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a b s t r a c t

We formalize paper fold (origami) by graph rewriting. Origami
construction is abstractly described by a rewriting system (O,#),
where O is the set of abstract origamis and # is a binary relation
on O, that models fold. An abstract origami is a structure (Π,v,
�), where Π is a set of faces constituting an origami, and v and
� are binary relations on Π , each representing adjacency and
superposition relations between the faces.
We then address representation and transformation of abstract

origamis and further reasoning about the construction for compu-
tational purposes. We present a labeled hypergraph of origami and
define fold as algebraic graph transformation. The algebraic graph-
theoretic formalism enables us to reason about origami in two sep-
arate domains of discourse, i.e. pure combinatorial domain where
symbolic computation plays themain role and geometrical domain
R × R. We detail the program language for the algebraic graph
rewriting and graph rewriting algorithms for the fold, and show
how fold is expressed by a set of graph rewrite rules.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The art of paper folding, known as origami,2 provides the methodology of constructing a
geometrical object out of a sheet of paper solely by means of folding by hands. Computational
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2 The word ori-gami, meaning ori (fold) and gami (paper), is used in two ways in this article as is customary in Japanese. The
former is the art of paper fold (used as an uncountable noun) and the other is a sheet of paper (used as a countable noun).
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origami studies the mathematical and computational aspects of origami, including visualization by a
computer (Demaine and Demaine, 2002). By the assistance of a computer, wewill be able to formalize
origami with rigor and capability that are beyond the methods performed by hands.
In this article, we give graph-theoretic formalization of origami. Our motivation of this study is to

givemore abstract view of fold used in origami. Although origami fold appears to be an easy operation
to humans, even a naïve anatomy of origami reveals that it is not the case from computational point of
view. There are two distinct operations in paper fold, i.e. division and reflection of origami faces. These
operations lend themselves to distinct modes of computations: algebraic and numeric computation
on geometrical objects, e.g., finding intersection of lines and checking the overlap of two faces, on one
hand, and purely combinatorial computation on discrete objects, e.g., computing transitive closure of
the adjacency relation on faces, on the other.
These computations tend to be mixed when origami is analyzed mathematically (Ida et al., 2007).

Indeed, the implementation of computational origami system Eos (Ida et al., 2006) relies very much
on algorithms which resort to mixtures of algebraic, numeric and symbolic computing. Sometimes,
algorithms are hard to describe mathematically because of this complication. There should be clearer
separation of computations of discrete and continuous objects in origami. When this has been done,
we not only clarify the algorithms developed for the implementation of Eos, but also are in a position
to extend the capability of Eos to allow for more complex origami constructions such as of 3D and
modular origami, and to reason about their geometrical and algebraic properties.
The rest of the article is organized as follows. In Section 2, we will formalize origami as an abstract

origami system, which can be regarded as an abstract rewrite system. In Section 3, we will elaborate
the abstract origami systemby giving to itmore algebraic and geometrical structures, and thenwewill
analyze the structures. Section 4 is a short passage from the abstract description of origami to more
algorithmic description of origami. In Sections 5 and 6, we will explain the bases for graph-theoretic
modeling of origami. In Section 7, we show fold as a set of graph rewrite rules. In Section 8, we will
summarize the results and point out the direction of further research.

2. Formalizing origami

2.1. Preliminaries

In this subsection, we summarize the basic mathematical notations that we will use throughout
this article. Given an arbitrary set A, a sequence of elements a1, . . . , an ∈ A is denoted by 〈a1, . . . , an〉.
If n = 1, the sequence is written as a1. In other words, 〈a〉 and a denote the same mathematical
object. If A is an alphabet, the sequence of elements a1, . . . , an(∈ A) is denoted by the juxtaposition
of the elements, i.e. a1 · · · an. The set of all the sequences of the elements in A is denoted by A∗. We
use * in the superscript position in the following ways, too. Namely, f ∗ for a function f is defined as:
f ∗(〈a1, . . . , an〉) = 〈f (a1), . . . , f (an)〉. R∗ for a binary relation R is the reflexive and transitive closure
of R. The transitive closure of R is denoted by R+. A sequence 〈a1, . . . , an〉 is called an R-sequence, if
a1 R a2 ∧ · · · ∧ an−1 R an. For an irreflexive R, an R-sequence 〈a1, . . . , an〉 is called acyclic if
∀i < j ¬(aj R ai). The cross product of sets A1, . . ., An is denoted by A1 × · · · × An. The element of
A1 × . . .× An, i.e. n-tuple, is denoted by (a1, . . . , an), where ai ∈ Ai for i = 1, . . . , n.

2.2. Origami at a glance

We begin an origami construction with a single sheet of paper, and repeat folding the paper until
it becomes a desired shape. We can observe that an origami can be modeled as a set of faces. During
the construction, some of the faces are divided by a fold line, reflected along the fold line and become
above or below the others. The faces form a stack of layers. The stack of layers of faces exhibits a
remarkable shape, which may be regarded as a piece of art such as illustrated in Fig. 1.
The left origami in Fig. 1 is the top view of the constructed object. We see the faces in two different

colors in the figure. This is because the initial origami has two sides, each colored differently. During
the construction, some faces become up and the others become down, resulting in the two colored
object. We can imagine that this origami models a cicada. The right is a 3D view of the same origami
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Fig. 1. Origami cicada: art piece (left) and stack of face layers (right).

after stretching it vertically andmaking superposing faces slightly far apart. From the shapes in Fig. 1,
we will be able to see that an origami can be formalized as a set of faces together with the relations
that express relative positions, horizontally and vertically, among the faces.

