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Abstract 

Sequences of polynomials that occur as denominators in the two point Pad6 table for two series expansions are 
considered in the special case when the series coefficients are solutions of a strong symmetric Stieltjes moment problem. 
The continued fractions whose convergents generate these polynomials as denominators are presented, together with 
determinant representations for the polynomials and the continued fraction coefficients. The log-normal distribution is 
used as an example. 
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1. Introduction 

In this paper we study Pad6 approximants and continued fractions associated with the two series 

/20 Z-1 "{- ]21Z -2 "~- f12 Z-3 -~ "'" At- [2nZ - ( n + l )  -~- " '"  (1.1) 

and 

- -  1-/-1 - -  /2-2Z - -  /A-3 Z2 . . . . .  ].l_nZ n- 1 . . . .  (1.2) 

in the particular case when 

p_ ,  = p,; n = 1 ,2 , . . .  (1.3) 

In Section 2 we consider the denominators  B.,m(Z) of the two point Pad~ approximants which 
correspond to these series. They are generated by a version of the Quotient-Difference algorithm 
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developed by one of us [7]. It is demonstrated that because of the "symmetry" property (1.3) the 
two-dimensional array of these denominators is symmetric about a horizontal line between the row 
m = 0 and the row m = - 1 .  

In Section 3 the case when the coefficients in (1.1) and (1.2) are related to solutions of a strong 
Stieltjes moment problem [5] 

b t k = f ? t k d ~ k ( t ) ;  k = 0 ,  + I ,  + 2  

with ~k(t) a bounded nondecreasing function of t with infinitely many points of increase is 
investigated. The property (1.3) of the moments implies that 

d~k(t) = -d~(1/ t ) ,  0 ~< t ~< ~ (1.4) 

so long as the moment problem is determinate. This subclass of the strong Stieltjes moment 
problem arose in a study by one of us [1] of the Discrete Modified K-dV equation. We will 
construct two sequences of orthogonal polynomials 

{Q . ( t ) ; n=0 ,1 ,2 , . . . }  and {q,(t); n = 0,1, 2, ...} 

with respect to the weight function ~O(t). The first sequence has been constructed by one of us [8] 
when considering the strong Hamburger moment problem. The two sequences are interlinked and 
are shown in Section 4 to arise from a continued fraction of the form 

I~o e ~ t e2 t 
S l  ( t )  - . . . .  

t - #1/P2 + 1 + u 3 q- 1 + u5 + 

We will demonstrate that the "even part" of Sx (z) is identical to the "even part" of a specified 
Perron-Carath~odary continued fraction (or PC-fraction) 

~1 1 0~3t 1 ~5t 

S2(t) ~- 1 + f12 t -1- f13 + f14 t @ f15 + "'" 

with (X2n+l = 1 -  fl2nfl2n+l ~ 0, n = 1,2, 3,. . .  which were introduced by Jones et al. [4]. In 
general the "odd parts" of Sx(t) and S2(t) are  not identical, but their common "even part" is 
a T-fraction of the form 

Flz  F2z F3z 
S 3 ( t ) = I + G l Z + I + G 2 z + I + F 3 z +  "" '  z = l / t .  (1.5) 

Thus we have in $1 (t), an interesting even extension of this T-fraction which has another even 
extension which is the PC-fraction $2 (t). 

Finally in Section 5 we will consider the particular example of the log-normal distribution 

ql/2 
d~k(t) = 2 x v / ~  e -clnt/2~)~ dr, 

where x is a positive constant. This important distribution has been considered by Jones and Thron 
and co-workers [2, 3] and they have constructed a corresponding T-fraction which is identical to 
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(1.5) for this distribution. They have shown that it has an "even extension" which is a PC-fraction 
and in Section 4 we will demonstrate that it has another "even extension" which is also a PC- 
fraction. 

Note: The authors use of the word "Symmetric" in describing the moment  problem considered 
here is different from and more appropriate than that already used by other authors, when looking 
at moment  problems in which the odd order moments  are zero. 

