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Abstract

Sequences of polynomials that occur as denominators in the two point Padé table for two series expansions are
considered in the special case when the series coefficients are solutions of a strong symmetric Stieltjes moment problem.
The continued fractions whose convergents generate these polynomials as denominators are presented, together with
determinant representations for the polynomials and the continued fraction coefficients. The log-normal distribution is
used as an example.
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1. Introduction

In this paper we study Padé approximants and continued fractions associated with the two series

oz ' iz A paz T3 4 e 2T (1.1)
and

—pr —po2z— o3zt — s — gzt — (1.2)
in the particular case when

Uen =l n=12, ... (L.3)

In Section 2 we consider the denominators B, (z) of the two point Padé approximants which
correspond to these series. They are generated by a version of the Quotient-Difference algorithm
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developed by one of us [7]. It is demonstrated that because of the “symmetry” property (1.3) the
two-dimensional array of these denominators is symmetric about a horizontal line between the row
m = 0 and the row m = —1.

In Section 3 the case when the coefficients in (1.1) and (1.2) are related to solutions of a strong
Stieltjes moment problem [5]

wo= [ Ctawer k=0, £1, £2...
0

with () a bounded nondecreasing function of ¢ with infinitely many points of increase is
investigated. The property (1.3) of the moments implies that

dy () = —dy(1fr), 0<t< 0 (1.4)

so long as the moment problem is determinate. This subclass of the strong Stieltjes moment
problem arose in a study by one of us [1] of the Discrete Modified K-dV equation. We will
construct two sequences of orthogonal polynomials

{Q.(t);n=0,1,2,...} and {q,(t);n=0,1,2,...}

with respect to the weight function i(t). The first sequence has been constructed by one of us [8]
when considering the strong Hamburger moment problem. The two sequences are interlinked and
are shown in Section 4 to arise from a continued fraction of the form

Ho €4 t () t

ssp=—>e 4 o
O T+ T v+ 1+ +

We will demonstrate that the “even part” of S, (z) is identical to the “even part” of a specified
Perron—Carathéodary continued fraction (or PC-fraction)

oy 1 (x:;t 1 (x_st
1 + Bt + B3 + Bat + Bs +

with 05,41 =1 — B2.B2n+1 #0, n=1,2,3,... which were introduced by Jones et al. [4]. In
general the “odd parts” of S;(t) and S,(¢) are not identical, but their common “even part” is
a T-fraction of the form

Sz(t) =

F,Z FzZ F3Z
1+Giz+1+Gz+ 14+ Fsz +

S3(t) = -,z =1/t (1.5)
Thus we have in S| (¢), an interesting even extension of this T-fraction which has another even
extension which is the PC-fraction S,(z).
Finally in Section 5 we will consider the particular example of the log-normal distribution
1/2

q _ 2
d H=—2—¢ (Int/2x) dt,
VO = T

where k is a positive constant. This important distribution has been considered by Jones and Thron
and co-workers [2, 3] and they have constructed a corresponding T-fraction which is identical to
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(1.5) for this distribution. They have shown that it has an “even extension” which is a PC-fraction
and in Section 4 we will demonstrate that it has another “even extension” which is also a PC-

fraction.

Note: The authors use of the word “Symmetric” in describing the moment problem considered
here is different from and more appropriate than that already used by other authors, when looking

at moment problems in which the odd order moments are zero.

2. Denominators in the two-point Padeé table for series with symmetric coefficients

From the two series (1.1), (1.2) one may construct the n—d array [6]

di3 n33

di? n3? d;?* n3?

dit ny' d;' n3! 43t nit

d nd a4 nY 42 nd 4
di nd 4 nd di

i ny dj

d?

from the rhombus rules
k_ gk+1 k+1 K
np=d;2y +n;70 —dj_,,
k k-1
g ="
J -
n]’.‘ 1
forj=2,3,...and k=0, + 1, +2, +3,... with starting values
H-x
The continued fraction
— Uy nyz nyz ngz
l4+diz+1+dz+1+d3z+1+dJz+

2.1)

2.2)