2.3. Abstract origami rewrite system

An origami can bemodeled at several abstraction levels. A most abstract view is to take an origami
as an algebra (A, R), where A is a set and R is a binary relation on A, wherewe identify a set of faces that
constitute an origami with A, and a geometrical relation on the faces with R. The origami construction
is then a transformation of the algebras viewed as an abstract rewrite system. We begin with this
abstract view of origami and gradually make our modeling concrete.
Our first attempt is as follows. We take a finite setΠ of faces as the object of our study, and intro-

duce two binary relations onΠ , expressing horizontal and vertical arrangements of faces rather than
a single binary relation Rmentioned above. Then, we have the following definition of an origami.
Definition 1 (Abstract Origami). An abstract origami is a structure (Π,v,�), where Π is the finite
set of (origami) faces, v is a symmetric binary relation on Π , called adjacency relation, and � is a
binary relation onΠ , called superposition relation.
An abstract origami is abbreviated to AO, hereafter.
We next present a view that an origami construction is a rewrite sequence of an abstract rewrite

system. This view bridges the set theoretic treatment of origami and graph rewriting of origami.
Definition 2 (Abstract Origami System). An abstract origami system is an abstract rewrite system
(O,#), where O is the set of AOs, and# is a rewrite relation on O, called abstract fold.
When O,O′ ∈ O are related by #, we write O # O′ and say that O is rewritten or abstractly folded
to O′.
An origami construction proceeds as follows. We start with an initial origami and perform folds

repeatedly until we obtain a desired shape of the origami. Usually, we begin an origami construction
with a square sheet of paper, but the sheet can be in any shape having convexity. This initial sheet
of paper is abstracted as a structure having a single distinguished face to be denoted by f0. Then, we
define the initial AO, denoted by I , as follows.
Definition 3 (Initial Abstract Origami). The initial AO I is a structure ({f0} ,∅,∅).
Suppose that we are at the beginning of step i of the construction, having an origami Oi−1 =

(Πi−1,vi−1,�i−1). We perform a fold and obtain the next origami Oi = (Πi,vi,�i). Thus, we have
the following:
Definition 4 (Abstract Origami Construction). An abstract origami construction is a finite sequence of
AOs satisfying

O0(= I) # O1 # · · · # On, where O0,O1, . . . ,On ∈ O.
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Fig. 2. Abstract folds from the initial AO with geometrical interpretation.

In this article, we decompose an abstract fold into two finer operations in order to make
our formalism general enough to model both mathematical origami and art origami. Namely, we
decompose a fold into the following operations: (a) making a crease along which the sheet is bended,
and then (b) actually bending the sheet. We call the operation (a) crease and operation (b) basic fold.
In mathematical origami, we are primarily interested in constructing points on the origami. Those

points form the vertices of the shape that we want to construct. In such cases, we only need creases
and points of intersections of the creases and the sides of the initial origami. In art origami, we are
interested in artistic shapes that are composed of layers of faces. In art origami, bending the sheets
are equally important. Bending outwards is commonly called mountain fold, and inwards valley fold.
In summary, we have the relation of the abstract fold as the composition of the relations crease (

 
→),

and basic fold (
a
→). The basic fold is a union ofmountain fold (

y
→) and valley fold (

x
→).

# =
a
→ ◦

 
→, where

a
→=

y
→ ∪

x
→

In the case of an unfold, no crease operation precedes a valley fold or a mountain fold. In this case,
the crease operation is vacuous, i.e.

 
→ is the identity relation. In some mathematical folds, creasing

is important and basic folds play no role. In such a case,
x
→ (or

y
→) is the identity relation.

Let us consider an example of the abstract origami construction. We are interested in the
construction that starts with O0 = I and simulates the origami construction by hands.
Example 1 (Construction from the Initial Abstract Origami). We are given the initial AO I .We defineO′1
and O1 as follows: O′1 = (Π

′

1,v
′

1,�
′

1), whereΠ
′

1 = {f1, f2},v
′

1= {(f1, f2)},�
′

1= ∅, O1 = (Π1,v1,�1),
whereΠ1 = Π ′1,v1=v

′

1,�1= {(f2, f1)}. Fig. 2 shows the rewrites of the initial AO.O1 is the abstraction
of the origami resulting from folding the initial origami once. O1 is obtained first by creasing I , thus
constructing O′1, and then by making a valley fold.
We also allow a fold along the sides of the faces. Then, the fold along one of the four sides of the

initial origami is simply turning over the initial origami. I and the abstraction of the upside-down ones
of the initial origami are the same. Therefore, we have abstract origami constructions such as:

I # O1(= I),

I # O1, (I
 
→ O′1 and O

′

1
x
→ O1).

Fig. 2 shows that some faces are colored differently from the others. This property is abstracted
away during the process of the abstraction that leads to the abstract rewriting system. The property
of ‘‘sides’’ appear when we give more geometrical structures in Section 3.
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Fig. 3. Adjacent faces created by crease.

Fig. 4. Adjacent faces created by fold along crease.