2. Denominators in the two-point Pad6 table for series with symmetric coefficients 

From the two series (1.1), (1.2) one may construct the n-d array [6] 

d l  3 /12 3 

di -2 /12 2 

di -1 n f  1 

ao n ° 

a~ n~ 
a 3  . . .  

d2 2 n3 2 

d21 n31 
ao nO 

a z  z . . .  

d3 1 n,~ 1 ... 

do nO ao . . .  

d l  . . .  

from the rhombus rules 

k = dk+l  /lk+1 k 
n~ j - I  q- j - 1 - - d j - 1 ,  

/1k d k -  1 
d~= i ~-1 

ok - 1 

for j = 2, 3, . . .  and k = 0, + 1, + 2, ___ 3, . . .  with starting values 

(2.1) 

(2.2) 

n~=O;  d k =  P-tk+l). 
P - k  

The continued fraction 

- ~ - I  /1% /1°z /1°z 

l + d ° z  + l + d ° z  + l + d ° z  + l + d ° z  + 

k = 0 ,  _ 1 ,  + 2 , . . .  (2.3) 

is an M-fraction for the two series. That is the nth convergent is a ratio of polynomials of degrees 
(n - 1) and n respectively and agrees with n terms of each of the two series when expanded 
accordingly. Similarly the continued fraction 

- ~ _ , ~ + ,  /1~z /1~z /1~,z 
l + d~z + l + dkzz + l + d~z + l +-~4z + "'" 
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corresponds to the two series 

]A-k / U - k +  1 /[A-k+ 2 /[2-k + 3 / ' / - k  + 4 

- - Z  ~ Z 2 ~ Z 3 "[- Z 4 "~- Z 5 -'[- 

and 

- -  ]A_tk+ 1 ) - -  ]A_(k+2)Z - -  ]A_(k+3)Z  2 - -  ] . /_ (k+4)Z  3 . . . .  

f o r k = O ,  +1 ,  _+2,... 
By multiplying the above continued fraction by Z k and adding the first k terms of the series 

- - / . t _  1 - - / A - 2 Z  - - ] A - 3  Z2 - -  I t -4  z3 . . . .  

if k > O, but the first [k[ terms of the series 

/A._O0 + ~A1 P2  /123 # 4  

z + 

if k is negative, we obtain the whole of the two point Pad6 table for these two series I-6]. However, 
the denominators of these continued fractions are unaltered by these additions and multiplications• 
Hence the denominators of the convergents of these continued fractions as k takes the values 
0, + 1, + 2, . . .  are simply the denominators of the rational functions that appear in the two point 
Pad6 table, except for those in the first column. These latter ones however are either monomials or 
constants• 

Denote the rth denominator of the continued fraction 

- - ] 2 _ ( k +  1 ) rlk2Z l'l~Z n~z 

1 +d~z +1  +dgz + l +d~z + l +d~z + 

by Br, k(Z). Then nr, k(Z) is a polynomial of degree r in z and we can form the table 

B1,- 1 (z) 

B1,0 (z) 

B1,1 (z) 

B2,- l(z) B3,- l(Z) B4,- 1 (g) 

B2,0 (z) B3, 0 (z) B4, 0 (z) 

n2, 1 (z) n3,1 (z) n4, 1 (z) 

° ° .  

. . °  

(2.4) 

(2.5) 

We now obtain the symmetry property of this table stated in Section 1 by starting from the 
following result: 

Theorem 2.1. Let the coefficients of the series (1.1), (1.2) satisfy (1.3). 
Then 

1 
dk--d?tk+l J, k = 0 ,  _+1, + 2 ,  + 3 , . . .  (2.6) 
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1 
d k - (2.7) 

dT(k+ l)' 

k At - nr(k+ 1) 
n r dT(k+ 1) d73~+ 1) (2.8) 

f o r r = 2 , 3 , 4 , . . ,  andk=O,  +_1, +2, +_3,... 

The relations (2.6) follow immediately from (2.3), whilst (2.7) and (2.8) may be proved by 
mathemat ica l  induct ion on r using the rhombus  rules (2.1) and (2.2). 

