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SUMMARY

In type 2 diabetes, pancreatic b cells fail to se-
crete sufficient insulin to overcome peripheral
insulin resistance. Intracellular lipid accumula-
tion contributes to b cell failure through poorly
defined mechanisms. Here we report a role for
the lipid-regulated protein kinase C isoform
PKC3 in b cell dysfunction. Deletion of PKC3

augmented insulin secretion and prevented
glucose intolerance in fat-fed mice. Importantly,
a PKC3-inhibitory peptide improved insulin
availability and glucose tolerance in db/db
mice with preexisting diabetes. Functional
ablation of PKC3 selectively enhanced insulin
release ex vivo from diabetic or lipid-pretreated
islets and optimized the glucose-regulated
lipid partitioning that amplifies the secretory
response. Independently, PKC3 deletion also
augmented insulin availability by reducing
both whole-body insulin clearance and insulin
uptake by hepatocytes. Our findings implicate
PKC3 in the etiology of b cell dysfunction and
highlight that enhancement of insulin availabil-
ity, through separate effects on liver and b cells,
provides a rationale for inhibiting PKC3 to treat
type 2 diabetes.

INTRODUCTION

Glucose homeostasis is maintained by a complex inter-

play between liver, skeletal muscle, and adipose tissue

and is largely orchestrated by the release of insulin from

pancreatic b cells. This relationship is perturbed in

obesity, whereby the effectiveness of insulin in regulating

glucose fluxes out of liver, and into skeletal muscle, is

compromised. In most instances, however, this insulin

resistance can be overcome by a compensatory enhance-

ment of insulin secretion. Type 2 diabetes (T2D) arises

selectively in that subset of individuals whose b cells fail
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to compensate for insulin resistance in liver and muscle

(Cavaghan et al., 2000; Kahn et al., 2006).

b cell failure is characterized by a reduction in b cell

mass compared to that of nondiabetic obese subjects,

as well as a number of secretory defects including en-

hanced basal secretion and a selective loss of respon-

siveness to glucose (Cavaghan et al., 2000; Grill and

Bjorklund, 2000; Kahn et al., 2006; Rhodes, 2005). The

molecular basis of b cell failure is poorly understood, al-

though a key role has been proposed for intracellular lipid

accumulation resulting from either oversupply or altered

cellular metabolism (Grill and Bjorklund, 2000; Muoio

and Newgard, 2006; Prentki and Nolan, 2006; Rhodes,

2005; Unger and Zhou, 2001). Dyslipidemia is also impli-

cated in the development of other aspects of the meta-

bolic syndrome, and in some tissues this may involve

activation of isozymes of the lipid-regulated protein kinase

C (PKC) family (Morino et al., 2006; Schmitz-Peiffer, 2000).

Chronic lipid treatment of muscle, liver, and b cells results

in preferential activation of the novel subgroup of PKC iso-

zymes (Considine et al., 1995; Schmitz-Peiffer et al., 1997;

Wrede et al., 2003). Surprisingly, however, a causative role

for PKC in b cell failure has not been addressed directly.

Our current goal, therefore, was to evaluate the potential

contribution of a member of the novel PKC group, PKC3,

in models of glucose intolerance, with particular emphasis

on the development of b cell dysfunction.

RESULTS

Fat-Fed PKC3�/� Mice Are Protected against
Glucose Intolerance
We generated PKC3�/� mice, which lack PKC3 protein in

all tissues examined (see Figure S1 in the Supplemental

Data available with this article online). These mice and

wild-type littermates were subjected to high-fat feeding,

which induced features of the metabolic syndrome in

humans, such as obesity and hyperglycemia (Table S1).

The diet also provoked gross impairment of glucose dis-

posal during an intraperitoneal glucose tolerance test

(i.p. GTT) in wild-type mice (Figure 1A). Remarkably, glu-

cose tolerance was essentially normal in fat-fed PKC3�/�

mice (Figure 1A). Compared to chow-fed controls,
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Figure 1. Fat Diet Effect on Glucose

Tolerance and Islet Histology in PKC3�/�

Mice

(A) Blood glucose levels during an intraperito-

neal glucose tolerance test (i.p. GTT) of wild-

type (n = 9) and PKC3�/�mice (n = 8) fed a sat-

urated fat diet for 16 weeks and wild-type (n =

10) and PKC3�/� mice (n = 5) fed a standard

chow diet as controls. ANOVA: p < 0.001 for ef-

fect of fat diet in wild-type mice; p < 0.001 for

effect of PKC3 deletion in fat-fed mice. In this

and all other figures, error bars represent SEM.