3. Geometrical and algebraic structures of origami

The notion of fold is central in origami and in abstract origami systems. The relation of# is given
a priori in defining the abstract rewrite system. There is no clue in the above formalism as to how an
AO is computationally related via # to the other. We now give more geometrical structures to the
constituents of the abstract origami system to relate AOs computationally.

3.1. Geometry of origami

We rely on the following geometrical intuition.

(I1) A face is a plane surface in the sense of Euclid’s Elements.
(I2) A face can share the boundary with other faces. See Figs. 3 and 4.
(I3) A face can be above other faces, and all the faces form a stack of face layers. See Fig. 5.
(I4) A point belonging to a face can be overlaid on the other points belonging to other faces. See Fig. 6.

Then, we give more geometrical structures to the notion of a face. We appeal to the readers for the
intuition (I1) and define a face as follows.

Definition 5 (Face). A face is a convex n-gon.

Recall that an n-gon (n > 3) is a polygon consisting of n edges, none ofwhich intersects each other.We
represent an n-gon as a sequence 〈P1, . . . , Pn〉 of pairwise distinct points, where points P1, . . . , Pn are
vertices of the n-gon. Any cyclic permutations of a given sequence could represent the same face, but
we choose one particular sequence among them in order to represent a face uniquely. The convexity
does not play a role in this article. It is abstracted away in our discussion, but is used crucially in the
design of the algorithms for face division and for checking face overlap. When points P1, . . . , Pn are
arranged counterclockwise, we say that the face is up, and when clockwise, down. In the figures, we
distinguish the sides of the faces by the shading (colored if color print is possible).
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Fig. 5. Stack of face layers.

Fig. 6. Overlay of points.

We can now define the adjacency relation as follows.

Definition 6 (Face Adjacency). Two distinct faces are adjacent if they share an edge.

The adjacency relation is generated between the two faces that have been constructed by the
division of a face. Our construction ensures the following properties, and we take them as an axiom
of our construction by folds. In describing the axiom, we use the following notation. When a face f is
divided by a ray r into (f1, f2), where f1 is to the left of the ray r and f2 is to the right of r , we write
f �r (f1, f2). Later, we also write f �r f ′, where f ′ is one of f1 and f2, whenever we need only to
specify one of the divided faces. The subscript r in�r may be omitted if intended r is clear from the
context.When f � (f1, f2), f is called the immediate ancestor of f1(and f2). Face g1 is called the ancestor
of face gk if there exists g2, . . ., gk such that gj is the immediate ancestor of gj+1 for j = 1, . . . , k− 1.

Axiom 7. Suppose f �r (f1, f2). Then, we have the following:

(1) f1 v f2.
(2) Let X and Y be points of intersection with the ray r and XY be one of the edges of f1 such that
f1 = 〈X, Y , . . .〉. Then, f2 = 〈Y , X, . . .〉.

(3) The sides of the faces f , f1 and f2 are the same.

Fig. 7 depicts the adjacency relation between the divided faces.
Note that the n-gon 〈X, Y , . . .〉 can be denoted by any cyclic permutation of the sequence

〈X, Y , . . .〉. However,we fix the denotation as in Axiom7. The following lemma is an easy consequence
of our construction.
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Fig. 7. Faces and the adjacency relation as determined by Axiom 7.

By 〈〈X, Y 〉〉, we denote the set of all the finite sequences that have a subsequence 〈X, Y 〉 and their
cyclic permutations.

Lemma 8. For any O = (Π,v,�) such that I #∗ O,

∀f , g ∈ Π (f , g ∈ 〈〈X, Y 〉〉 for some points X and Y ⇔ f = g)

Lemma 8 states that a directed edge of a face in a givenΠ uniquely identifies the face.
As we have decided the representation of a face, we have the following equivalence.

Proposition 9. For any O = (Π,v,�) such that I #∗ O, ∀f , g ∈ Π

f v g ⇔ ∃ points X and Y such that f ∈ 〈〈X, Y 〉〉 ∧ g ∈ 〈〈Y , X〉〉.

Proof. (⇐) The edge XY are shared by f and g . By definition of the adjacency, f v g .
(⇒) We have either f ∈ 〈〈X, Y 〉〉 ∧ g ∈ 〈〈Y , X〉〉 for some points X and Y , or f ∈ 〈〈X, Y 〉〉 ∧ g ∈ 〈〈X, Y 〉〉 for
some points X and Y . The latter is impossible by Lemma 8. �

Example 2 (Adjacency Relation). Wemake use of Example 1. The faces of f1 and f2 in Fig. 2 are adjacent
by the following reasoning. We have f1 = 〈E, F ,D, A〉 and f2 = 〈F , E, B, C〉. Since f1 and f2 share the
edge EF , we can see that f1 v f2 and f2 v f1.

The superposition relation gives the vertical arrangement of faces. We first appeal to the readers
for intuition about the notion of above and below among faces (cf. Intuition (I3)), where below is the
inverse relation of above. Roughly speaking, face f superposes face g iff f is above g , and moreover f
and g ‘‘face’’ each other. Let us take a look at Fig. 2 again. We consider making a valley fold on the face
f0. The face f0 is divided into (f1, f2). The face f2 is rotated along the axis EF by an angle π . The face f2
is clearly above f1 in O2 and f1 faces f2. Hence, f2 superposes f1.
We are now ready to formalize the notion of superposition. We proceed as follows. First, we

formalize the notion of overlap based on the intuition (I4). Then, we define the relation over on the
set of faces. Using the notion of over, we define above and superposition.

