
  Procedia Computer Science  32  ( 2014 )  647 – 654 

Available online at www.sciencedirect.com

1877-0509 © 2014 Published by Elsevier B.V. Open access under CC BY-NC-ND license. 
Selection and Peer-review under responsibility of the Program Chairs. 
doi: 10.1016/j.procs.2014.05.472 

ScienceDirect

4th International Conference on Sustainable Energy Information Technology (SEIT-2014) 

Determining Electric Vehicle Charging Point Locations Considering 
Drivers’ Daily Activities 

Jairo Gonzáleza, Roberto Alvaroa, Carlos Gamalloa, Manuel Fuentesa, Jesús Fraile-
Ardanuya*, Luk Knapenb, Davy Janssensb*

aETSI Telecomunicación-UPM. Avda. Complutense 30, 28040 Madrid, Spain 
bTransportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek, Belgium  

Abstract 

In this paper the daily temporal and spatial behavior of electric vehicles (EVs) is modelled using an activity-based (ActBM) micro-
simulation model for Flanders region (Belgium). Assuming that all EVs are completely charged at the beginning of the day, this 
mobility model is used to determine the percentage of Flemish vehicles that cannot cover their programmed daily trips and need to 
be recharged during the day.  
Assuming a variable electricity price, an optimization algorithm determines when and where EVs can be recharged at minimum 
cost for their owners. This optimization takes into account the individual mobility constraint for each vehicle, as they can only be 
charged when the car is stopped and the owner is performing an activity.  
From this information, the aggregated electric demand for Flanders is obtained, identifying the most overloaded areas at the critical
hours.  
Finally it is also analyzed what activities EV owners are underway during their recharging period. From this analysis, different 
actions for public charging point deployment in different areas and for different activities are proposed. 
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1. Introduction 

By 2030, it is forecasted that the global energy demand will increase by 50% with a corresponding increase in CO2 
and greenhouse gas (GHG) emissions, because most of this energy demand will be met using fossil fuels1.  

In order to reduce their external energy dependence and also for environmental reasons, governments around the 
world are promoting different actions to reduce their fossil fuels consumptions2-6. 

EVs are more efficient than equivalent conventional internal combustion engines (ICE) vehicles7 and generate 
lower GHG emissions, although this reduction varies from one country to the other depending on their particular 
electricity generation mix8. An additional benefit of EVs is the improvement of the air quality and noise in the cities. 
But EVs have also three important barriers: their total cost (mainly due to the battery cost), the time needed to be 
recharged and the most significant impediment: their limited range. 

Public policies have been mainly focused at two different features of the EVs: firstly, the increment of the demand 
of these types of vehicles through the establishment of fiscal incentives9-12, free parking in the city center13, avoiding 
congestion charge14, etc. and, secondly, providing public charging infrastructure which is critical for the growth of the 
EV market and to avoid range anxiety15.  

Charging points in home are inexpensive and public authorities can support their installation providing a line of 
credit to owners of EVs16. By contrast, quick charging station requires an important investment of several hundred 
euros17. Therefore, it is important to assist public entities to allocate public charging infrastructure efficiently.  

There are different approaches in the literature to determine the charging point locations for electric vehicles: Dong 
et al.17 develop an activity-based system for electric vehicle charging infrastructure deployment, but considering only 
three different type of activities: at home, at work and other situation. Charger points are installed in the most popular 
destinations and authors use a genetic algorithm to determine the more convenience type of charger to be installed 
under limited budget constraint, minimizing the total number of interrupted trips. The paper considers neither the 
variable electricity price nor the optimal time instant to recharge the EVs. Frade et al.18 develop a model to locate a 
certain number of charging stations maximizing the demand covered for a given distance in Lisbon (Portugal). Ge et 
al.19 present a method for locating and sizing the charging station based on the minimization of the users’ loss on the 
way to the charging point, using genetic algorithms, but no consider variable electricity price. This reference does not 
use any information to estimate the real mobility behaviour. Wang et al.20 present a multi-objective planning for 
charging stations taking into account the actual location of the gas stations, road map, the location of the distribution 
transformers in the electric grid and the location of public facilities such as hospitals. In this case, no description of 
the optimization function or algorithm is shown. 