(B) Serum insulin levels during i.p. GTT. AN-

OVA: p < 0.001 for effect of fat diet; p < 0.002

for effect of PKC3 deletion.

(C) Serum C-peptide levels during i.p. GTT.

ANOVA: p < 0.005 for effect of fat diet; ANOVA:

p < 0.001 for effect of PKC3 deletion in fat-fed

mice. Student’s t test: *p < 0.025, fat-fed

PKC3�/� versus fat-fed wild-type mice at

0 min.

(D) Insulin resistance index (glucose concen-

tration (mM) 3 insulin concentration (mU/l) O

22.5) calculated from glucose and insulin levels

during i.p. GTT. ANOVA: p < 0.001 for effect of

fat diet.

(E) Comparison of islet mass in wild-type and

PKC3�/�mice fed either a chow diet or a satu-

rated fat diet. Student’s t test: **p < 0.01, fat-

fed wild-type versus chow-fed wild-type mice.

Results shown in (E) and (F) are from pancre-

atic sections of at least five animals per group.

(F) Cell proliferation in islets as indicated by the

number of Ki-67-positive cells per islet. Stu-

dent’s t test: *p < 0.05, fat-fed wild-type versus

chow-fed wild-type mice.
fat-fed wild-type mice exhibited higher fasting insulin

levels, but these did not increase further during the

i.p. GTTs despite the accompanying hyperglycemia

(Figure 1B). Insulin excursions were, however, significantly

increased in the PKC3�/�mice, especially those fed the fat

diet (Figure 1B). PKC3 might therefore inhibit insulin secre-

tion under conditions of lipid oversupply.

This conclusion was supported by the analysis of C-

peptide levels during the i.p. GTT. Although cosecreted

with insulin, C-peptide is cleared much more slowly by

the liver (Polonsky and Rubenstein, 1986) and is thus

a more direct indicator of b cell secretory responsiveness

than circulating insulin levels (Bergman, 2000). The serum

C-peptide profiles observed in fat-fed mice (Figure 1C)

were, like those of insulin, greatly enhanced in PKC3 null

mice compared to wild-type animals. These results sug-

gest that deletion of PKC3 facilitates a compensatory en-

hancement of insulin secretion specifically in fat-fed mice

and that this contributes to the accompanying improve-

ments in glucose tolerance (Figure 1A). This was more

clearly demonstrated using an insulin resistance index

(Cai et al., 2005) calculated from the product of glucose

and insulin levels during the i.p. GTT. This index was in-

creased by high-fat feeding irrespective of genotype, sug-
Cell
gestive of fat-induced insulin resistance in both groups of

mice (Figure 1D). It therefore seems that the restoration of

glucose homeostasis following deletion of PKC3 in fat-fed

mice is explained better by an improvement in b cell func-

tion than by changes in insulin sensitivity.

PKC3 Deletion Reconstitutes Glucose-Stimulated
Insulin Secretion
We consequently examined the pancreatic islet pheno-

type in more detail. Total pancreas weight was unaffected

by diet or genotype (Table S1), and there was no differ-

ence in islet-specific mass between chow-fed wild-type

and PKC3�/� mice as determined in pancreatic sections

(Figure 1E). As documented previously (Rhodes, 2005), is-

let mass was increased in fat-fed wild-type mice but, sur-

prisingly, not in the PKC3�/� animals (Figure 1E). This was

due not to differences in apoptosis between the different

experimental groups (data not shown) but to an absence

of increased islet cell proliferation in fat-fed PKC3�/�

mice (Figure 1F). This probably reflects the restoration of

glucose tolerance and the reduced need for compensa-

tory increases in b cell mass under these conditions. In

any event, these results clearly demonstrate that the
Metabolism 6, 320–328, October 2007 ª2007 Elsevier Inc. 321
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Figure 2. Insulin Secretion and Metabolism in Wild-Type and PKC3�/� Islets

Islets were precultured for 48 hr with or without 0.4 mM palmitate (FA).

(A) Insulin secretion at low (2.8 mM) or high glucose (20 mM) in 1 hr batch incubations (n = 4–5). Student’s t test: *p < 0.03, FA-treated PKC3�/� versus

FA-treated wild-type islets.

(B and C) Insulin content expressed per islet (B) and per ng DNA (C). ANOVA: yp < 0.02 for effect of genotype.

(D) Insulin mRNA expression. ANOVA: yyp < 0.005 for effect of genotype.

(E) Insulin secretion by islets perifused at high glucose (16.7 mM) or low glucose (2.8 mM) with or without 24 mM KCl as indicated (n = 5).