Definition 10 (Overlap). Faces f and g overlap, denoted by f � g , iff there exist points P and Q , each
belonging to faces f and g , respectively, such that P overlays Q (or vice versa).

Note that we allow a point to be overlaid on itself, Hence, a face can overlap with itself. One might
imagine that there is a through-hole that penetrates the points P and Q .
To define the relation over, we will use the following notations. Let =�r be�r ∪ =, where= is the

equality on faces. The relation =�r is introducedmore for convenience; By f
=

�r f ′ wewant to describe
the situation where r may not divide f .
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Let von(r) denote the adjacency relation between two faces that share an edge that lies on the ray
r and let v¬on(r) = v \ von(r). Let vleft(r) denote the adjacency relation between two faces that share
an edge that is to the left of the ray r and let v¬left(r) = v \ vleft(r).
To make a crease on an origami, we need to specify the ray r and the set C of faces to which we

want to apply the face division and on which we want to make a crease afterwards. The set C is called
a candidate set of face division. Origamists give a set F of faces that they want to make a crease. Then,
C can be determined as

C =
⋃
f∈F

{
g | g v∗

¬left(r) f
}
.

Later, we will discuss how to compute the set C . For now, it is sufficient to note that whenever we
discuss the fold#, we assume that r and C are implicitly given.
To make a basic fold O′

y
→ O′′ after O

 
→ O′(= (Π ′,v′,�′)), we need to determine the set Π ′M

of faces that are to be moved and the set Π ′N of faces that are not moved. We define Π
′

M and Π
′

N as
follows:

Π ′M =
⋃
f∈D

{
g | g (v′

¬on(r) ∪ �
′)∗ f

}
, andΠ ′N = Π

′
\Π ′M

where D is the set of faces that have been divided in O
 
→ O′ and are to the right of the ray r .

Definition 11 (Over). Let O = (Π,v,�) be an AO. We define the relation over, denoted by m, onΠ
inductively on the construction of AOs.
Suppose I #∗ O

∀f , g ∈ Π .

• Base case: O = I

m = ∅.

• Inductive case 1: I #∗ O
 
→ O′(

a
→ O′′) where O = (Π,v,�), and m is defined on Π . We will

define m′ onΠ ′ as follows.

f ′ m′ g ′ iff ∃f , g ∈ Π (f m g) ∧ (f =� f ′) ∧ (g =� g ′) ∧ (f ′ � g ′).

• Inductive case 2.1: I #∗ O
 
→ O′

x
→ O′′ where O′ = (Π ′,v′,�′), and m′ is defined onΠ ′. We

will define m′′ on Π ′′ as follows. Note that in both cases 2.1 and 2.2 we have Π ′′ = Π ′ and that
f � g is geometrically interpreted for the case that f , g ∈ Π ′′.

f m′′ g iff (g m′ f ∧ f , g ∈ Π ′M) ∨ (f m′ g ∧ f , g ∈ Π ′N) ∨ (f � g ∧ f ∈ Π
′

M ∧ g ∈ Π
′

N).

• Inductive case 2.2: I #∗ O
 
→ O′

y
→ O′′ where O′ = (Π ′,v′,�′), and m′ is defined onΠ ′. We

will define m′′ onΠ ′′ as follows.

f m′′ g iff (g m′ f ∧ f , g ∈ Π ′M) ∨ (f m′ g ∧ f , g ∈ Π ′N) ∨ (f � g ∧ g ∈ Π
′

M ∧ f ∈ Π
′

N).

Definition 12 (Above). The relation above, denoted by m>, is the transitive closure of m.

The notion of below becomes rigorous now, since it is the inverse relation of above. Note that the
relation m does not have the transitivity, as the following example shows.

Example 3 (Over and Above). Fig. 8 illustrates the relations over and above. Face f1 is over f2. Face f2
is over f3. Hence, face f1 is above f2 and f3, and face f2 is above f3. However, face f1 is not over f3 since f1
does not overlap with f3.

Finally, we define the relation of superposition.

Definition 13 (Superposition). Let O = (Π,v,�) be an AO such that I #∗ O. We define the relation
superposition, denoted by�, onΠ as follows.

∀ f , g ∈ Π f � g iff (f m g) ∧ (∀h ∈ Π (f m h m∗ g =⇒ h = g)).
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Fig. 8. Relations: over and above.

3.2. Analysis of relations

Wewill derive basic mathematical properties of the relations defined in Section 3.1. The following
propositions are immediate from the definitions of the relations.

Proposition 14 (Asymmetry of m).

∀ O = (Π,v,�) ∈ O such that I #∗ O,∀ f , g ∈ Π f m g =⇒ ¬(g m f ).

In the following, all the propositions in this subsection hold for O under the context ‘‘∀ O = (Π,v,�)
∈ O such that I #∗ O’’. We omit this context for brevity.

Corollary 15 (Irreflexivity of m).

∀ f ∈ Π ¬(f m f ).

Proposition 16.

∀ f , g ∈ Π f m g =⇒ f � g.

Proposition 17.

m>⊃ m ⊃ � .