In order to minimize the impact of EVs charging on electric grid, these vehicles will be charged at low power during 
the night off-peak periods, filling up the load curve and reducing the load peaks. Therefore, in the first stage of EV 
deployment, most of the vehicles will be charged at home during the night and the public charging network will be 
used occasionally21. 

In this paper, several aspects related to electric mobility are analyzed: firstly, the total percentage of ICE vehicles 
that can be replaced by EVs without modifying the daily mobility behavior is determined. 

Assuming that only a small percentage of the EVs will be recharged during the day to complete their daily schedule, 
an optimization algorithm to charge these vehicles with minimum cost is developed. This charging process will 
increase the electric demand in different TAZs. An evaluation of the most overloaded TAZs and the type of activities 
that the owners are performing during this charge is presented, allowing proposing different public actions to promote 
EVs. 

 In Section II, a brief description of the activity-based model and the main assumptions related to the vehicle 
consumption, battery capacity and variable electricity price are shown. Section III describes the optimization algorithm 
run by each driver to determine the best time period to recharge the vehicle at minimum cost. Results are presented in 
Section IV and the main conclusions and discussions are described in the final section. 
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2. Activity-based model and assumptions 

2.1. Activity-based model 

An ActBM is microsimulation model that predicts the daily scheduled activities for each member of a synthetic 
population. In this work, FEATHERS model22 is used to generate schedules for a given day-of-week for Flanders 
region (Belgium). This model is based on a synthetic population containing socio-economic information extracted 
from census data, a set of traffic analysis zones (TAZ), the land-use information of each TAZ, the impedance matrices 
of travel time and distance and finally a set of decision trees resulting from a data mining process on travel surveys23. 
The sequence of decision trees is used to sample consecutive agenda construction and travel related decisions taken 
by each individual. 

The model determines, for each activity, the following information: activity type, start time, duration, location, 
duration for the trip to reach the activity location and the transportation mode used.  

It is assumed that all EVs are charged during the off-peak periods and their batteries are completely full at the 
beginning of the simulation. Each individual of the model starts its agenda at three o’clock in the night with a fully 
charged battery and finishes at three o’clock the next morning. 

2.2. Main assumptions 

The EV considered in this analysis is a Nissan Leaf24. This car is a 5 door hatchback pure EV which uses an 80 kW 
synchronous motor, powered by a 24 kWh lithium ion battery. The battery capacity of this vehicle is representative 
of the current EV models25 (BMW i3: 22 kWh, Citroen C Zero: 16 kWh, Ford Focus BEV: 23 kWh, Renault Zoe: 
14.6 kWh, Tesla S: 60-80 kWh). Its range is 160 km under US LA4 city driving schedule, corresponding to 0.15 
kWh/km24. In this work a more conservative value of 0.179 kWh/km has been used in the simulations. 

There are two types of AC and one type of DC charging stations: Level 1 charger, using a standard 240 V voltage, 
16 A, 3.3 kW, is found in an ordinary household outlet. The second type, Level 2 AC 7 kW-22 kW chargers are (one 
or three-phase) semifast chargers and are suitable for commercial buildings. Finally, Level 3 DC 50 kW fast chargers 
can charge a car battery about 80% in just 15-30 minutes26. Depending on the available public budget for charging 
infrastructure, different types of chargers may be installed. Dong et al.18 have determined that with limited budget, it 
is preferred to install more low power chargers than fewer quick chargers in a particular region. Noting that only a 
small fraction of EVs will be recharged during the daily activities and observing that the average type of charging 
points currently installed in Flanders region27 is Level 1, a 3.3 kW charger points will be selected. 

The electricity price has been taken from the webpage of the Belgian Electricity Market regulator, BELPEX28, for 
an ordinary spring day. This price is variable and changes hourly. 

3. Charging optimization algorithm 

 

Fig 1. Charging scheme. 

Considering the scheduled activities of each agent and taking into account the average consumption defined above, 
some vehicles are not able to accomplish all daily trips without intermediate recharging. For this set of vehicles it will 
be necessary to determinate when and where they must be optimally recharged to fulfil their agenda. Vehicle owners 
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will optimize their charging schedule according to the hourly electricity price and considering their mobility 
constraints given by the FEATHERS model. 

Figure 1 shows the energy flows in the charging model, based on Alvaro et al.22. When the car is driving, the energy 
stored in its battery is discharged. Vehicles should charge according to an optimal schedule that has to consider the 
agent’s activity agenda and a time-dependent electricity price. BCT(t) is vector whose components are equal to 1 when 
the vehicle is stopped and 0 when is driving. Table 1 describes the different variables and parameters (with their 
nominal values) considered in the system. No value has been specified for the variables of the optimization. 