(2.3)

is an M-fraction for the two series. That is the nth convergent is a ratio of polynomials of degrees
(n — 1) and n respectively and agrees with n terms of each of the two series when expanded

accordingly. Similarly the continued fraction

M-+ nz n3z ngz
1+dz +1+diz+1+d5z4+1+diz+
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corresponds to the two series

_/1;k+/1—1<2+1 +ll—k3+2+/l—1;+3+ﬂ—k5+4+
z z z 4 z

and

2 3
—Hh-@+y) T H-x+2)Z — H-@x+3)27 — H-k+4Z2" —

fork=0, +1, +2,...
By multiplying the above continued fraction by z* and adding the first k terms of the series

— U — ooz —p 32— poazd —
if k > 0, but the first |k| terms of the series

Ho ﬂl ,u3

if k is negative, we obtain the whole of the two point Padé table for these two series [6]. However,
the denominators of these continued fractions are unaltered by these additions and multiplications.
Hence the denominators of the convergents of these continued fractions as k takes the values
0, + 1, + 2,... are simply the denominators of the rational functions that appear in the two point
Padé table, except for those in the first column. These latter ones however are either monomials or
constants.

Denote the rth denominator of the continued fraction

—H-@+1) nyz niz niz 2.4)
1+d¥z +1+dsz+1+dsz+1+diz+ '

by B, i(z). Then B, ,(z) is a polynomial of degree r in z and we can form the table

By,_1(2) B; _1(z2) B3 -1(z) B4 -1(2)
Bi,o(z) Bz o(z) Bso(z) Basol(2) (2.5)
By,1(2) B;,1(2) Bs,1(z) B, 1(2)

We now obtain the symmetry property of this table stated in Section 1 by starting from the
following result:

Theorem 2.1. Let the coefficients of the series (1.1), (1.2) satisfy (1.3).
Then

k 1

dﬁm, k=0, +1, +2, +3,... (2.6)
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and
d* = —1— (2.7
r = d:(k+ 1) .
~(k+1)
n* + A, (2.8)

FOTR+D) J-k+ 1)
d, d,_1

forr=2,3,4,... and k=0, +1, +2, +3,...

The relations (2.6) follow immediately from (2.3), whilst (2.7) and (2.8) may be proved by
mathematical induction on r using the rhombus rules (2.1) and (2.2).

If z is replaced by 1/z in the continued fraction (2.4) we obtain, after a sequence of similarity
transformations, the continued fraction

—H-k+1)2 ngZ ngz niz
z4+df +z+ditz+di+z+di+

and writing this in the same form as (2.4) we obtain

—,u_(kﬂ)z/d’{ n';_z/d’l‘d’z‘ n';‘,z/d’z‘d’;
L+z/df  +1+z/d + 1 +z/d +

But from the symmetry relations (2.6) to (2.8), this continued fraction can be written as

~ (et 1 —(k+1) —(k+1)
— g+ nd; “TVz ny Z n3 z

1+d7% Yz 4 1 +d;% Y2 4 14+d;% Y7 4

which of course has as its coefficients the elements that form another row of the n — d array. Again
the denominators are not effected by the first partial numerator so that the following result is
obtained:

Theorem 2.2. The table of denominator polynomials in (2.5) is symmetric about an horizontal line
between B, ¢(z) and B, _(z) in that any polynomial B, ,(z) can be obtained from its image
polynomial B, _ . 1y(2) by reversing the coefficients and normalising so that B, ,(0) = 1.

Of particular interest are the elements on the two rows
By —1(2) Bz, -1(z) Bjs,-1(z) Bs,-1(2)
Bio(z)  B2,0(z) Bso(z) Baiol2)

A continued fraction which has as denominators of its convergents the “sawtooth” sequence
By ,0(2), By,-1(2), B3,0(2), B4,-1(2), Bs,0(2), -..

has been used in the solution of the strong Hamburger moment problem and in extending some
classical distributions [8]. In an earlier work [7] it was shown how to construct the particular
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extension of this fraction that has, as its denominators, the “battlement” sequence
By ,0(2), B1,-1(2), B2,-1(2), B2,0(z), B3,0(2), Bj,-1(2), B4, - 1(2), ...
and is related to continued fraction of the form

THor 51z fosp By szl
1 +1 +1+z4+1+1+1+

The sequence is formed by taking the denominators of the second and higher convergents of this
fraction.