Lemma 18.

¬ (m ⊃ �+).

Proof. There exist faces f , g and h such that f � h and h � g and f 6� g . By Proposition 16, ¬(f m g)
if f 6� g . �

Proposition 19. An m-sequence is acyclic.

Proof. By induction on the construction of AOs.

• Base case: O = I
Immediate, since we have¬ (f0 m f0).
• Inductive case: I #∗ O # O′ and O = (Π,v,�)
We assume the non-existence of a cyclic m-sequence. We prove by contradiction. Suppose, there
exists a cyclic m′-sequence. Taking the irreflexivity of m′ into account, we can write the sequence
as 〈

g ′0(= g
′), g ′1, . . . , g

′

n, g
′

n+1(= g
′)
〉
, where n ≥ 1.

We distinguish the following three cases:

(1) I #∗ O
 
→ O′ (

a
→ O′′)

Let g and g ′i be the faces such that g
=

� g ′, gi
=

� g ′i for all i ∈ {1, . . . , n}.
By the definition of m′, we have on O the m-sequence:

〈g0(= g), g1, . . . , gn, gn+1(= g)〉 , where n ≥ 1. (1)

The sequence (1) is cyclic. This contradicts the induction hypothesis.
(2) I #∗ O

 
→ O′

x
→ O′′
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We further distinguish the following two cases.
(a) g ∈ Π ′M
We show that gi ∈ Π ′M for all i ∈ {1, . . . , n}. Suppose the contrary, i.e., there exists
i ∈ {1, . . . , n} such that gi ∈ Π ′N . Let j be the maximum index among such i’s, i.e.,

gj m′′ gj+1, gj ∈ Π ′N , gj+1 ∈ Π
′

M .
By the definition of m′′, if gj and gj+1 overlap, then we have gj+1 m′′ gj, else we have
¬ (gj+1 m′′ gj) ∧ ¬ (gj m′′ gj+1). Using the asymmetry of m′′, in both cases, we have
¬ (gj m′′ gj+1), which is contradictory. Therefore, we have for all i ∈ {1, . . . , n}, gi ∈ Π ′M .
This implies that we have the m′-sequence:

〈gn+1(= g), gn, . . . , g1, g0(= g)〉 where n ≥ 1. (2)
The sequence (2) is cyclic. This contradicts the induction hypothesis.

(b)g ∈ Π ′N
We can show that gi ∈ Π ′N for all i ∈ {1, . . . , n}. We take the minimum j instead. We then
derive the same contradiction.

(3) I #∗ O
 
→ O′

y
→ O′′

This case is treated similarly to the previous case.

In summary, we can conclude that m is acyclic. �
Noting Proposition 17, we have the following corollaries.

Corollary 20. A�-sequence is acyclic.
Corollary 21. Relation m> is asymmetric.
Since a strict partial order is a relation that is asymmetric and transitive, we have the following.

Proposition 22. Relation m> is a strict partial order.
Lemma 23.

∀f , g ∈ Π f m g =⇒ ∃h ∈ Π (f � h m∗ g).
Proof. Let f and g be arbitrary but fixed elements of Π , satisfying f m g . Let Kf = {k ∈ Π | f m k}.
Kf 6= ∅, since g ∈ Kf . We prove ∃h ∈ Π (f � h m∗ g) by the induction on the cardinality of Kf .
If the cardinality of Kf is 2, i.e. the base case, we are done. Let H =

{
h ∈ Kf | ∀k ∈ Kf ¬ (k m h)

}
.

Obviously, H 6= ∅.
If g ∈ H , then f � g by definition of�, and we are done.
If g 6∈ H , there exists h ∈ Kf such that h m g . We consider K ′f = {k ∈ Π \ {g} | f m k} and f m h for

our inductive argument. The cardinality of K ′f is one less than the cardinality of Kf . By the induction
hypothesis, ∃h′ ∈ Π f � h′ m∗ h. Therefore, we have f � h′ m∗ h m g , and we are done. �
Proposition 24.

�
+
⊃ m+.

Proof. SinceΠ is finite and anm-sequence is acyclic by Proposition 19, the relationm onΠ is a well-
founded order. We therefore prove the claim by the well-founded induction. Let f and g be arbitrary
but fixed elements inΠ such that f m+ g . By Lemma 23, ∃h ∈ Π f � h m∗ g . If h = g , then we are
done. This constitutes the base case of the induction.
We next consider the case f � h m∗ g and h 6= g . Since m ⊃ �, f � h m∗ g implies f m h m∗ g .

By the induction hypothesis h �+ g . Hence, f � h �+ g , and then f �+ g . �

Theorem 25.
m> = �+ .

Proof. By Proposition 24, we have �+ ⊃ m+(= m>). The relation m+ ⊃ �
+ holds by

Proposition 17. �

Theorem 25 tells the following. Although the relation above, i.e. m>, is defined by m, which is less
intuitive notion introduced for the sake of formalization and ease of computation, m> is the right
notion on which we base our reasoning about the vertical arrangements of faces. The relation � is
the finest relation to compose the above relation. Taking Theorem 25 and Corollary 20 together, we
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have the following. Given faces f and g in an AO constructed from the initial origami, fm> g can be
expanded by the finite number of faces g1, . . . , gn such that g1(= f ) � g2 � · · · � gn(= g).