The optimization problem for each vehicle is defined in equations 1-6: 

t· tcod min plysupPEX   (1) 

Subject to the following restrictions: 

maxmin SOCtSOCSOC   (2) 

CRC(t)0 i   (3) 

toti1tSOCtSOC   (4) 

effγtfiti   (5) 

tfitcod(t) BCT   (6) 

0i(t)fi(t),cod(t),,tSOC    

     Table 1. Optimization model variables and parameters. 

Description Symbol Value Unit 

Energy hourly price PEXsupply(t) [PEXt]  €/kWh 

Battery capacity C 24 kWh 

Energy extracted from the grid cod  kWh 

Charge input to the vehicle fi  kWh 

Charge energy to the battery i  kWh 

Discharged energy (driving)  o [ot] kWh 

Minimum charge rate CR 0.1375 - 

Charge efficiency rate γeff 0.95 - 

Minimum allowed SOC SOCmin 5 % 

Maximum allowed SOC SOCmax 100 % 

Initial SOC SOC(0) 100 % 

Conn./Discon. Vector BCT(t) {0,1} -   

 
The objective function (1) minimizes the charging cost. Constraint (2) sets the limits for the battery state of charge 

(SOC) in each time slot and constraint (3) represents the battery charging limit. Equation (4) describes the SOC time 
evolution due to charging and discharging processes. Efficiency is considered for battery charging through equation 
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(5). The vehicle’s availability to be charged is given by equation (6). Finally, variables are defined as positive to 
guarantee that energy input is always positive. 

GAMS® and Cplex Solver optimizer have been used for solving the individual problem for each agent. Due to the 
large number of existing equations, an interface was programmed in Matlab® in order to write the problem equations 
and read and analyze the results. 

4. Results 

The vehicle mobility data extracted by the FEATHERS model is firstly used to check which percentage of drivers 
could use an EV without changing their current daily mobility behavior. That is, which vehicles, recharging at every 
moment they are plugged in, could fulfil the requested activities, supposing that chargers are always available at each 
moment and at every location at the rate power of the electric vehicle.  

There are 1,141,735 vehicles driving around Flanders region daily. Assuming an average consumption of 0,179 
kWh/km, this number is divided in three different sets: set A is composed by vehicles that can cover the daily schedule 
without intermediate charging. In this case, vehicles will be charged at home during the night. 81.18% of the vehicles 
belong to this set (926,983 vehicles).  

Set B represents those vehicles that can finish their daily schedules, performing an intermediate recharging. This 
charging will be done, taking advantage of the time period that the car is stopped because its owner is performing a 
particular activity (at home, at work, etc.). Therefore, the owner does not change his/her mobility behavior. There are 
123,580 EVs in this set (10.8%).  

Finally, set C represents those vehicles which are not able to complete their daily schedule without modifying their 
mobility behavior because they will require stopping during a trip to be (fast) recharged. They represent 8% of the 
total number of vehicles (91,272 vehicles).  

Figure 2 shows a histogram with the total amount of additional energy requested by the vehicles that perform 
intermediate recharges to fulfil their daily schedules. It is shown that most of the vehicles require a small battery 
capacity increment to finish their daily schedules without intermediate charging. For example, with an increase of 1 
kWh of battery capacity (an increase of less than 4% of current capacity), 11% of these vehicles (from set B) would 
not need this intermediate recharge (13,593.8 vehicles) and they could be assigned to A set. Moreover, if this increase 
grows to 5 kWh (an increase of 20%), the number of vehicles that do not need intermediate recharges would increase 
to 50% of set B.  (61,543 vehicles). 

The following step is to solve the optimization problem for each vehicle requiring intermediate charging. Figure 3 
shows the total aggregated energy consumption demanded by the EVs during their optimal intermediate charging for 
all TAZs, the time normalized dependent electricity price and the total normalized number of EVs that are moving per 
minute during the day under study. 

 

Fig 2. Additional energy required by vehicle. 
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Fig 3. Energy consumption price and schedule dependence. 