3. The strong Stieltjes moment problem

Here we will construct two interlinked sets of orthogonal polynomials corresponding to the
strong Stieltjes moment problem (1.4), namely

m:j thdy(e), k=0 +1, +2,...
0

with the symmetry property (1.3).
For any strong Stieltjes distribution
H” >0, n=0,1,..., m=0, +1, +2,..., (3.1

where the Hankel determinants are defined in the usual way by

Um Hm+1 Hm+n-1
H™ = i“m+1 Hm+2 =0 Hm+n . (32)
Hm+n-1 Hm+2n-2

The case m = 0 is the standard result for series of Stieltjes when y(t) has infinitely many points of
increase. The case m # 0 is obtained by taking the weight function ¢(t) = L’, u"dy(u) in this
standard result.

It is straightforward to prove that when (1.3) holds,

H’(l‘m) — H’('m—2n+2) (33)
and, from Jacobi’s identity, that
(H,(,:'i+2))2 —(H,(,:';+3))2 +H::;+3)H’(‘—n+l)=0; n=2’3,'“ (34)

This identity will be used later in this work.
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A set of orthogonal polynomials {Q,(z):n = 0, 1, ... } may be defined [8] by the requirement that

0, 0<s<n-—1,
Yu, S=n2=1.

jw 0u(0)1~ 221y (1) = {

0

(3.5)

The polynomials have the monic form

H-2pn Ho
0..(2) = INE :
2n{2
H(znzn) H—y Han—-1
1 Z--. Z2n
and
u—Zn #1
1 .
O2n+1(2) = il
H(Znil) Ho Hap+1
1 z. 22n+1

when the normalisation constants are defined by
(=20 /p(—2m), — p=2m g(=2n
=H,, .V /H, ™5 Yans1r = Hp, 5 /HpW iy -

The existence of these polynomials is guaranteed by the positivity property (3.1) of the Hankel
determinants.

In the symmetric case we can define another set of orthogonal polynomials by making use of the
symmetry property (1.4) of the corresponding weight function. With this property and making the
substitution t — 1/t in (3.5) it follows that

J 0, (/e 2W2=sdyy() =0, 0<s<n-—1
It is then straightforward to prove the following results.

Theorem 3.1. The set of polynomials

H(—Zln/zl)
4 (t) = (=) E(—Zln—/-m—l)Q,,(l/t)t" n=0,1,.

are monic and satisfy the orthogonality conditions

j dan (Ot dY(6) =0, 0<s<2n—1, (36)
0
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J‘ Qons 1Ot dY () =0, 0<s<2n.
0

These may be compared with (3.5) which can be written in the form

f 0ot~ 1dy(®) =0, 0<s<2m—1,
0

f Oons (1= dy(H) =0, 0<s<2n.
0

(3.7)

(3.8)

(3.9

The two sequences of orthogonal polynomials are interlinked by mixed recurrence relations

given by the following result:

Theorem 3.2.

Q2n(1) = g24(t) + €20920-1(t)

Qon+1(8) = 1924(t) — [92n+1/€20 + €204 11 Q2a(0)
forn=12,...

G2n+1(t) = Q2ns1() + €211 0Q24(1),

2n+1

®2n
q2n+2(t) = tQ2n+1(t)_l: i +e2n+2]q2n+l(t)

forn=0,1,2,..., where

(—2n+3) ¢ y(—2n) (—2n) (—2n-1)
e H2n—1 H2n+1 e H2n H2n+2
2n = _ “om 2n+1 = = = s
(=2n+1) (—2n) (—2n) (—2n+1)
H2n H2n H2n+1H2n+1
(—2n+1) (—2n+1) (—2n+1) (—2n+2)
. {HZn }ZHZn—-Z a H2n H2n—1
2n = = > 2n+1 =
(=2n+2) (=2n) (—2n+1)12
H2n—1 HZn {H2n

Proof. To prove (3.10) we consider the polynomial of degree 2n — 1 given by

PZn—l(t) = QZn(t) - an(t)'
Then from (3.6) to (3.9)

f Py 1t 5 dy()=0, 0<s<2n—2,
(o]

so that P,,_(t) is a constant multiple of q,,- ;(t). We write

O2n(t) — q24(t) = €2,q24— 1 (1)