If z is replaced by 1/z in the cont inued fraction (2.4) we obtain,  after a sequence of similarity 
transformations,  the cont inued fraction 

- #-(k+ 1,z nkzz nkz nkz 

~+d~ +z+d~+z+d~+z+d~+ 
and writing this in the same form as (2.4) we obtain 

i~_(~+l~z/d ~, k k k k k 
- n3 z /d2  d3 n2 a/dl d2 

l + z / d  k + l + z / d  k + l + z / d  k + 

But from the symmetry  relations (2.6) to (2.8), this cont inued fraction can be written as 

-- #_(k+l)dl(k+l)z n2(k+l)7, n~(k+l)z 

1 +dT(k+l)z + 1 +d~(k+l)z + 1 +da(k+l)z + 

which of course has as its coefficients the elements that  form another  row of the n - d array. Again 
the denomina tors  are not  effected by the first partial numera to r  so that  the following result is 
obtained: 

Theorem 2.2. The table of denominator polynomials in (2.5) is symmetric about an horizontal line 
between Bl,o(Z) and B1,-l(z) in that any polynomial B.,.,(z) can be obtained from its image 
polynomial B., _(,.+ 1)(0 by reversing the coefficients and normalising so that B.,,.(O) = 1. 

Of part icular  interest are the elements on the two rows 

Ba,-x(z) B2,-l(z) Ba,-x(z) B4.-l(z) --- 

B l,o(Z) B~,o(Z) B3.o(Z) B4,o(Z) . - -  

A cont inued fraction which has as denomina tors  of its convergents the "sawtooth"  sequence 

B1, o (z), B2,- ~ (z), B3, o(Z), B4,- ~ (z), Bs, o (z), . . .  

has been used in the solut ion of the strong Hamburge r  m o m e n t  problem and in extending some 
classical distr ibutions [8]. In an earlier work [7] it was shown how to construct  the particular 
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extension of this fraction that has, as its denominators, the "battlement" sequence 

B1,0 (z), B1,_ 1 (z), B2,_ 1 (z), B2, 0 (z), B3,0 (z), B3,_ 1 (Z), B4,_ 1 (z), . . .  

and is related to continued fraction of the form 

- -  ~ l - 1  S l Z  t2 s2 t3 s3z t4 
1 + 1 + 1 + z + 1 + 1 + 1 + 

The sequence is formed by taking the denominators of the second and higher convergents of this 
fraction. 

3. The strong Stieltjes m o m e n t  problem 

Here we will construct two interlinked sets of orthogonal polynomials corresponding to the 
strong Stieltjes moment problem (1.4), namely 

#k=f?tkdd/ ( t ) ,  k = 0 ,  _+1, _+2,... 

with the symmetry property (1.3). 
For any strong Stieltjes distribution 

H, t ' ) > 0 ;  n = 0 , 1  . . . .  , m = 0 ,  __+1, +2  . . . . .  (3.1) 

where the Hankel determinants are defined in the usual way by 

~ + 1  ~m+l "'" ~m+n-1 

H~m}= . Pro+2 "'" Pm+n 

] ~ m + n - !  "'" ~m+2n-2 

(3.2) 

The case m = 0 is the standard result for series of Stieltjes when ~k(t) has infinitely many points of 
increase. The case m ~ 0 is obtained by taking the weight function ~ ( t ) =  It o umd~b(u) in this 
standard result. 

It is straightforward to 0rove that when (1.3) holds, 

H t - m )  = H ( r n _  2n+ 2 ) (3.3) 
n n 

and, from Jacobi's identity, that 

(/_/(-n+2)'~2 iHt-n+3))2 /-/(-n+3) r-/(-n+ 1) = O; n = 2, 3,. . .  (3.4) 

This identity will be used later in this work. 
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A set of orthogonal polynomials {Q,(z): n = 0, 1 .... } may be defined I-8] by the requirement that 

I ;  Q"(t)t-2t"/2~+Sd~(t)={~' "' O<~s<~n-l.s=n>~l. (3.5, 

The polynomials have the monic form 

1 
Q 2 . ( z )  = 

H 2n 

# -  2n  "'" [AO 

] A - 1  

1 Z " "  

] 2 2 n -  1 

Z 2n 

and 

1 
( z )  - 

aa 2 n +  1 

].l _ 2n . . .  ]21 

# 0  ~A2n + 1 

1 z . . .  z 2 n +  1 

when the normalisation constants are defined by 

/ 4  ( - 2 n ) / f _ ~ (  - 2 n )  ; 
= " 2 . + , , " 2 n  = ' 

The existence of these polynomials is guaranteed by the positivity property (3.1) of the Hankel 
determinants. 

In the symmetric case we can define another set of orthogonal polynomials by making use of the 
symmetry property (1.4) of the corresponding weight function• With this property and making the 
substitution t ~ 1/t in (3.5) it follows that 

f ;  Q.(llt) t+2ln/2]-Sd~(t) = O, <~ s <<. n -- 0 1. 