(F) 14CO2 generation over 2 hr by islets incubated in KRB containing low (2.8 mM) or high glucose (20 mM) (n = 4).

(G) Ratio of [14C]palmitate esterification versus oxidation over 2 hr by islets incubated in KRB containing low (2.8 mM) or high glucose (20 mM) (n = 3).

Student’s t test: *p < 0.05; **p < 0.025.

(H) 14CO2 generation from palmitate over 2 hr by islets incubated in KRB containing low (2.8 mM) or high glucose (20 mM) (n = 4–5). Student’s t test:

**p < 0.02.
enhanced insulin secretion of fat-fed PKC3�/� mice is not

explained by increased islet mass.

We next examined glucose-stimulated insulin secretion

(GSIS) from isolated pancreatic islets that had been main-

tained in the presence or absence of elevated fatty acid
322 Cell Metabolism 6, 320–328, October 2007 ª2007 Elsevier
(FA) for 48 hr ex vivo. Neither basal nor glucose-stimulated

responses were altered in PKC3 null versus wild-type is-

lets when cultured under control conditions (Figure 2A).

Following FA pretreatment, however, glucose-stimulated

(but not basal) insulin secretion was increased over
Inc.
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2-fold in PKC3�/� compared to wild-type islets (Figure 2A).

This is broadly consistent with the in vivo data (Figure 1C)

and confirms that chronic lipid exposure is required for the

enhanced responsiveness of PKC3�/� islets to become

manifest. Insulin content was also increased in PKC3�/�

islets (Figure 2B), even after controlling for potential alter-

ations in islet size by normalizing the data to DNA content

(Figure 2C). However, because these effects were both

small and independent of pretreatment conditions, they

are unlikely to explain either the magnitude or the specific-

ity of the observed increases in GSIS (Figure 2A). The in-

creased insulin content of PKC3�/� islets was paralleled

by changes in insulin (I and II) mRNA (Figure 2D), but not

in the expression of another secretory product, Iapp

(Figure S2). Investigating the secretory phenotype in

more detail, we observed significant increases in both

the first phase (2.1-fold, p < 0.01) and the second phase

of GSIS (1.5-fold, p < 0.05), but not in response to a depo-

larizing concentration of KCl (Figure 2E). This argues

against a distal site of action and suggests an

involvement of PKC3 in the generation of proximal meta-

bolic signals.

PKC3 Deletion Alters FA Partitioning in b Cells
Glucose metabolism in pancreatic b cells couples to insu-

lin secretion via separate initiation and amplification path-

ways. GSIS is initiated by the coupling of oxidative phos-

phorylation to changes in plasma membrane ion fluxes.

However, in control or FA-pretreated islets, PKC3 deletion

did not significantly alter glucose oxidation at either basal

or stimulatory glucose concentrations (Figure 2F). We

therefore examined the amplification pathway, thought

to involve the switching of endogenous FA metabolism

from b-oxidation toward esterification, as a result of glu-

cose-stimulated flux through the tricarboxylic acid cycle

(Prentki and Nolan, 2006). In Figure 2G, we document

this lipid partitioning as the ratio of [14C]palmitate incorpo-

ration into total esterification products (triglyceride, diacyl-

glycerol, and phospholipids) versus oxidative metabolism

(CO2 generation plus water-soluble oxidation products).

Although acute glucose stimulation enhanced the ester-

ification/oxidation ratio in all treatment groups, this

enhancement was diminished following FA pretreatment

of wild-type, but not PKC3�/�, islets. Conversely, preex-

posure to FA augmented [14C]palmitate oxidation in

wild-type, but not PKC3�/�, islets in the presence of high

glucose (Figure 2H). Tracer incorporation into other me-

tabolites under these conditions is shown in Figure S3.

Overall, these results suggest that PKC3 inhibition recon-

stitutes GSIS by restoring the glucose-regulated balance

between lipid esterification and oxidation that is otherwise

compromised by FA pretreatment. This is unlikely to re-

flect a role in transcription, as the expression of key genes

of lipid oxidation and/or partitioning was largely unaltered

by PKC3 deletion (Figure S2).