(3.10)
(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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and determine e,, by setting ¢t = 0. Then

(—2n+1) (—2n) (—2n+2)
H2n H2n _ H2n—-1 e (3 16)
(—2m 1q(=2n+1)  pg(-2n+3)°2n° :
H2n H2n H2n—1

Using (3.4) with n — 2n + 1and H§, >"*? = H}, *" from (3.3)in (3.16) it may be demonstrated that
e, is given by (3.14), a5,+, by (3.15) and so (3.10) follows. The relation (3.12) with e,,+; given by
(3.14) and a5, + ( by (3.15) may be proved in a similar way by considering Q2,+1(f) — d2n+1 (t) which
is a polynomial of degree 2n.

Now (3.10), (3.12) may be used to rewrite (3.11) in the form

2n 2n

e2nv1Qanlt) + Qans1 () = [r + (“Z—— - bz..ﬂ)] @2nlt) =2 Qa0 ).
But

(—2n)
A2n+1 b _ H;,:5
T U2n+1 —
(- 2n+1) {(-2n+1)
€24 H2n+1 H2n

and the right-hand side is zero from (3.5) so that (3.13) follows. Finally (3.13) is proved in a similar
manner. []

(—2n) (—2n+2)
[H2n " _H2n ! ]

4. Continued fractions related to the symmetric strong Stieltjes moment problem

The mixed recurrence relations given by Theorem (3.2) may be used to generate the sequence of
polynomials {B,(t): n =0, 1, ...} with

Bu() =02 (t), Bays1(t) = Qos1(t), Bars2(t) =d2r41(t), Bap+3(t) = qa2r+2(0)

forr=0,1,2,3,...
These recurrence relations may be written in the form

B,(t) = u,B,—1(t) + v,B,—2(t): n=1,2,... 4.1)
with
gy = 1, v4, = e9,; r=1,2,...
H G
HL, TG
Ugpro =1, Usrt2 =€2415 r=0,1,.. (4.3)
Hy, BV Hy, )

T (= 2r) pp(=2r—1)°
H2r+1H2r+2

U4r+1=t; r=1,2,... (4.2)

Ugr+1 =

Var+3 = t; r = 0, 1, 2, Ve (4-4)

Ugr+3 =

and we have defined B_;(t) =0, u; =t — u;/uo and v; = pio. The expressions for ug, +1, tar+3 n
terms of Hankel determinants may be obtained by using (3.3), (3.4) to simplify the expressions for
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Qzps1/€2: + €341 and ®y,42/€5,+1 + €2,+, in terms of these determinants. A common form for
both odd and even ¢, may be derived from (3.14) using (3.3) and takes the form
HA™ B
ek:WH—ls—k_); k=1,2,... (4'5)
A corresponding sequence of polyomials {4,(t); n =0,1,2,...} exists with 4A_; =1, 4o(t) =0
and

_ (7B = B.x)]dy(x)
A,(0) J = C n=1,23,..

and it is straightforward to demonstrate that they satisfy the same recurrence relations as the
B,(t)’s, ie.

Ay () = uyAp—1(t) + v,4,-2(); n=1,2,... (4.6)

It may be shown that sequence of polynomials Q(¢), g, (t), Q2 (t), g3(t), Q4(2), ... is the sequence
of denominators that would appear in the standard (nonsymmetric) strong Stieltjes moment
problem.

A consequence of the recurrence relations (4.1), (4.6) is that {A,, B,} are the nth numerator and
denominator, respectively, of the continued fraction

;2 Ul Uz 173
n=1 u,, u1 + Uy + Us +

Ko e U e U ey

= - - = = .. 4.7
t—uifo+ 1 +uz+ 1 +us+ 1+ “.7)

The even part of this fraction is the continued fraction

i‘% v\ _of v of
ol i I T (4.8)
n=1 uig + uy +u3 +

where

¥ __ — sk _ —_
vf =viuy = po, Ui =0, +ugu, =1t — po/p,
* __ — . —
U = —Uzp—2Van—1Uzn—alUzn = —t€y_1; n=23,..