It is then straightforward to prove the following results. 

Theorem 3.1. The set of polynomials 

H~-2 in/2]) 

q,(t)=(--)" (_2tn/21+a) Q.(1/t)t~; n=O, 1,... 
H, 

are monic and satisfy the orthogonality conditions 

f ;  q2.(t)t-Sdd/(t) O, 0 <~ 2n 1, (3.6) S ~< l 
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foq2 .+ l ( t ) t -S - ld~( t )  = O, 0 <~ <~ 2n. (3.7) S 

These may be compared with (3.5) which can be written in the form 

foQ2n(t ) t -~- ldO(t)  O, 0 <<.2n- 1, <. S (3.8) 

f oQ2n  (t) t-~d~b(t)=O, O<<.s<<.2n. (3.9) + 1 

The two sequences of orthogonal polynomials are interlinked by mixed recurrence relations 
given by the following result: 

Theorem 3.2. 

O2n(t) = q2~(t) + e2nq2n- i (0 ,  

Q2n+ l(t) = tq2n(t) -- [-a2,+ 1/e2n + e2n+ I]  Q2n(t) 

f o r n =  1, 2, . . .  

q2,+l(t) = a2n+l(t) + e2n+lO2n(t), 

q2n+2(t)= t Q 2 n + l ( t ) - F  ~2n+2 q-e2n+2]q2n+l(t)  
[_ e2n + i 

e 2 n + l  gl(-2n) n ( -2n+ l ) , 
* ' 2 n + 1  2n+l  

H ( - 2 n +  1) H ( - 2 n +  2) 
2n 2n -  1 

for n = 0, 1, 2 , . . . ,  where 
H ( -  2n+ 3) H ( -  2n) 

2n- 1 2n+ 1 
e2n *'t4(- 2n+ D H(en 

( l - f  ( - 2n+1 )  }2 f . . f ( -2n+l)  
~ ' 2 n  1~2n-2  

~- "~ 2n -  1 

Proof. To prove (3.10) we consider the polynomial of degree 2n - 1 given by 

P2n- 1(0 - Q2n(t) - q2n(t). 

Then from (3.6) to (3.9) 

fo °~P2n (t) t - s -1  (t) 0, 0 2n 2, d~k ~< 1 S ~< 

so that PEn- 1 (t) is a constant multiple of q2n- 1 (t). We write 

Q2n (t) - qzn (t) = e2n q2n- 1 (t) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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and determine e2, by setting t = 0. Then 
H ( - 2 . +  1) [_t ( - 2n) - ( - 2 n + 2 )  

2n ~" 2n H 2 n  - 1 

H(2-n 2") - -  . t .I4(-2n+ 1 ) 2 n  - -  - ' l -1(-2"+3)  e 2 " ' 2 . -  1 (3.16) 

Using (3.4) with n ~ 2n + 1 and --2. ~ ( -  2. + 2) = --2.rt(- 2.) from (3.3) in (3.16) it may be demonstrated that 
ez.  is given by (3.14), ~2.+2 by (3.15) and so (3.10) follows. The relation (3.12) with e2.+1 given by 
(3.14) and ~2. + t by (3.15) may be proved in a similar way by considering Q2, + ~ (t) - q2. + 1 (t) which 
is a polynomial  of degree 2n. 

Now (3.10), (3.12) may  be used to rewrite (3.11) in the form 

But 
14 ( - 2n) 

= ~ 2 n + l  F / 4 ( -  2n) ~ / ( -  2n+ 2 ) ]  
a 2 n + l  b 2 . + l  g l ( - 2 n + l )  H'-2n+l)L"2nln - -  "*2n 

e2 ,  - -  2, + 1 

and the right-hand side is zero from (3.5) so that (3.13) follows. Finally (3.13) is proved in a similar 

manner.  []  

4. Continued fractions related to the symmetric strong Stieltjes moment problem 

The mixed recurrence relations given by Theorem (3.2) may be used to generate the sequence of 
polynomials {B,(t) : n = 0, 1,. . .  ) with 

B4,(t)  = Q2r(t), B4r+l(t) = Q2~+x(t), B4,+z(t) = q2,+l(t), B4,+3(t) = q2,+z(t) 

for r = 0, 1,2, 3 . . . .  
These recurrence relations may be written in the form 

B.( t )  = u . B . - l ( t )  + v . B . - z ( t ) :  n = 1 , 2 , . . .  (4.1) 

with 

U4r  = 1, v4, = e2,; r = 1, 2, ... 
n ( -  2r) 7_/(- 2r + 1) 

2r " ' 2 r + 1  
V4r+ 1 = t; 

r = 0 ,  1,. . .  