PKC3 Modulates Hepatic Insulin Clearance
An effect of PKC3 deletion on insulin availability, indepen-

dent of secretion, was also suggested by the observation
Cell M
that, in chow-fed PKC3�/� mice, insulin levels were

elevated during i.p. GTT in the absence of any change in

C-peptide (cf. Figures 1B and 1C). The fasting C-pepti-

de:insulin molar ratio was also reduced in PKC3�/� mice

(Figure 3A). Enhanced insulin levels, without changes in

secretion, are consistent with a reduction in insulin clear-

ance. To investigate this more directly, we injected

chow-fed wild-type and PKC3�/� mice with a large bolus

of insulin, resulting in a 30-fold increase in plasma insulin

levels that far outweighed any contribution of endogenous

insulin secretion (Wang et al., 2005b). Under these condi-

tions, plasma insulin reached a higher peak in PKC3�/�

mice and remained higher throughout the experiment,

also consistent with a decrease in insulin clearance (Fig-

ure 3B).

As measured in liver extracts and primary cultured

hepatocytes, deletion of PKC3 was not associated with

reductions in the number of total insulin receptors

(Figure 3C) or surface-associated insulin receptors

(Figure 3D), or their affinity for insulin (Figure 3E). We did,

however, observe that PKC3 deletion diminished [125I]in-

sulin internalization by hepatocytes (Figure 3F), corre-

sponding to a 30% reduction in the area under the insulin

uptake curve (Figure 3G). These data suggest that

PKC3�/� mice have a defect in receptor-mediated insulin

endocytosis. This is likely to augment circulating insulin

levels because secreted insulin is partially cleared by the

liver prior to reaching peripheral tissues such as muscle

and fat (Bergman, 2000).

There was no difference in insulin signaling between

wild-type and PKC3�/� cells, either using several insulin

doses and time points with isolated hepatocytes

(Figure S4) or as measured in vivo using livers from

chow-fed animals (Figure S5). Likewise, the impaired insu-

lin signaling caused by chronic high-fat feeding was not

altered by PKC3 deletion (Figure S5). It therefore appears

that insulin uptake can be modestly reduced without sig-

nificantly affecting insulin signaling in the liver, in agree-

ment with other animal models exhibiting diminished

clearance (Poy et al., 2002).

Improvement of Preexisting Diabetes by PKC3

Inhibition
Our data point to a strategy for regulating insulin availabil-

ity as a treatment for T2D. Therapeutic utility, however,

would be substantiated by the treatment of established

disease, as opposed to preventing its onset in fat-fed

PKC3�/� mice. We therefore made use of the db/db

mouse, a genetic model with similarities to human T2D

(Coleman, 1978). We employed a well-documented

PKC3-inhibitory peptide (3V1-2), derived from the PKC3

sequence itself, that specifically blocks downstream sig-

naling by preventing interaction with a PKC3 binding part-

ner (Hundle et al., 1997; Johnson et al., 1996). We coupled

this peptide and a scrambled control to an HIV-TAT se-

quence that facilitates cellular uptake (Begley et al.,

2004; Chen et al., 2001). Mice were injected daily for

5 days with saline, the inhibitor, or control peptide. Al-

though body weights were unaltered between the 3 groups
etabolism 6, 320–328, October 2007 ª2007 Elsevier Inc. 323
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Figure 3. Insulin Clearance In Vivo and Insulin Uptake by Isolated Hepatocytes

(A) The fasting C-peptide:insulin molar ratio in chow-fed wild-type (n = 14) and PKC3�/� mice (n = 12) and fat-fed wild-type (n = 14) and PKC3�/�

(n = 12) mice. Student’s t test: *p < 0.05 versus wild-type mice fed the same diet.

(B) Plasma insulin levels after i.p. injection of 10 U/kg insulin in chow-fed wild-type and PKC3�/�mice (n = 18 per group). ANOVA: p < 0.001 for effect

of PKC3 deletion on insulin levels.

(C) Representative immunoblots and results from densitometry of insulin receptor expression in either liver extracts from mice maintained as de-

scribed in Figure 1A or hepatocyte lysates from chow-fed mice.

(D) Cell-surface-associated insulin receptor estimated as maximal [125I]insulin binding to primary wild-type and PKC3�/� hepatocytes at 4�C.

(E) Affinity of insulin binding to hepatocytes at 4�C calculated from [125I]insulin binding curves.

(F) [125I]insulin internalization by hepatocytes from wild-type and PKC3�/�mice (n = 4–7 independent experiments per time point). ANOVA: p < 0.005

for effect of PKC3 deletion.

(G) Area under the curve (AUC) for insulin uptake (n = 4). Student’s t test: **p < 0.02.
(data not shown), glucose tolerance during subsequent i.p.