*k __ — . —
Uy = VUgp—1Ugy + Uzn—2(Vap + Upp—qUzp) =+ € +Uzp— g1 N=23,...

Substituting these expressions in (4.8),

) _ F F,t Fyt F,t 49)
u¥) 1+ G+t +G,+t+Gs+t+ G, + )

K
__Fi F,A F32 Fah
14+ MG, +14+4G, + 14+ 1G5+ 1 + AG, +

(4.10)
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i=1/t, Fy = po, Gy = —po/ 1, (4.11)

I TRALD (R

R TH

SHCPVHC HCUVHLY

- H;:TZ) H’(l~n+1) Hr(l_n+1)Hr(l_")

I U/ n=23 (4.14)
= HCP geneD , n=273 .. .

on using (3.3) with n = m = k and Jacobi’s identity. The right-hand side of (4.9) and (4.10) are called
respectively M-fractions and T-fractions.

The T-fraction in (4.10) then has our continued fraction (4.7) as an “even extension”. We will
show another “even extension” is a Perron—Carathéodary fraction (PC-fraction) introduced by
Jones et al. [4]. These fractions are of the form

K (B)ou A s A
K<E>~1+ﬁ2+ﬁs+ﬁ4+ﬂs+ (4.15)

n=23,..., (4.12)

(4.13)

Gn =Uzp-1 T &y

n=1
with
Gy = o, U%anv1 = (1 —P2aPans1)#0;, n=0,1,... (4.16)

We now have the following result:

Theorem 4.1. The T-fraction (4.10) with {F,, G,} given by (4.11)—(4.14) is equivalent to the even part
of the PC-fraction (4.21) when A - — A and

H™"

Bon = Ban+1 = n=12,.. (4.17)

Proof. The even part of the fraction (4.15) with {a,, B,} given by (4.16), (4.17) is the fraction
K:O=l (an/bn)9 where

a; = poP2, by =1+ By, a,=—A(1 — B,83)/Ba, (4.18)
a, = —A(1 = Bon—2Bon-1)Ban-aB2n, n=3,4,..., 4.19)
bn=.82n+ﬁ2n—2j'a n=29 3a4"" (420)

This fraction is equivalent to the fraction K;2, (a)/b¥), where

%« _ Gn
ﬁ2nﬁ2n—2,

a,

n=12,..., fPo=1. (4.21)
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Using the expressions (4.17) for the g,’s in (4.18)—(4.21),

0)

H H
af=p,, b¥=1 +1H(_1)=1+/1“—°, (4.22)
1 1
(—n+4) (—nt+1)
Ban-a H, ; "H,
a:lk = _l[m_ﬂZn—lﬁZn—4 = AH(_"+1)H(_"+2), n‘ = 2939"'5 (4'23)
n- n—1 n—1
H(—n+1)H(—n+1)
hr=14—L1 " A n=23,.., (4.24)

(=n+2) ry(—n
Hn—l Hn

where the identity (3.4) has been used to simplify the expression for a,¥. Comparing the expressions
(4.22)—(4.24) for the {a)}, by} with expressions (4.11)—(4.14) for the {F,, G,} we see that the even
part of the PC-fraction (4.15) is equivalent to the T-fraction (4.10) when A > —A. [J

5. The log-normal distribution

An important example of a weight function where the moments {4,k =0, 1,...} have the
symmetry property (1.3} is the log-normal distribution diy () where

dy (1) _ q'? e~ (nt/210)? q= e 2v
dt ZKﬁ

and x is a positive constant. Related orthogonal polynomials and corresponding continued
fractions have been studied recently for this distribution by Cooper et al. [2] in terms of the
moments

ck=<—>kj ETdY(@, k=0, £1, £2,..

0
= (_)k,uk+1-
It is straightforward to show that
=g 2 k=0, +1, +2,... (5.1

so that they have the symmetry property (1.3). The Hankel determinants # ,i”) of the ¢;’s are related
to those defined by (3.2) in terms of the y;’s in the following way:

HI D = (=y* ™ k=0,1,2, m=0, +1, +2,...