4. Abstract fold from computational viewpoint

This section is devoted to the algorithmic description of fold. It is a prelude to our argument for
the necessity of graph rewriting. When we construct an origami that does not have face overlapping,
the operational meaning of folds can be quite simple. The fold is essentially intended to construct a
reflection in the fold line. Unfold is similarly understood. Inmathematical origami, which is the case in
point, some studies have beenmade in Alperin (2000) and Ida et al. (2008).When an (abstract) origami
consists of faces with non-empty superposition relations, the situation is more complex and does not
admit a simple algebraic interpretation. Geometrical properties of folds are expounded in Demaine
and O’Rourke (2007). However, the fold performed during the construction of an origami, as has been
abstracted as an operation on discrete objects, has not been studied systematically. Having this in
mind, let us analyze the abstract fold from computational viewpoint.
Computationally, an origami fold is a composite operation consisting of the following operations.

(1) Specify a fold method and the set F of the faces of concern, i.e. the faces on which the origamist
wants to make a fold. We can specify the fold method by one of Huzita’s axioms (Huzita, 1989)
or classical fold methods such as mountain and valley folds with constructed points and lines as
arguments.

(2) Compute a fold line and define the associated directed line ray r . Through the ray, the notion of
left and right of the fold line is made sense of.

(3) Compute the set C of the faces that are the candidates for the face division.
(4) Divide all the faces in C by the ray r and classify the divided and non-divided faces according to
the locations relative to r .

(5) Obtain the new setΠ of all the faces that constitutes the new origami.
(6) Compute the adjacency relation v onΠ .
(7) Compute the superposition relation� onΠ .
(8) Rotate the relevant faces to the right of r along r .
(9) Compute the new superposition relation�′ onΠ caused by the rotation.
(10) (Π,v,�′) is the new origami created by the fold.

As we saw in Section 2.3, functionally a fold is decomposed into two operations. Steps (1)– (7)
constitute one operation which corresponds to the crease relation, and steps (8) and (9) constitutes
the other operation corresponding to the basic fold relation. At the completion of step (7), we have a
well-defined origami.
More algorithmic description in a procedural program style is given in Algorithms 2 and 3. In both

Algorithms 2 and 3, we use a common algorithm RefTransR. Given a set A ⊂ X and a binary relation
R on X , it computes the set B of the elements in X that are related by R∗ to the elements of the set A.
In our case, the set X is taken to beΠ .

Algorithm 1 RefTransR
Input: A, R
Output: B
1: B← A
2: while A 6= ∅ do
3: Take f ∈ A
4: W ← {g | g R f } \ B
5: B← B ∪W
6: A← (A \ {f }) ∪W
7: Return B
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Algorithm 2 Crease
Input: (Π,v,�), F , r
Output: (Π ′,v′,�′), D
1: C ← RefTransR(F ,v¬left(r))
2: {comment C is the candidate set of the face division}
3: for all f ∈ C do
4: Divide f and classify the divided faces
5: {comment As the result of the divide-and-classify, we obtain the set D that contains the faces to
the right of the ray r}

6: Compute v′ onΠ ′
7: Compute�′ onΠ ′
8: Return (Π ′,v′,�′) and D

Algorithm 3 Basic fold
Input: (Π,v,�), D, r, θ
Output: (Π ′,v′,�′)
1: M ← RefTransR(D,v¬on(r) ∪ �)
2: {CommentM isΠM}
3: Rotate the faces inM by angle θ along r
4: Compute�′
5: Return (Π,v,�′)

5. Graph formalism for origami

The origami fold as explained in the previous sections shows that the fold is a complex operation.
We need to compute the relations v and �. Furthermore, we need geometrical information that is
abstracted away in the formulation of the abstract origami system. One of the promising approach
for compromising abstraction and concretization towards the understanding of the geometrical
structures of an origami and its implementation is to use graph-theoretic formalism (Ehrig et al., 2006;
Schneider, 2008). In particular, we see that a labeled hypergraph is applicable to model our origami.

5.1. Hypergraph

Definition 26 (Hypergraph). A hypergraph is a quadruple (V , E, s, t), where

• V is the set of nodes,
• E is the set of hyperedges, and
• s, t : E → V ∗ are source and target functions.

Let LV and LE be the label alphabets for V and E, respectively, and L be the set of all the regular
expressions overLV .

Definition 27 (Labeled Hypergraph). Given a pair L = (LV ,LE) of label alphabets together with
label constraints τs, τt : LE → L that constrain labeling of the source and the target nodes of the
hypergraph, respectively, anL-labeled hypergraph is a 6-tuple (V , E, s, t, lV , lE), where

• (V , E, s, t) is a hypergraph and
• lV : V → LV and lE : E → LE are labeling functions that satisfy the following labeling constraint:

∀e ∈ E l∗V (s(e)) ∈ τs(lE(e)) ∧ l
∗

V (t(e)) ∈ τt(lE(e)). (3)

Condition (3) ensures the consistency of labeling. To see how it works, let us consider the following
simple example.
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Fig. 9. Hypergraph of an origami created by face division.