GTTs was significantly improved by prior treatment with

the inhibitor peptide. Doses of 10 mg/kg (Figure 4A) and

3 mg/kg (data not shown) were similarly effective, whereas

the control peptide had no effect (Figure 4A). The improve-

ment in glucose tolerance was accompanied by an en-

hanced availability of insulin as witnessed by the insulin

and C-peptide profiles during the i.p. GTT. Thus, in the

PKC3 inhibitor-treated mice, plasma insulin levels at 30

min were almost double those of control mice, which did

not respond to an observable extent (Figure 4B). A similar

distinction was observed in C-peptide levels (Figure 4C).

Consistent with these data, we observed that the impaired

GSIS of isolated db/db islets was overcome in a dose-

dependent manner by ex vivo exposure to the inhibitory

peptide, but not the control peptide (Figure 4D). In con-

trast, PKC3 inhibition had no effect on the robust response

of control db/+ islets. This is consistent with the in vivo and

ex vivo data obtained using PKC3�/�mice (Figure 1C and

Figure 2A) and indicates that inhibition of PKC3 does not

stimulate insulin secretion per se but rather acts selec-

tively under conditions of secretory compromise.
324 Cell Metabolism 6, 320–328, October 2007 ª2007 Elsevier
DISCUSSION

We have shown that functional ablation of PKC3 improves

whole-body glucose disposal by augmenting insulin avail-

ability to compensate for insulin resistance. This is ex-

plained by two phenotypic characteristics: a restoration

of GSIS from defective b cells and a reduction in hepatic

insulin clearance. These findings suggest that PKC3 plays

an unexpectedly diverse role in the development of glu-

cose intolerance.

Deletion of PKC3 in b cells results in multiple effects, in-

cluding augmentation of both insulin content and GSIS, al-

terations in fuel utilization, and a relative reduction in b cell

mass. The regulation of insulin content is probably ex-

plained by accompanying changes in insulin mRNA, which

suggests that PKC3 should be added to the list of potential

regulators of insulin gene expression (Poitout et al., 2006).

Although repletion of insulin content would therefore rep-

resent an additional benefit of PKC3 inhibition, this feature

is unlikely to explain the reconstitution of GSIS since the

latter, in contrast to the regulation of insulin content, was

absolutely dependent on prior lipid exposure. This was
Inc.
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Figure 4. Effects of PKC3 Inhibition on

Glucose Tolerance in db/db Mice

(A) Blood glucose levels during i.p. GTTs per-

formed on fasted db/db mice treated with 10

mg/kg 3V1-2�HIV-TAT (n = 5), 10 mg/kg

scrambled control peptide�HIV-TAT (n = 4),

or saline (n = 7). ANOVA: p < 0.001, 3V1-

2�HIV-TAT versus saline; p < 0.02, 3V1-

2�HIV-TAT versus scrambled.

(B) Insulin levels in 3V1-2�HIV-TAT-treated,

scrambled peptide-treated, and saline-treated

mice during i.p. GTT. ANOVA: p < 0.01 for ef-

fect of PKC3 inhibition 0–45 min. **p < 0.03

for 3V1-2 versus saline at 30 min by t test.

(C) C-peptide levels during i.p. GTT. ANOVA:

p < 0.05 for effect of PKC3 inhibition 0–

45 min. *p < 0.05 for 3V1-2 versus saline at

30 min by t test.

(D) Glucose-stimulated insulin secretion by is-

lets from db/+ and db/db mice pretreated for

24 hr in the absence or presence of 1 mM or 5

mM 3V1-2�HIV-TAT or 5 mM scrambled control

peptide�HIV-TAT (n = 3 independent experi-

ments per group). Student’s t test: *p < 0.05,

3V1-2�HIV-TAT-treated versus control db/db

islets.
most apparent in high-fat-fed mice, which show defects in

insulin and C-peptide secretion similar to those of T2D

subjects: an enhanced fasting insulin secretion and a rela-

tive loss of responsiveness to glucose (Kahn et al., 2006).

Under these conditions, deletion of PKC3 both lowered

fasting C-peptide levels and facilitated a secretory

response to glucose that was much greater than that

seen in fat-fed wild-type mice. This protection was medi-

ated directly at the level of the b cell, since the secretory

defects observed in islets isolated from db/db mice or in

wild-type islets following chronic FA exposure in vitro

were reversed in the absence of functional PKC3.