It can be noticed that at the beginning of the day most drivers have not started their activities, so they cannot profit 
from early low electricity prices, because the batteries are completely full. Vehicles start to be driven at 4:30-5:00 and 
the number of charges starts to increase as soon as vehicles arrive at their morning destinations. The number of charges 
grows until 8:00, when electricity price largely increases. Energy charged remains at low levels until 12:00, where the 
price reaches a local minimum. At 15:00 the electricity price is at the lowest point; therefore, most of the vehicles 
recharge at this time. At the next hour the price is also relatively low, but due to increase in the number of trips the 
energy charged remains at levels close to those at 12:00. Since price is high and the number of remaining trips is low, 
the energy charged in the following hours is at a reduced level. However, at 21:00, due to a new local minimum in 
electricity price, the energy charged increases again. 

Another aspect analysed in this work is the number of charges performed by EVs and the total energy demanded 
in each TAZ necessary to cover the EVs charging consumption. In figure 4, the total energy demanded and the number 
of charges by zone due to the charging strategy explained in Section III are presented. It is shown that the energy 
demanded is not spread homogenously along Flanders region and there are some zones with higher electric demand 
than others. That is, there are zones which are more adequate for installing public charging infrastructures because, at 
them, the density of parked vehicles, with need to charge at moments when electricity price is lower, is higher. 

 

Fig 4. Number of charges by zone and Energy demanded by zone. 
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Fig 5a. Number of charges when the driver does a particular activity, on the whole Flanders region. Fig 5b. Number of charges when the driver 
makes a particular activity, in Zone 1674 and one day. 

It has also been analyzed which activities are being made by the drivers while the vehicles are charged. Figure 5a 
shows a bar diagram with the number of total charges made while drivers are performing a particular activity, for the 
whole Flanders region. As it is shown, most of the charges are taking place when the vehicle users are at home or at 
working.  

However, a more detailed analysis has been done studying the relationship between activity and charging for each 
TAZ, showing additional results. This analysis that depending on the studied zone, most charges could be done while 
the vehicle users are doing another activity not related with working or being at home. One example of that is depicted 
in Figure 5b, in which the number of charges taking place when EV owners are shopping and others are significant. 
 

5. Conclusions and discussions 

Considering the daily activities in Flanders region, 81% of drivers would only require night charging to handle 
their schedule using an EV. If intermediate slow charging infrastructure is available, this number increases up to 92%.  

The additional average energy level demanding for each vehicle to complete their daily schedule is low (around 1-
5 kWh), therefore it is possible to increase the total number of vehicles that can complete their daily trips without 
intermediate recharging promoting to EV car manufacturers to increase the nominal battery capacity in 5%-20%. 
According to Pike Research report29, Li-ion batteries prices will drop by more than one third by 2017, helping to 
increase the nominal battery capacity without increasing the total vehicle costs. 

The lowest electricity price after most vehicles start to move is reached between 15 and 16 hours, and a significant 
increase of electric demand is observed in the simulations during this period. 

Charging points cannot be homogeneously distributed across Flanders. There are some TAZs that are more 
overloaded than others and they will need more charging points. 

Analyzing the activities done during the charging periods, it is shown that most of the charges are performed when 
the driver is at home. In this case, no additional infrastructure will be required because owners already have a charging 
point installed at home. The next most important activity is work. Therefore, it is important to promote the charging 
points at the workplace through public funding. It has been observed that in some particular TAZs the activities during 
the charging process are slightly different. That result requires that infrastructure policies consider the mobility 
particularities of each area. 

 

Acknowledgements 

The research leading to these results has received funding from the European Union Seventh Framework 
Programme (FP7/2007-2013) under grant agreement n°270833. 



