using a FOXA2-specific siRNA in
human-hepatoma derived HuH-7 cells. We confirmed all FOXA
members were expressed at the protein level in HuH-7 cells.
With FOXA2-specific siRNA treatment, FOXA2 protein expression
in HuH-7 cells was obviously suppressed (Fig. S1a). Cell growth
was not changed in FOXA2-specific siRNA-treated cells (Fig. S1d).
Under these conditions, we observed the expression of 3.5 kb,
2.1 kb and 0.7 kb HBV RNA were increased in FOXA2-specific
siRNA-treated cells by Northern blot analysis (Fig. 1a). We could
not compare the expression of 2.4 kb RNA because the expression
level was low in our experimental system. We further investigated
the expression of precore/pg RNA by real time-RT-PCR using their
specific primers. Although precore RNA was not changed by FOXA2
gene silencing, the expression of pgRNA was elevated in FOXA2-
specific siRNA-treated cells (Fig. 1b). The expression ratio of pre-
core/pg RNA was decreased by FOXA2 gene silencing (Fig. 1b).
The HBV replicative intermediates were increased in cells treated
with FOXA2-specific siRNA (Fig. 1c). The synthesis of small S pro-
teins (gp27 and p24) was elevated in FOXA2-specific siRNA-treated
cells (Fig. 1d). Secreted HBV DNA in the culture medium from
FOXA2-specific siRNA-treated cells was significantly elevated in
comparison with that from control siRNA-treated cells (Fig. 1e).
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We next investigated the role of other FOXA members, FOXA1
and FOXA3, in HBV replication (Fig. 2). FOXA1 and FOXA3 protein
expression was suppressed with FOXA1- and FOXA3-specific
siRNA, respectively (Fig. S1b). Cell growth was decreased in
FOXA1-specific siRNA-treated cells and slightly decreased in
FOXA3-specific siRNA-treated cells (Fig. S1e). HBV replication
was increased in both FOXA1- and FOXA3-specific siRNA-treated
cells, as indicated by HBV RNA expression (Fig. 2a), pgRNA expres-
sion (Fig. 2b), HBV replicative intermediates (Fig. 2c), small S pro-
tein level (Fig. 2d) and the supernatant HBV DNA level (Fig. 2e).
Since the redundant function was observed in the individual
FOXA-specific siRNA treatment, we investigated the effect of
combination treatment of each FOXA-specific siRNA on the HBV
replication (Fig. 2f). The supernatant HBV DNA level was 4-fold
increased in all FOXA-specific siRNA mixture treated cells. The
results of a series of FOXA gene-silencing experiments showed that
HBV replication was elevated in HuH-7 cells treated with FOXA
siRNA, but the phenotype was slightly different among FOXA
members.

3.2. Induction of FOXA reduced HBV replication

To further study the role of FOXA in HBV replication, we estab-
lished dox-inducible FOXA expressing HuH-7. We investigated
whether the expression of each type of FOXA was induced by
dox treatment (Fig. S1c). Cell growth was not changed by the
induction of each FOXA gene (Fig. S1f). HBV transcription and repli-
cation were strongly suppressed by the induction of either FOXA1
or FOXA2 gene, and slightly suppressed by the induction of FOXA3
(Fig. 3a and c). FOXA members inhibited pgRNA expression rather
than precore RNA expression (Fig. 3b). Interestingly, the ratio of
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precore/pg RNA was increased only in FOXA2-induced cell
(Fig. 3b). Small S proteins were decreased in FOXA1- and FOXA2-
induced cells, but not in FOXA3-induced cells (Fig. 3d). Secreted
HBV DNA in the culture supernatant was significantly decreased
in cells overexpressing any of the FOXA members (Fig. 3e). These
results indicated that FOXA induction suppressed HBV replication,
but the mechanism was different among FOXA members.

3.3. Regulation of hepatic differentiation by FOXA members

Liver-enriched transcriptional factors control hepatic differ-
entiated states in the liver and is thought to engage in crosstalk
[19,20]. HNF4a is a central factor which involves in hepatic mat-
uration and regulates many liver-specific genes, including albumin
[21]. HNF4a has also been reported to be a positive regulator of
HBV replication [22,23]. Therefore, we investigated the possibility
that FOXA members regulated HBV replication via HNF4a and
other nuclear hormone receptors by using a Tet-inducible FOXA-
expressing system. HNF4a mRNA expression was significantly sup-
pressed by approximately 50% in FOXA1- and FOXA2-induced cells
(Fig. 4a). However, the induction of FOXA3 did not significantly
affect the HNF4a level. We also obtained similar expression pat-
tern regulated by FOXA members in RXRa and PPARa expression
but not in HNF1a and HNF1b (Fig. 4b). These results suggested that
HBV replication was negatively regulated by FOXA members,
partly mediated via the downregulation of HNF4a and other
nuclear hormone receptors expression.