PKC activation has generally been considered stimula-

tory for insulin secretion, but the evidence for this is much

stronger for receptor-binding agonists than for nutrient

stimuli (Carpenter et al., 2004; Jones and Persaud,

1998). In our hands, deletion or inhibition of PKC3 did

not alter GSIS in the absence of FA pretreatment, as dem-

onstrated by both the i.p. GTTs and studies with isolated

islets. This clearly demonstrates that PKC3 is not normally

needed for secretion in response to glucose, although ear-

lier work suggested that PKC3 is activated under these

conditions (Mendez et al., 2003; Yedovitzky et al., 1997)

and might contribute to glucose-dependent alterations

in membrane capacitance (Mendez et al., 2003). This is

similar to the situation with classical PKC isoforms, which

are also activated but not required during GSIS (Carpenter

et al., 2004). Our results therefore implicate PKC3 activa-

tion as a necessary and proximal step in the sequence

by which FAs selectively induce secretory dysfunction.

While our direct focus has been lipotoxicity, we do not ex-

clude the possibility that activation of PKC3 might also

contribute to secretory defects induced by chronic glu-

cose exposure. This is consistent with the restoration of
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GSIS by inhibition of PKC3 in db/db islets ex vivo, a model

in which defective secretion is dependent on prior hyper-

glycemia (Kjorholt et al., 2005).

Although additional mechanisms may contribute, the

best explanation for the improvement in secretory re-

sponse appears to be a restoration of the efficiency of glu-

cose to regulate lipid partitioning, whereby FA esterifica-

tion is increased at the expense of b-oxidation. This is

a key event since GSIS is reciprocally modulated by ma-

nipulations of b-oxidation (Herrero et al., 2005; Roduit

et al., 2004; Rubi et al., 2002). Importantly, the secretory

impairments evoked by chronic lipid exposure are also ac-

companied by an enhancement of b-oxidation, especially

during acute glucose stimulation (Brun et al., 1997; Liang

et al., 1997). Our results show that PKC3 deletion appears

to normalize b-oxidation under these conditions. This al-

lows reconstitution of an amplification signal, which ac-

cording to two hypotheses might comprise long-chain

acyl-CoAs or lipid esterification products themselves

(Prentki and Nolan, 2006) or, alternatively, the metabolic

cycling of glucose-derived pyruvate (Muoio and Newgard,

2006). Because the exact identity of this signal is un-

known, the site of action of PKC3 is difficult to pinpoint. Al-

terations in the expression of key genes controlling lipid

oxidation and/or partitioning were not implicated, but

this key interface between lipid and carbohydrate metab-

olism is likely to be regulated by many other genes, as well

as by posttranslational mechanisms. Interestingly, PKC3

deletion did reverse the lipid-dependent downregulation

of glycolytic genes such as Glut2 (glucose transporter 2),

Gck (glucokinase), and Gpdh (glycerol phosphate dehy-

drogenase 2) (Figure S2), but the effects were subtle and

were not associated with any alteration in glucose oxida-

tion (Figure 2E). Therefore, these changes are potentially
etabolism 6, 320–328, October 2007 ª2007 Elsevier Inc. 325
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consequences, rather than causes, of the overall improve-

ment in b cell function.

Insulin resistance is generally accompanied by a com-

pensatory expansion of b cell mass. This occurs in re-

sponse to circulating trophic factors that remain poorly

characterized (Del Prato et al., 2004). No compensatory

expansion was observed in fat-fed PKC3�/� mice, sug-

gesting that b cell plasticity is perhaps influenced more

by alterations in overall glucose tolerance than by insulin

resistance per se. Thus, the improvement in glucose toler-

ance is presumably accompanied by a reduction in

trophic factors, potentially including glucose itself, but

probably not including insulin, which was increased under

these conditions. Alternatively, PKC3 might form part of

the signaling cascade whereby an unknown trophic factor

stimulates b cell expansion. Much further work is required

to resolve these possibilities.

The second major phenotype that we have observed in

PKC3�/�mice is the reduction in hepatic insulin clearance.

Supporting evidence includes the observations that, rela-

tive to controls, these mice less readily cleared an exoge-

nous insulin load and displayed considerably higher levels

of circulating insulin during an i.p. GTT despite exhibiting

a similar rate of C-peptide secretion. In addition, assess-

ment of insulin uptake by isolated hepatocytes confirmed

that PKC3 deletion in these cells reduces insulin internali-

zation. Although the inhibition we observed in insulin up-

take by PKC3�/� hepatocytes was relatively subtle, it is

likely to have a significant influence on whole-body insulin

clearance because of the direct circulatory link between

pancreas and liver. Perhaps surprisingly, insulin signaling

in liver was unaffected by PKC3 deletion, but it is becom-

ing increasingly apparent that insulin receptor internaliza-

tion is not always directly coupled to insulin receptor sig-

naling (Ceresa et al., 1998; Poy et al., 2002). Moreover,

insulin signaling was still severely compromised in

PKC3�/� animals maintained on a high-fat diet (Figure S5).