U4"+1  H ( r  2 r + 1 )  " ' 2 r +  1T- / ( - -  2r) ' ( 4 . 2 )  

U 4 r + 2  = 1, U4r+2 = e 2 r + l ;  (4.3) 
H ( - 2 r +  1) H ( -  2r) 

2 r + l  ~ ' 2 r + 2  
u4,+3 = ut-2 ,~ r4 t -2 , - l~ '  v4r+3 = t; r = 0, 1, 2, (4.4) 

~ta2r+ 1 " ' 2 r + 2  

and we have defined B_ l(t) ~ 0, ul = t - #1/~o and vl = #o. The expressions for u4,+1, u4,+ 3 in 
terms of Hankel  determinants may  be obtained by using (3.3), (3.4) to simplify the expressions for 

r = l ,  2 . . . .  
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a2r+ 1/e2r + e2r+ 1 and ~2r+2/e2r+ 1 + e2r+2 in terms of these determinants. A common form for 
both odd and even ek may be derived from (3.14) using (3.3) and takes the form 

H i - k + 3 )  F_/( - k) 
k - 1  " ~ k + l  

k = 1, 2, . . .  (4.5) ek - H~_k+, H~_~, 

A corresponding sequence of polyomials {A,(t); n = 0, 1, 2 . . . .  } exists with A_ 1 = 1, A o ( t )  - 0 

and 

A.(t) = f o  [B.(t) - B.(x)] d~k(x) ~f_--~ ; n = 1 , 2 , 3 , . . .  

and it is straightforward to demonstrate that they satisfy the same recurrence relations as the 
B,(t)'s, i.e. 

An(t)  = u n A n - l ( t )  + v n A n - z ( t ) ;  n = 1, 2 . . . .  (4.6) 

It may be shown that sequence of polynomials Qo(t), ql (t), Q2 (t), qa (t), Q 4 ( t ) , . . .  is the sequence 
of denominators that would appear in the standard (nonsymmetric) strong Stieltjes moment  
problem. 

A consequence of the recurrence relations (4.1), (4.6) is that {A,, B, } are the nth numerator  and 
denominator,  respectively, of the continued fraction 

n= 1 Ul "]- U2 "~ U3 "Jr" 

/t  0 e 1 t e2 t e3 
. . . .  - -  (4.7) 

t - # 1 / p o +  1 + U s +  1 + U s +  1 + 

The even part of this fraction is the continued fraction 

oo 

(4.8) 
. : 1  t,u* ) =- u * + u~ + u~ + " '  

where 

v* = v l u 2  = #o ,  u~ = vz + UlUz = t - -  # O / # l ,  

v* = - -VZn-ZVZn-IUZn-4Uzn = - - t e n - l ;  n = 2, 3 . . . .  

Un* = /)2n- lU2n "Jr- U2n-2(/)2n "~- U2n- lU2n) = t + en + U 2 n - l :  

Substituting these expressions in (4.8), 

~( ( V* ~ = F 1 F2 t F3t F 4 t  ... 

n = l k u * J  t + G l + t  + G z + t + G 3 + t + G 4 +  

F~2 F22 /732 F42 
1 +2G1 + l + 2 G 2 + l + A G a + l  + 2 G 4 +  

n = 2 ,3 , . . .  

(4.9) 

(4.10) 
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with 

2 = 1/t, Fx = #o, G1 ~- -#o / / . t l ,  

_ H ( - n + 4 )  H ( - n +  1) 
n - 2  n 

F,, = - e n - 1  = H ( - n + 2 ) / _ . / ( - n + l )  ' 
n -  1 **n-- 1 

(4.11) 

n = 2, 3 , . . . ,  (4.12) 

_ H t - , +  1) H ( - , )  H(-n+3)/4c-n) 
n - 1  - - n  n - 1  * * n + l  

Gn=u2n_ 1 +e ,  H(_n+Z) H(_n+l) + t_.+l)H~_, ) (4.13) 
n- 1 . H ,  

_ H ( - n +  1) H ( - n +  1) 
n -  1 - - n  

- n = 2 ,  3 ,  . . .  ( 4 . 1 4 )  
H(-n) H i - n + 2 )  , 

n n--1 

on using (3.3) with n = m = k and  Jacc, bi's identity. The  r igh t -hand  side of(4.9) and  (4.10) are called 
respectively M-frac t ions  and  T-fractions.  