4. Discussion

Previous studies demonstrated that all HBV promoters and
enhancers contain at least one FOXA binding site [2]. In this study,
we showed that the transcription of 3.5 kb, 2.1 kb and 0.7 kb RNA
were regulated by FOXA members (Figs. 1a, 2a, and 3a). 3.5 kb RNA
contains precore RNA and pgRNA. The former codes HBeAg, which
is reported as a negative regulator for HBV [24]. The latter codes
core and polymerase and also acts as a template for HBV DNA, so
that pgRNA directly serves for HBV replication [25]. Actually, the
mutations, A1762T and G1764A, which was frequently observed
in chronic hepatitis B patients, suppressed precore RNA expression
and shows high HBV replication [26]. Therefore, the change of the
expression ratio of precore/pg RNA was important for HBV replica-
tion. Here we showed that FOXA members negatively regulate
pgRNA expression rather than precore RNA expression
(Figs. 1b, 2b, and 3b). However, the effect of FOXA on the pre-
core/pg RNA ratio was somewhat different among members. Our
results demonstrated that FOXA2 caused the greatest effect for
precore/pg RNA ratio in both FOXA2 gene silencing and induction
studies. On the contrary, FOXA3 showed less effect for precore/pg
RNA ratio than other members (Figs. 2b and 3b). The studies using
non-hepatic cell lines, which supported HBV replication by intro-
ducing nuclear hormone receptors, showed that FOXA1 and
FOXA2 antagonize HBV replication [22]. It is also reported that
FOXA1 and FOXA2 directly interfered with the elongation rate of
pgRNA [12]. These results suggested that FOXA members nega-
tively regulate HBV transcription at various transcriptional steps,
but their contributions were different among members.

The HBV surface antigen is composed of large, middle, and
small S proteins. The large S protein is transcribed from 2.4 kb
preS1 RNA, whereas middle and small S proteins are transcribed
from 2.1 kb preS2/S RNA. Different promoters, S1p and S2p,
independently regulate these RNAs, respectively [1]. We had
expected that HBV surface antigens would be activated by FOXA
members, because FOXA activated both S1p and S2p in reporter
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assays [10,11]. However, our results using 1.24-fold genome-
length HBV indicated that only the small S protein was downregu-
lated by FOXA members, especially FOXA1 and FOXA2. This was
due to the methodological differences between the reporter assay
and HBV replication system using a 1.24-fold HBV genome. As a
report regarding HBV enhancer [27,28], HBV transcription thought
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to be regulated by its multiple enhancers. In this respect, the stud-
ies using over genome-length HBV were thought to be more suit-
able for understanding the mechanism of HBV replication.

Liver function is controlled by the set of liver-enriched tran-
scriptional factors [29]. FOXA members are also key regulators
for liver development and liver-specific functions [5,30]. Based
on the studies using knockout mice for various FOXA members,
the function of FOXA in those events is thought to differ among
members [31]. In this study, we found that the suppression of
HNF4a, PPARa and RXRa expression was observed only in
FOXA1- or FOXA2-expressing cells (Fig. 4). These nuclear hormone
receptors are important for HBV replication [22]. As for HNF4a, the
reduction of HNF4a expression by TGF-b1 resulted in the suppres-
sion of HBV replication [32]. The replication of HBV was inhibited
by HNF4a-specific siRNA in HepG2 cell transfected plasmid con-
taining 1.3-fold HBV genome [33]. These results suggested that
FOXA1 and FOXA2 had indirect pathways leading to the suppres-
sion of HBV replication via nuclear hormone receptors. Moreover,
we observed that the regulation of small S expression was different
between FOXA1/2 and FOXA3 (Fig. 3). Because there were no
HNF4-binding sequences in Sp2 [1], the regulation of small S by
FOXA was thought to be independent of HNF4a. FOXA members
bind similar DNA sequences via highly conserved Forkhead box
motifs, but their gene regulation differs among various cell types
[31,34]. These results suggested that the different regulatory roles
between FOXA1/2 and FOXA3 in small S expression consisted of
not only direct binding to the HBV genome but also indirectly reg-
ulation through FOXA target genes. Further studies will be needed
to address these questions.

It has been reported that the infection of HBV in vitro was
restricted only in differentiated-hepatocytes, such as human pri-
mary hepatocytes [35]. The development of HBV-susceptible cells
has been attempted using HepaRG cells [36], HuS-E/2 cells [37],
and umbilical cord matrix stem cells [38]. These results indicated
that the differentiated state of these cells was important for viral
infection. However, a method of persistent HBV infection using
the established cell lines has not been developed yet. One of the rea-
sons is that the HCC cell lines alter hepatic differentiated states,
including by changing the expression of hepatic transcriptional fac-
tors, to maintain tumor phenotypes [4,39]. Here, we showed that
the changes of FOXA expression levels altered the replication of
HBV in HuH-7. These results suggested that the control of liver-en-
riched transcriptional factors in HCC cell lines is important for the
development of effective HBV replication in cell culture systems.

In conclusion, we demonstrated that all FOXA members nega-
tively regulated in HBV replication via downregulation of the level
of HBV transcripts. Small S proteins were decreased in FOXA1- and
FOXA2-, but not in FOXA3-induced cells. We also reported that the
downregulation mechanism was different among FOXA members.
It is hoped that these results will contribute to the establishment
of a persistent HBV replication system, which could lead to the
development of effective antiviral therapies.
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