Example 4 (Simple Labeled Hypergraph). Let c be a label of a hyperedge e and τs(c) = c1c2. Suppose
that s(e) = 〈v1, v2〉. Then, wemust have lV (v1) = c1 and lV (v2) = c2. We can only assign to the nodes
v1 and v2 a label that satisfies the condition (3).
With another τs(c) = (c1 | d)c2, for lE(e′) = c and s(e′) =

〈
v′1, v

′

2

〉
, the labeling function lV may

be such that lV (v′1) = d and lV (v
′

2) = c2. Note that (c1 | d)c2 as well as c1c2 are regular expressions
denoting the set {c1c2, dc2} and the set {c1c2}, respectively.
Example 5 (Labeled Hypergraph of the Initial AO). We are given the label alphabets together with
label constraints τs and τt as follows:

F ∈ LV ,A ∈ LE, τs =
{
A 7→ F∗

}
, τt = {A 7→ F} .

We define a graph G of the initial AO I as anL-labeled graph (V , E, s, t, lV , lE), where
V = {f0} , E = {e} , s = {e 7→ f0} , t = {e 7→ f0} , lE = {e 7→ A} , lV = {f0 7→ F} .

Example 6 (Graph Immediately after Face Division). We are given the label alphabets and the label
constraints τs, τt as follows:

LV = {F} ,LE = {A, R, L}
τs =

{
A 7→ F∗, R 7→ F, L 7→ F

}
, τt = {A 7→ F, R 7→ F, L 7→ F} .

We have anL-labeled graph G = (V , E, s, t, lV , lE), where

V = {f0, f1, f2}
E = {e1, e2, e3, e4}
s = {e1 7→ f0, e2 7→ f0, e3 7→ 〈f1, f2〉 , e4 7→ 〈f2, f1〉}
t = {e1 7→ f1, e2 7→ f2, e3 7→ f1, e4 7→ f2}
lE = {e1 7→ L, e2 7→ R, e3 7→ A, e4 7→ A}
lV = {f0 7→ F, f1 7→ F, f2 7→ F} .

The hyperedge e3 forms a cycle from f1 to f1, visiting the node f2 on the way. The hyperedge e4 also
forms a cycle. The graph G is shown in Fig. 9. The graph represents AO O′1 in Fig. 2. In the graph, the
circles, rectangles and symbols after colons denote nodes, hyperedges and labels, respectively.

5.2. Graph term

Often graphs are drawn using diagrams. The diagrammatic representation of graphs helps perceive
many of properties of graphs, and is indeed effective as long as they are fit into a manageably
small space. Graphs for origami become complicated as the construction of an origami proceeds and
they do not lend themselves to easy-to-understand drawing in general. Since we are interested in
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graph rewriting, in addition to the diagrammatic representation that we have just seen, we need a
good symbolic representation of graphs for reasoning about the graph transformation, and efficiently
manipulating graphs by programs. Thus, we are guided to the following symbolic representation of
nodes and edges.
Definition 28 (Edge Term of a Hyperedge). Let e be a hyperedge with s(e) = {v1, . . . , vm}, t(e) =
〈w1, . . . , wn〉, and lE(e) = c. The edge term representation of e, denoted by ê, is a term
c[v1, . . . , vm, w1, . . . , wn].
Definition 29 (Node Term of a Node). Let v be a node with lV (v) = c. The node term representation
of v, denoted by v̂, is a term c[v].
The edge term and node term are called graph terms, g-terms for short. We will later extend the
definition of graph term to allow variables and sequence variables to occur as subterms.
Definition 30 (Graph Term of a Hypergraph). Given an L-labeled hypergraph G = (V , E, s, t, lV , lE),
graph term representation Ĝ of G is a multi-set

{̂e | e ∈ E} ∪ {̂v | v ∈ V } .
Note that {̂e | e ∈ E} is a multi-set and hence ∪ is the multi-set union; For different e and e′ with

s(e) = s(e′) and t(e) = t(e′), the representations ê and ê′ are the samewhen their labels are the same.

Example 7 (G-Term Representation of a Hypergraph). Let G be a hypergraph given in Example 6. The
g-term representation Ĝ is

Ĝ = {L[f0, f1], R[f0, f2],A[f1, f2, f1],A[f2, f1, f2], F[f0], F[f1], F[f2]}.
In our application, V is implicitly given, andLV is a singleton. In such a case, we describe Ĝ simply as
{̂e | e ∈ E}, since the affected node terms can be inferred from the edge terms.

6. Graph rewriting

In this section, we present a graph rewriting system for origami.We first introduce a languageG for
graph rewriting informally. Language G is embedded in the host language of G, on which we rely for
controlling the application of graph rewrite rules as well as for evaluating host functional expressions
during the graph rewriting.3 The syntax of the host expression is of the form f [t1, . . . , tn], and we
use this syntax throughout in G.4 A basic expression t in G, called term, is defined by the following
grammar together with the auxiliary notion of an atomic term a:

t ::= a | 〈g-term〉 | 〈host expr〉
a ::= v | x | x
〈host expr〉 ::= f [t, . . . , t].

Here, x denotes a variable, x a sequence variable and v a graph node. In this article, we do not give any
syntactic specification of v apart from the fact that v denotes a node of a graph. A sequence variable
is used for a g-pattern (see below for the definition) such as c[x]. 〈host expr〉means an expression of
the host language. It is used during the application of graph rewrite rules, and gives fine control over
pattern matching.
A g-term is extended to have variables and sequence variables as subterms, i.e.

〈g-term〉 ::= c[a, . . . , a].