These determinants are of Vandermonde type and using the expression for %,ﬁ"” given in [2],

k-1
H]?'I) — [q—m+k—2) /2—(m+k—2)]kq—k(k —1)/6 X H (1 _ qj)k_J- (52)

j=1
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Substituting these Hankel determinants in (4.2)—(4.5),
Upns1=—q "V e, =q "V (1 —-¢q"), n=12,...

Then our fraction given in (4.7) has the form

r (5 _ Mo ) t q (1 - ¢°) t
Un) = i/po + 1 +(=)g 7% + 1 +(=)g " +

n=1

and it is the even part of the T-fraction

K (gf‘_)z ¢'?2 (DA -gi (=) (1 -4g%)i
1

u;k ___lql/Z + 1 —/lql/z + 1 — lq”z + (5-3)

n=1
This is exactly the T-fraction constructed in [2] from the Laurent series
o o0
Loo= Z Cki—k, L0= ot z C_k].k,
k=1

k=0

where 2 > —A. We see that this fraction has an even extension which takes the form of the
PC-fraction given by (4.15). In this case of the log-normal distribution it has the form

i‘%(an):iq”z Ao (=g 4 (=g

By

and generally from (4.16), (4.17) and (5.2),

1 +q¢ %+ ¢ g '+ gt 4+

n=1

—n/2

tam+1=0—=97"), PBaa=Bam+1=4

We finally investigate the n — d array and corresponding array of Padé denominators in
this log-normal case. To do this we set 1 =1/z in (5.3) and transform it to the equivalent
M-fraction

—1 g0 =gz ¢ 1 —=-¢)z q 7?1 =gz
S4(Z) = 1= q_l/ZZ - _q—]/zz _T1Z q_l/zz _T1 = q_l/zz o (54)

which corresponds to the series (1.1), (1.2) with y, given by (5.1). The denominator polynomials
satisfy the recurrence relations

Bui1,0(2) =1 —q ?2)B,o(2) —q ""1*(1 — q""1)zB,-1,0(2)

forn=1,2,3,... with Boo(z)=1and B, o =1 — g~ !?z
The n — d array for the two series is
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k==3) —¢’* —¢?(1-q —¢"* —¢"*(1~-¢)

k=-2 —¢ —¢'"1-q —¢* —q7'(1-¢q%
k=-1) —¢g'» —q"1-q —q¢'* —q**1-q%
(k=0 —q'? —q71-q) —q ' —q 1 -g?

_ =312 —5/241 _ -3/2 . -72¢1 2
(k=1) q q*(1—-q) —q q (1 —q%)
k=2) —q % —q7P(1—q) —q " —q77(1-q?)
_q—7/2 _q—11/2(1 __qZ)

k=3 —q7 —q7°2(1 -9

It is easily established that

n;cz _q-—(j+k)+1/2(1 _] 1) [k+1 k 1]1/2

k —k— k+1 7k—1
dj= —q k 1/2= _[dj dj ]1/2~
The sequence of polynomials {B; o(z); j =0, 1, ... } are the denominators of the convergents of the
continued fraction S,(z) given in (5.14) whilst the sequence {B; _(z);j =0, 1, ... } are the denomin-
ators of the convergents of the continued fraction

1 g (1 —q)z g1 —¢*z q (1 - g%z

Ss(z)El_ql/zz =gz — 1-q7z - 1-q7; o

Since S5(z) is obtained from S4(z) by replacing z by gz, it follows that
Bn,—l(z)=Bn,0(qz); n=09 15 29"'

Similarly the denominators of the continued fraction

—1 g Pl —qz q "P1—q*)z q (1 -¢):z

56(2)51__(1—3/22_ 1—q %7 - 1—q 32 1—gq 37

are given by B, o(q 'z);n=0,1,2,....
In general the denominators of the continued fraction
—1 nkz nkz nf{z
l+diz+1+dsz4+1+d5z4+1+d52+

S4(2) =

are the polynomials B, o(q *z) for k =0, +1, +2,... . They may also be written in terms of the
entries in the mth row of the denominators table (2.15) as the sequence {B, .(q" *z);
r=0,1,2,...}. It follows that any sequence of denominators in this table may be written in
terms of those along any row. In particular the sequence of denominators of any continued
fraction that corresponds to the power series (1.1), (1.2) may be expressed in terms of
B,o(z;n=0,1,2,...
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