This contrasts with recent findings using mice pretreated

with antisense oligonucleotides for PKC3 and then fat-

fed for 3 days (Samuel et al., 2007). Glucose tolerance

curves were not presented in that study, although a slight

reduction in whole-body insulin resistance was observed.

In our model, a profound reversal of glucose intolerance

was accompanied by only minor alterations in the insulin

resistance index. These differences are probably ex-

plained by our protocol of longer-term fat feeding (16

weeks versus 3 days) with a correspondingly greater

impairment in glucose tolerance. Thus, while we do not

exclude the possibility that deletion of PKC3 may have

resulted in slight decreases in insulin resistance in our di-

etary model, we do not believe that this makes a major

contribution to the improved glucose tolerance that we

observe under these conditions.

The findings presented here provide a strong impetus

for the development of PKC3 inhibitors to treat T2D. Not

only was glucose intolerance prevented in dietary models

by long-term deletion of this PKC isoform, it was also im-

proved in a model of preexisting diabetes by as few as five

once-daily injections of a PKC3 inhibitor. In the main, T2D
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therapeutics target separate tissues and act as muscle in-

sulin sensitizers (thiazolidinediones), suppressors of he-

patic glucose output (biguanides), or relatively nonselec-

tive stimulators of insulin secretion (sulfonylureas). Our

results raise the possibility of an alternative strategy for

improving insulin availability with several beneficial fea-

tures. First, loss of PKC3 did not alter GSIS from noncom-

promised islets, which is of therapeutic interest because it

suggests that PKC3 inhibition specifically reprograms glu-

cose responsiveness in dysfunctional b cells rather than

simply reversing a nondiscriminatory brake on secretion.

Second, secretion was augmented in the first phase,

which is the key regulator of glucose tolerance (Brutto-

messo et al., 1999) and is selectively diminished in T2D

(Cavaghan et al., 2000; Grill and Bjorklund, 2000). Third,

PKC3 inhibitors do not initiate secretion and so should

be inactive in the absence of hyperglycemia. Finally, the

effects of PKC3 deletion on b cell function were comple-

mented by diminished hepatic insulin clearance, with

both aspects contributing to an enhanced availability of

insulin. These features convey advantages in terms of

specificity, selectivity, and potentially synergy compared

to existing therapies for enhancing insulin secretion.

EXPERIMENTAL PROCEDURES

Mice

A LacZ/neo cassette was inserted into the first transcribed exon of the

PKC3 gene (Figure S1A) using standard gene targeting techniques. As

a consequence of the insertion, transcription was abolished, which led

to a null allele, with no evidence for smaller transcripts. Ethical

approval for mouse studies was granted by the St. Vincent’s Hospital

Animal Experimentation Ethics Committee. Mice were maintained on

a hybrid 129/Sv 3 C57BL/6 background using PKC3 heterozygous

breeding pairs; age-matched wild-type and PKC3�/� littermates

were used for experiments. To induce insulin resistance, 7-week-old

mice were fed a coconut fat/sucrose-based diet adapted from Re-

search Diets, Inc. diet D12451 (Hennige et al., 2003) for 16 weeks.

db/db mice were on a C57BL/KsJ background. For i.p. GTTs, mice

were fasted overnight and injected intraperitoneally with glucose

(2 g/kg total body weight for diet-fed C57BL/6 mice; 1 g/kg lean

body weight [i.e., body weight of nonobese littermates] for db/db

mice). Blood samples were obtained from tail tips, and glucose con-

centrations were measured using an Accu-Chek Advantage II glucom-

eter (Roche). Insulin was measured by ELISA (Mercodia). C-peptide

was measured by RIA (Linco).

Determination of Islet Mass, b Cell Apoptosis,

and Cell Proliferation

Islet mass was quantified from pancreas sections stained with hema-

toxylin and eosin using a digitizing tablet and BIOQUANT software

(R&M Biometrics). Islet mass was calculated from relative cross-

sectional islet area and total pancreas mass. Apoptosis was assessed

in pancreas sections using the terminal deoxynucleotidyl transferase-

mediated dUTP nick end-labeling technique (In Situ Cell Death Detec-

tion Kit, POD, Roche). Cell proliferation was assessed using a Ki-67

antibody (1:100; gift from Dako) counterstained with hematoxylin.

