A Combinatorial Theorem in Plane Geometry

V. Chvátal
Centre de Recherches Mathématiques, Université de Montréal, Montreal 101, Quebec, Canada

Communicated by W. T. Tutte
Received March 15, 1974

Let S be a subset of the Euclidean plane. We shall say that a subset A of S dominates S if for each $x \in S$ there is an $y \in A$ such that the entire segment $x y$ lies within S. In a conversation, Professor Victor Klee asked for the smallest number $f(n)$ such that every set bounded by a simple closed n-gon is dominated by a set of $f(n)$ points. In a picturesque language, $f(n)$ can be interpreted as the minimum number of guards required to supervise any art gallery with n walls. Figure 1 shows that $f(12) \geqslant 4$; evidently, its pattern generalizes to yield $f(n) \geqslant[n / 3]$. We shall prove the reversed inequality in the setting of graph theory.

Figure 1
For this purpose, we define an n-triangulation to be a planar graph G with n vertices such that one of its faces is bounded by an n-gon and each of the remaining faces is bounded by a triangle. An edge of G will be called inner if it does not bound the n-gon. A k-triangulation will be called a fan if one of its vertices meets all of its $k-3$ inner edges.

Theorem. Every n-triangulation can be partitioned into m fans where $m \leqslant[n / 3]$.

Proof. By induction on n. The cases $n=3,4,5$ are trivial as each n-triangulation with $n \leqslant 5$ is a fan.

Now, let G be an n-triangulation with vertices $1,2, \ldots, n$ in their cyclic order. Let k be the smallest integer such that $k \geqslant 4$ and G has an edge $(j, j+k)$. First of all, let us notc that $k \leqslant 6$. Indeed, let t be maximal with $1 \leqslant t \leqslant k-1$ and such that j is adjacent to $j+t$. To complete the triangle with sides $(j, j+t)$ and $(j, j+k), G$ must include the edge $(j+t, j+k)$. By the minimality of k, we must have $t \leqslant 3, k-t \leqslant 3$ and the desired inequality follows.

The edge $(j, j+k)$ cuts G into a $(k+1)$-triangulation G_{1} and an ($n-k+1$)-triangulation G_{2}. It is easy to verify that we have one of the following four cases (or perhaps a mirror image of (2) or (4)).
(1) G_{1} is a fan.
(2) $k=5$ and the inner edges of G_{1} are $(j, j+2),(j, j+3)$, $(j+3, j+5)$.
(3) $k=6$ and the inner edges of G_{1} are $(j, j+2),(j, j+3)$, $(j+3, j+6),(j+4, j+6)$.
(4) $k=6$ and the inner edges of G_{1} are $(j, j+3),(j+1, j+3)$, $(j+3, j+6),(j+4, j+6)$.

In Case 1, by the induction hypothesis, G_{2} can be partitioned into m fans with $m \leqslant[(n-k+1) / 3]$. Augmenting this partition by the fan G_{1}, we obtain a partition of G into $m+1$ fans where $m+1 \leqslant[n / 3]$.

In Case 2, consider the ($n-3$)-triangulation G_{0} obtained from G_{2} by adjoining the triangle $(j, j+3, j+5)$. In a partition of G_{0} into m-fans, let F be the fan containing $(j, j+3, j+5)$. If F is centered at j, we can enlarge it by the triangles $(j, j+2, j+3)$ and $(j, j+1, j+2)$; adding then a new fan $(j+3, j+4, j+5)$ we obtain a partition of G into $m+1$ fans. If F is centered at $j+5$, we can enlarge it by $(j+5, j+3$, $j+4)$ and add a new fan $(j+2, j+1, j),(j+2, j, j+3)$. (If F is centered at $j+3$ then it consists of a single triangle and is centered at j and $j+5$ as well.)
In Case 3, consider G_{0} obtained from G_{2} by adjoining $(j, j+3, j+6)$. In a partition of G_{0} into m fans, let F be the fan containing $(j, j+3, j+6)$. If F is centered at j, enlarge it by $(j, j+2, j+3),(j, j+1, j+2)$ and add a new fan $(j+6, j+3, j+4),(j+6, j+4, j+5)$. If F is centered at $j+6$, enlarge it by $(j+6, j+3, j+4),(j+6, j+4, j+5)$ and add a new fan $(j, j+2, j+3),(j, j+1, j+2)$.
In Case 4 , consider G_{0} obtained from G_{2} by adjoining ($j, j+3, j+6$) and $(j+3, j+6, j+4)$. In a partition of G_{0} into m fans, let F be the fan containing $(j+3, j+6, j+4)$. If F is centered at $j+3$ and contains
$(j+3, j+6, j)$, enlarge it by $(j+3, j, j+1),(j+3, j+1, j+2)$ and add the fan $(j+4, j+5, j+6)$. If F is centered at $j+6$ or $j+4$, enlarge it by $(j+6, j+4, j+5)$ and add the fan $(j+3, j, j+1)$, $(j+3, j+1, j+2)$.

The proof is finished.
Obviously, the inequality $f(n) \leqslant[n / 3]$ is a corollary to our theorem. Indeed, one can triangulate S and partition it into m fans with $m \leqslant[n / 3]$. Each fan is dominated by a single point (which can be chosen from the interior of S). Note also that the bound $[n / 3]$ in our theorem cannot be improved (otherwise we would have $f(n)<[n / 3]$ for some n which has been shown to be false.) The definition of $f(n)$ can be generalized in various ways (to more than two dimensions, to plane regions with a given number of holes etc.). I don't know the values of these generalized functions.

