

A152.E1428 JACC March 9, 2010 Volume 55, issue 10A

🚱 VALVULAR HEART DISEASE

MEASUREMENT OF CARDIAC FUNCTION USING PRESSURE-VOLUME CONDUCTANCE CATHETER TECHNIQUE IN A NEW RAT MODEL OF CHRONIC MITRAL REGURGITATION

ACC Poster Contributions Georgia World Congress Center, Hall B5 Tuesday, March 16, 2010, 9:30 a.m.-10:30 a.m.

Session Title: Early Detection of Valvular Disease Abstract Category: Valvular Disease Presentation Number: 1279-381

Authors: <u>Kyong-Hee Kim</u>, Yong-Jin Kim, Hyung-Kwan Kim, Dae-Won Sohn, Byung-Hee Oh, Young-Bae Park, Seoul national university hospital, Seoul, South Korea

Objectives: The aims of this study were to develop a new animal model of chronic mitral regurgitation and to measure cardiac function using pressure-volume conductance catheter technique in a new animal model of chronic mitral regurgitation (MR) in rats.

Method: MR was created by following method. Left thoracotomy was performed in 36 Sprague-Dawley (SD) rats. A fine needle (0.45mm diameter) was introduced through LV apex under the guidance of transesophageal echocardiography and made a hole on mitral leaflet. MR was considered significant if a regurgitant jet area occupied more than 45% of the left atrium. Serial echocardiographic exams and swimming test for evaluating exercise capacity were performed at 2-week intervals. Hemodynamic analysis was done at 14 weeks after MR formation.

Results: Echocardiographic parameters and exercise capacity were significantly different between MR group (n;18) and control group (n;18). Left ventricular dilatation and exercise intolerance were developed in MR group (LV end-systolic dimension at 14 weeks, 4.3± 0.2 vs 5.5± 0.4 mm for control vs. MR, P < 0.01; LV end-diastolic dimension, 7.6±0.1 vs 8.6±0.2; swimming duration, 465 vs 427 seconds, p < 0.001). In hemodynamic analysis, LV end systolic volume and the EDPVR slope were greater in MR group than in control group.

Conclusion: We successfully set up a rat model of significant MR and evaluate cardiac function using pressure-volume conductance catheter.

Hemodynamic parameters measured by the Pressure-Volume conductance catheter system+

3	Control.	MR.	P value.	
HR, beats/min.	333±42.	346±71.	0.93.	1
ESV, µl.,	105.0±38.2a.	218.0±64.3 _b .,	< 0.01	
ESV/Bwt. µl/g	0.19±0.08a.	0.38±0.09 _b .,	< 0.01	
EDV, µl.,	327.8±77.0 _a .,	436.0±22.6 _b .,	< 0.01	
EDV/Bwt, µl/g.	0.57±0.18a.	0.77±0.04a, b-1	< 0.01.	
EF, %.,	69.5±4.0 _a .	61.7±3.5 _b .,	< 0.01	
SV, µl,	232.3±38.1.	298.0±107.4.	0.47.,	
SV/Bwt, µl/g.,	0.40±0.09.	0.52±0.15	0.21.,	
LV ESP, mmHg.	92.3±6.5.	96.9±6.3	< 0.01.	
LV EDP, mmHg.	33.5±2.0.	31.6±3.3.	0.53.,	
Cardiac output, ml/min.	78.6±6.3.	96.5±1.4.,	0.37.	
+dP/dt.mmHg/s.,	5124.0±1466.9.	4847.3±1304.7.	0.69.	
-dP/dt, mmHg/s.,	-3781.3±722.0.	-3942.9±631.9.	0.07.,	
τ(Weiss), ms.,	18.8±8.5.	15.9±3.8.	0.65.,	
ESPVR, mmHg/dl.	36.1±13.3.	33.1±19.9.	0.76.,	
EDPVR, mmHg/dl	0.4±0.4 _a .,	1.4±0.5 _b .,	< 0.01	