Measurement of GSIS in Pancreatic Islets

Islets were isolated (Carpenter et al., 2004) from wild-type and

PKC3�/� mice and cultured for 48 hr in RPMI 1640 supplemented

with either 0.4 mM palmitate coupled to 0.9% (w/v) BSA, giving a molar

ratio of 3:1, or BSA alone (Busch et al., 2002). Islets from db/+ and db/

db mice were cultured for 24 hr in RPMI 1640 in the absence or
r Inc.
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presence of 5 mM either 3V1-2�HIV-TAT heterodimer or scrambled

control peptide. For measurement of insulin secretion in batch incuba-

tions, groups of 4–5 islets were incubated in 0.5 ml Krebs-Ringer bicar-

bonate (KRB) buffer (pH 7.4) containing low and high concentrations of

glucose as indicated for 1 hr (Busch et al., 2002). For perifusion stud-

ies, groups of 25 islets in Swinnex chambers (Millipore) were perifused

at 0.5 ml/min with 2.8 mmol/l glucose in KRB at 37�C for 10 min before

experimental additions as shown (Carpenter et al., 2004). Insulin

content in fractions collected over 1 min (0–20 min) or 2 min intervals

(20–120 min) was analyzed by RIA (Linco).

Islet Metabolic Studies

Islets cultured as above were distributed into batches of 25 in 0.1 ml

KRB containing 2.8 or 20 mM glucose with 13.6 or 1.9 Ci/mol

[U-14C]glucose, respectively. Alternatively, 0.4 mM palmitate coupled

to 0.9% (w/v) BSA was included with [U-14C]palmitate (47.6 Ci/mol).

After 2 hr incubation at 37�C, an aliquot of the media was acidified

for oxidation studies, and 14CO2 was trapped onto a glass fiber filter

and quantified by liquid scintillation spectrometry (Busch et al.,

2005). For FA esterification studies, cell pellets were extracted over-

night in 1 ml chloroform:methanol (2:1, vol/vol). After two washes in

H2O, a sample of the aqueous phase was removed for determining

water-soluble oxidation products. The dried organic phase was redis-

solved and spotted onto silica plates (K6, Whatman), and lipids were

separated by thin-layer chromatography in petroleum ether:diethyl

ether:methanol:acetic acid (180:14:4:1 by volume). Spots comigrating

with triglyceride, diacylglycerol, and phospholipid standards were indi-

vidually scraped and counted by liquid scintillation spectrometry

(Busch et al., 2005).

In Vivo Insulin Clearance

In vivo clearance of exogenous insulin was assessed as previously de-

scribed (Wang et al., 2005a, 2005b). Briefly, we injected nonfasted

wild-type and PKC3�/� mice intraperitoneally with 10 U/kg insulin

(Novo Nordisk Actrapid) and took 10 ml blood samples from the tail

vein at 10 min intervals for the determination of serum insulin levels

by RIA.

Insulin Internalization by Primary Hepatocytes

Hepatocytes were isolated from livers of chow-fed wild-type and

PKC3�/� mice (Scott et al., 1985). Cells were incubated with 30 pM

[125I]insulin on ice for 4 hr in serum-free RPMI 1640 containing 0.2%

BSA, washed in PBS/0.2% BSA, and then incubated at 37�C for 0–

15 min in RPMI/0.2% BSA before washing in 0.2% BSA-PBS (pH

3.0) and PBS (pH 7.4) and lysing with 1 M KOH. 125I in the acid wash

was counted as surface-bound, noninternalized insulin, and 125I in

the KOH-solubilized cells was counted as internalized cell-associated

ligand. Internalized insulin was calculated as a percentage of total

cell-associated insulin (the sum of surface-bound plus cell-associated

ligand) (Formisano et al., 1994; Poy et al., 2002).

Treatment of db/db Mice with PKC3-Inhibitory Peptide

The PKC3-specific peptide 3V1-2 (C-EAVSLKPT) (Johnson et al., 1996)

was conjugated to a cell-permeating carrier peptide derived from the

HIV-TAT sequence (C-YGRKKRRQRRR) (Vives et al., 1997) via an N-

terminal cysteine bridge (Mimotopes), which enables intracellular re-

lease of the 3V1-2 peptide and avoids problems with TAT-induced

subcellular localization (Begley et al., 2004). Ten-week old db/db

mice were injected intraperitoneally daily for 5 days with saline,

a scrambled control peptide (10 mg/kg), or the 3V1-2 heterodimer

(3 or 10 mg/kg). Intraperitoneal glucose tolerance tests were carried

out on day 5 after overnight fasting of the mice and final injection.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

one table, and five figures and can be found with this article online at

http://www.cellmetabolism.org/cgi/content/full/6/4/320/DC1/.
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