The  T-fract ion in (4.10) then has our  con t inued  fract ion (4.7) as an "even extension".  We will 
show ano the r  "even extension" is a P e r r o n - C a r a t h ~ o d a r y  fraction (PC-fract ion) in t roduced  by 
Jones et al. [4]. These fractions are of the form 

K ~" = c~__ ! . . . . .  2 ~3 2 c~5 (4.15) 
.=1 1 -.~ f12 -+- f13 --[- f14 -{- f15 --[- 

with 

al =/~0,  ~ 2 , + l = ( 1 - - f l z . f l 2 , + ~ ) v  ~0; n = 0 , 1 , . . .  (4.16) 

We now have the following result: 

Theorem 4.1. The T-fraction (4.10) with { F,, G,} given by (4.11)-(4.14) is equivalent to the even part 
of the PC-fraction (4.21) when 2 -~ - 2  and 

H(-n) n 

fl2n=fl2n+l - - H ~ _ n + l ) ;  n =  1 , 2 , . . .  (4.17) 

Proof.  The  even par t  of  the fract ion (4.15) with {~,, ft.} given by (4.16), (4.17) is the fract ion 
K.% l (a./b,), where  

a l  = / / o f f 2 ,  b l  = ). + f12, a2  = - 2 ( 1  - fl2fl3)/fl,,, ( 4 . 1 8 )  

a.  = --£(1 - -  fl2n-2fl2n-1)fl2n-4fl2n, n = 3, 4 , . . . ,  (4.19) 

bn=fl2n+fl2n_2~,, n = 2, 3 , 4 , . . .  

ov , , This fract ion is equivalent  to the fract ion K,= 1 (a, /b,  ), where  

(4.20) 

a. , b . = b . .  
a* fl2nfl2n-2 fl2n' n = 1, 2, . . . ,  fig -- 1. (4.21) 



338 A.K. Common, J.H. McCabe/Journal of Computational and Applied Mathematics 67 (1996) 327-341 

Using the expressions (4.17) for the fl,'s in (4.18)-(4.21), 

a*=/~o,  b * = l + 2  H~°) _ 1 + 2 / ~ ° ,  

a* = - 2  [ f12n-4  ] H{-,+4) (-n+l) 
Lf12,-2 f lz,- lf12,- ,  = 2  , -z  H, 

H(-n+ H.(-"+ I) 
b * = l +  2; n = 2 ,3 , . . . ,  

H(- .+ 2) t-n) 
n- 1 H. 

H(-.+ 1) H ( - n + 2 ) '  
n-1 n-1 

(4.22) 

n = 2, 3, . . . ,  (4.23) 

(4.24) 

where the identity (3.4) has been used to simplify the expression for a*. Comparing the expressions 
(4.22)-(4.24) for the {a*, b*} with expressions (4.11)-(4.14) for the {F,, G,} we see that the even 
part of the PC-fraction (4.15) is equivalent to the T-fraction (4.10) when 2 ~ - 2 .  [] 

d @ ( t )  _ ql/2 
dt 2xx/~ e-(lnt/2r)2' 

5. The log-normal distribution 

An important example of a weight function where the moments {#k, k -- 0, 1, ... } have the 
symmetry property (1.3) is the log-normal distribution dff (t) where 

--21~ 2 q = e  

and K is a positive constant. Related orthogonal polynomials and corresponding continued 
fractions have been studied recently for this distribution by Cooper et al. [2] in terms of the 
moments 

= (__)k f ~  tk + 1 d~ (t), k = O, + 1, + 2,. . .  Ck 

= (--)k/~k+ 1. 