654   Jairo González et al.  /  Procedia Computer Science   32  ( 2014 )  647 – 654 

References 

1. MIT Energy Initiative Symposium, Electrification of the Transportation System, April 8, 2010 
2. European Parliament and of the Council, Directive 2009/29/EC, Renewable Energy Sources, 23 April 2009. 
http://ec.europa.eu/clima/policies/package/index_en.htm  
3.Eurostat. European Comission “Transport energy consumption and emissions”,  
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Transport_energy_consumption_and_emissions 
4. EU transport in Figures. Statistical Pocketbook 2012, http://ec.europa.eu/transport/facts-fundings/statistics/doc/2012/pocketbook2012.pdf 
5. International Transport Forum. Reducing transport GHG emissions. Oportunities and Costs. Prelimnary Findings. 
 http://www.internationaltransportforum.org/Pub/pdf/09GHGsum.pdf 
6. Department of Energy, USA, One Million Electric Vehicles by 2015,  
http://www1.eere.energy.gov/vehiclesandfuels/pdfs/1_million_electric_vehicles_rpt.pdf 
7. Helmes E, Marx P, Electric cars: technical characteristics and environmental impacts, Environmental Sciences Europe, 2012, 14:4 
8. Babee S, Nagpure AS, DeCarolis JF, How much do electric drive vehicles matter to future U.S. emissions? Environ. Sci. Technol 2014 
9. Perdiguero J, Jiménez JL, Policy options for the promotion of electric vehicles: a review, Research Institute of Applied Economics, Working 

paper, 2012/08 pp. 44 
10. US Promoting Electric Vehicles Act of 2011, https://www.govtrack.us/congress/bills/112/s948 
11. UK Plug-in Car Grant https://www.gov.uk/government/publications/plug-in-car-grant 
12. Belgian government Press Release, http://minfin.fgov.be/portail2/fr/downloads/composition/ssp-environment-taxation-09-11-20.pdf 
13. City of Madrid (Spain), http://www.madrid.es/portales/munimadrid/es/Inicio/Ayuntamiento/Movilidad-y-Transportes/Aparcamiento/Puntos-

de-recarga-electrica-para-vehiculos.-En-via-
publica?vgnextfmt=default&vgnextoid=61887c11302a7310VgnVCM1000000b205a0aRCRD&vgnextchannel=7c5d9ad016e07010VgnVCM
100000dc0ca8c0RCRD&idioma=es&idiomaPrevio=es&rmColeccion=3f68185f722a7310VgnVCM1000000b205a0aRCRD 

14. London Transport, http://www.tfl.gov.uk/roadusers/congestioncharging/6733.aspx 
15. Morrow, K., Karner, D., Francfort, J., 2008. Plug-in Hybrid Electric Vehicle Charging Infrastructure Review.Final Report to US Department 

of Energy VehicleTechnologies Program – Advanced Vehicle Testing Activity. 
16. City of Palencia (Spain), http://www.aytopalencia.es/sites/default/files/pdf/guia-vehiculos-2013.pdf 
17. Dong J, Liu C, Lin Z, Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday 

travel data, Transportation Research Part C: Emerging Technologies, 2014 38:44-55 
18. Frade, I., Anabela, R., Goncalves, G., Antunes, A.P., Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, 

Portugal, Transportation Research Record 2011, 2252: 91–98. 
19. Ge S, Feng L, Liu H, The planning of electric vehicle charging station based on Grid partition method, Electrical and Control Engineering 

(ICECE), 2011 International Conference on , 2011: 2726-2730 
20. Wang H, Huang Q, Zhang C, Xia A, A novel approach for the layout of electric vehicle charging station, Apperceiving Computing and 

Intelligence Analysis (ICACIA), International Conference on , 2010, 64-70 
21. Kley, F., Lerch, Ch., and Dallinger, D. New business models for electric cars – A holistic approach, Energy Policy, 2011, 39: 3392-3403 
22. Álvaro R, González J, Fraile-Ardanuy, J, Knapen L, Jenssen D, Nationwide impact and vehicle to grid application of electric vehicles mobility 

using an activity based model, International Conference on Renewable Energy Research and Applications (ICRERA) 2013 
23. De Ridder F, D'Hulst R, Knapen L, Janssens D: Applying an Activity based Model to Explore the Potential of Electrical Vehicles in the Smart 

Grid. ANT/SEIT 2013: 847-853 
24. http://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/leaf.html 
25. ASBE. Electric vehicles available in Belgium. http://www.asbe.be/en/availableevs 
26. Schneider Electric. EVlink. Electric vehicle charging solutions. 
http://download.schneider-electric.com/files?p_File_Id=189240795&p_File_Name=COM-POWER-VE-CA2-EN-(web).pdf 
27. ASBE. Charging location in Belgium. http://www.asbe.be/en/locations.  
28.  Belgian Electricity Market regulator, BELPEX. http://www.belpex.be/ 
29.  Navigant Research, http://www.navigantresearch.com/newsroom/prices-for-lithium-ion-batteries-will-fall-by-more-than-one-third-by-2017-

helping-to-drive-ev-adoption-2 