It is straightforward to show that 

[2k=-ql/2-k2/2; k = 0 ,  +1, +2 , . . .  (5.1) 

(n) so that they have the symmetry property (1.3). The Hankel determinants ~ k  of the Ck'S are related 
to those defined by (3.2) in terms of the #R'S in the following way: 

Him+l) k =(-- )mk~(km) , k = 0 , 1 , 2 ,  m = 0 ,  __+1, ___2,... 

These determinants are of Vandermonde type and using the expression for ~ " )  given in [2-1, 

k-1 
H(m) [q-m+k-2)2/2-(m+k-2)-1kq -k(kz-1) /6X ~I (1 qj )k - j .  

k = - ( 5 . 2 )  
j = l  
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Subst i tu t ing  these H a n k e l  de te rminants  in (4.2)-(4.5), 

U 2 n + l  = _ _ q - n - i ~ 2 ,  e n = q - n + l / 2 ( 1  - - q " ) ,  n =  1 , 2 , . . .  

Then  our  fract ion given in (4.7) has the form 

( V n ~  - 12 0 q - 1 / 2 ( 1 - - q )  t q - 3 / 2 ( 1  _ _ q 2 )  t 

.=1 \ u . / /  t -- # l / # o  + 1 -Jr- ( _ ) q - 3 / 2  q_ 1 + ( _ ) q - 3 / 2  _+_ 

and it is the even par t  of  the T-fract ion 

{v*)_ ql/22 (--)q-1/2(1--q)2 (--)q-3/2(1--q2)2 (5.3) 
.K \u--~. J 1 - -  2q  1/2 + 1 - -  2q  1/2 q- 1 - -  2q  1/2 + "'" 

This is exact ly the T-fract ion cons t ruc ted  in [2] f rom the Lauren t  series 

Lo~ = ~ Ck 2-k, Lo = - ~ C-k 2k, 
k = O  k = l  

where  2 ~ - 2 .  W e  see that  this fract ion has an even extension which takes the form of the 
PC-f rac t ion  given by  (4.15). In this case of  the log-normal  d is t r ibut ion  it has the form 

K % - 2 q l / 2  2 (1 - -  q - l )  ,~, (1 - -  q - 2 )  . . .  

.=I  1 + q - l ~ 2  _[_ q - 1 / 2  _1_ q -1  q_ q-1 + 

and general ly f rom (4.16), (4.17) and  (5.2), 

~2.+1 = (1 -- q-") ,  f12. = f12.+, = q-./z. 

We finally invest igate the n -  d a r ray  and cor respond ing  a r ray  of  Pad~ de nomina to r s  in 
this log-normal  case. To  do this we set 2 = 1/z in (5.3) and  t ransform it to the equivalent  
M-f rac t ion  

- - 1  q-3/2(1 -- q)z q - 5 / 2 ( 1  - -  q 2 ) z  q - 7 / 2 ( 1  - -  q 3 ) z  

S4(z) -~ 1 - q - 1 / 2 z  - -  1 - - q - 1 / 2 z  - 1 - q - 1 / 2 z  - 1 - q - 1 / 2 z  _ . . .  (5.4) 

which co r re sponds  to the series (1.1), (1.2) with ~A k given by  (5.1). The d e n o m i n a t o r  po lynomia l s  
satisfy the recurrence relat ions 

B.+ Lo(Z ) = (1 -- q-1/Zz)B,,,o(Z) -- q-"+x/2(1 -- q"- X)zB._ x,o(Z) 

for n = 1, 2, 3, ... with Bo, o(Z) = 1 and  B1,0 = 1 - q - 1 / 2 z .  

The n - d a r ray  for the two  series is 



340 A.K. Common, J.H. McCabe/Journal o f  Computational and Applied Mathematics 67 (1996) 327-341 

(k = - 3 )  _q512 __q3 t2 (1  __ q) __q5/2 __q112(1 __ q2 )  . . .  

(k = - 2 )  _ q 3 , 2  _ q l / 2 ( 1  _ q) __q3/2 _ q - 1 1 2 ( 1  _ q2)  . . .  

( k = - l )  _q112 _ q - ~ 1 2 ( l _ q )  _q1,2 _ q - a / 2 ( l _ q 2 )  ... 

(k = O) _ q - l ~ 2  _ q - 3 / 2 ( 1  _ q) _ q - 1 / 2  _ q - 5 / 2 ( 1  _ q2)  . . .  

(k = 1) _ q - 3 / 2  _ q - 5 / 2 ( 1  _ q) _ q - 3 / 2  _ q - 7 / 2 ( 1  _ q2)  . . .  

(k  = 2) _ q - 5 / 2  _q-7/2(1 _ q) _ q - 5 / 2  _ q - 9 / 2 ( 1  _ q2)  . . .  

(k -- 3) _ q - 7 1 2  _q-9/2(1 _ q) _ q - 7 / 2  _ q - l l / 2 ( 1  _ q2)  

It is easily established that 

k - ( j + k ) +  112 (1 __ = [ -n~+ 1 ns = _ q  qj -1)  _ nk-X]lfZ, 

= _ q - k - , , 2 =  _ r d ;  + , d ; -  

The sequence of polynomials {B j, o (z); j = 0, 1,...  } are the denominators  of the convergents of the 
continued fraction S4(z) given in (5.14) whilst the sequence {B j,_ ~ (z);j = 0, 1 . . . .  } are the denomin- 
ators of the convergents of the continued fraction 

- 1  q - l / 2 ( 1  - -  q ) z  q - 3 / 2 ( 1  - -  q 2 ) z  q - 5 / 2 ( 1  - -  q3)z  

Ss(z) - 1 - -  q l l E z  -- 1 --  q l tEz  --  1 --  q l l 2 z  --  1 --  q l l 2 z  --  "'" 

Since Ss(z) is obtained from S4(z) by replacing z by qz, it follows that 

B n , -  1 (z) = Bn, o (qz); /1 = 0, 1, 2 . . . .  

Similarly the denominators  of the continued fraction 

- - 1  q - 5 / 2 ( 1  - -  q ) z  q -  7/2(1 - -  q 2 ) z  q - 9 / 2 ( 1  - -  q 3 ) z  

S6(Z)  ---- 1 - -  q - a / E z  --  1 --  q - 3 / E z  - 1 - q - 3 / E z  --  1 - q - 3 / 2 z  --  "'" 

are given by Bn, 0 (q- 1 z); n = 0, 1, 2 . . . . .  
In general the denominators  of the continued fraction 

- 1  n~z n~z n~z 
S T ( z ) - 1  ÷ dk------~ + 1 + dk2 z + 1 + dkz + 1 + dkz + "'" 

are the polynomials Bn, o(q-kz) for k = 0, _+ 1, _+2, . . . .  They may also be written in terms of the 
entries in the ruth row of the denominators  table (2.15) as the sequence {Bn,,n(qm-kz); 
r = 0, 1, 2, . . .  }. It follows that any sequence of denominators  in this table may be written in 
terms of those along any row. In particular the sequence of denominators  of any continued 
fraction that corresponds to the power series (1.1), (1.2) may be expressed in terms of 
Bn, o (z); n = 0, 1, 2, . . .  



A.K. Common, J.H. McCabe/Journal of Computational and Applied Mathematics 67 (1996) 327-341 341 

References 

[1] A.K. Common, A solution of the initial value problem for half-infinite integrable lattice systems, Inverse Problems 
8 (1992) 393-408. 

[2] S.C. Cooper, W.B. Jones and W.J. Thron, Orthogonal Laurent-polynomials and continued fractions associated with 
log-normal distributions, J. Comput. Appl. Math. 32 (1990) 39-46. 

[3] W.B. Jones, A. Magnus and W.J. Thron, PC-fractions and orthogonal Laurent polynomials for log-normal 
distributions, J. Math. Anal. Appl. 170 (1992) 225-244. 

[4] W.B. Jones, O. Nj~stad and W.J. Thron, Continued fractions associated with trigonometric and other strong 
moment problems, Constructive Approx. 2 (1986) 197-211. 

I-5] W.B. Jones, W.J. Thron and H. Waadeland, A strong Stieltjes moment problem, Trans. Amer. Math. Soc. 261 (1980) 
503-528. 

1-6] J.H. McCabe, A formal extension of the Pad6 table to include two-point Pad6 quotients. J. Inst. Math. Appl. 15 
(1975) 363-372. 

1-7] J.H. McCabe, The quotient-difference algorithm and the Pad6 table: An alternative form and a general continued 
fraction, Math. Comput. 41 (1983) 183-197. 

[8] J.H. McCabe and A. Sri Ranga, On the extensions of some classical distributions, Proc. Edinburgh Math. Soc. 34 
(1991) 19-29. 