A g-pattern c[x] matches a g-term c[s1, . . . , sn] of arbitrary n (> 0) arguments. Sequence variables
are indispensable constituents in our language since the constructor symbol c in g-term c[s1, . . . , sn],
representing a hyperedge whose label is c visiting n nodes, has a flexible arity.

3 To be more specific, in our implementation we useMathematica for the host language.
4 We use infix notation for commonly used functions, however.
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A g-pattern is a g-term possibly with a condition written after ‘‘/;’’.

〈g-pattern〉 ::= 〈g-term〉 | 〈g-term〉 /; 〈host expr〉 .

The expression of the form s/; t is a conditional g-pattern. The conditional g-pattern is used in the
context graph part of a graph rewrite rule. During patternmatching with a subgraph by a substitution
θ , if t θ is evaluated by the evaluator of the host language to true, (s/; t)θ reduces to sθ , and otherwise
it reduces to⊥. We use u to denote a g-pattern.
Finally, a graph in G is a multi-set of g-terms subjected to the conditions for defining a graph.

Definition 31 (Graph Rewrite Rule). A graph rewrite rule (rewrite rule for short) is a triplet (C, L, R)
of multi-sets of g-terms, written as

L / : C → R

where

• C := {u1, . . . , um} is a graph called a context graph,
• L is a subset of {ũ1, . . . , ũm}, where ũi = si, if ui = si/; ti, otherwise ũi = ui. L is called the left-hand
side of the rewrite rule, and
• R := {t1, . . . , tn} is a subgraph called the right-hand side of the rewrite rule.

In order to identify the same g-terms in L and C , we can give a name to a g-term. For example, a
name n is given to the g-term t in C by writing n : t in C and refer to it as n in L:

{n} / : {g[x], n : f [x], h[x]} → {f [x], f [x]} .

The occurrence of n in the left-hand side of the rewrite rule refers to f [x] of the context graph of the
rewrite rule.

Definition 32 (Graph Rewriting). A graph Ĝ is rewritten to Ĝ′ by a rewrite rule r := L / : C → R,
denoted by

Ĝ⇒r Ĝ′

if there exist g-terms s1, . . . , sm, and a substitution θ such that {s1, . . . , sm} ⊆ Ĝ, C θ = {s1, . . . , sm}
after the evaluation of the conditions, if any, and Ĝ′ = (̂G \ Lθ) ∪ Rθ . The set-related notations are
taken to be those for multi-sets.

The graph rewriting can be formalized as the double push out using graph production

〈C ← (C \ L)→ (C \ L) ∪ R〉 ,

where C \ L is an interface, as in Ehrig et al. (2006). However, we prefer our definition of the rewrite
rule from the programming language point of view. Thanks to g-terms, it makes clear the parts of the
graph involved for rewriting and the graph rewriting becomes a simple multi-set rewriting.
Rewrite rules are combined using the following combinators (i.e. alternative, non-strict

sequencing, strict sequencing and repeat) to form a composite rewrite rule. The combinators control
the application of the rewrite rules. Hereafter, rewrite rule and composite rewrite rule are collectively
called rewrite rules.
Rewrite rule ρ is defined by the following grammar.

ρ ::= r | ρ1 p ρ2 | ρ1; ρ2 | ρ1 ∗ ρ2 | (Cond ρ1 ρ2 ρ3) | (Repeat ρ)

• r is a basic rewrite rule as defined in Definition 31.
• ρ1 p ρ2 is an alternative.
• ρ1; ρ2 is a non-strict sequencing.
• ρ1 ∗ ρ2 is a strict sequencing.
• (Cond ρ1 ρ2 ρ3) is a conditional.
• (Repeat ρ) is a repetition.
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We apply a rewrite rule ρ to a graph Ĝ to obtain a new graph Ĝ′. The graph Ĝ′ is the result of one
of the following operations.
(1) The rewrite rule ρ is applicable to some subgraph of Ĝ, which then is rewritten by ρ, and returns
the new graph Ĝ′. We denote the new graph Ĝ′ by ρ [̂G]. We call this case successful rewrite.

(2) The rewrite rule ρ is applicable to no subgraph of Ĝ, and it returns the new graph Ĝ′ = Ĝ. We call
this case unsuccessful rewrite.

To describe the semantics of the graph rewriting, we need to distinguish the above two cases since
by mere observation of the resulting graph we cannot tell whether the graph rewriting has been
successful or not. We, therefore, adopt continuation passing style of semantic treatment. We use two
continuations as the parameters to the graph rewriting: continuation ν to be obeyedwhen the rewrite
is successful and the continuation κ to be obeyed when the rewrite is unsuccessful.
Then, we have the following semantic equations to describe the graph rewriting.

r G κ ν =
{
ν (r[G]) if the rewrite is successful
κ G if the rewrite is unsuccessful (4)

(ρ1 p ρ2) G κ ν = ρ1 G (λG′. ρ2 G κ ν) ν (5)
(ρ1; ρ2) G κ ν = ρ1 G κ (λG′. ρ2 G′ (λG′. κ G) ν) (6)
(ρ1 ∗ ρ2) G κ ν = ρ1 G (λG′. ρ2 G κ ν) (λG. ρ2 G ν ν) (7)
(Cond ρ1 ρ2 ρ3) G κ ν = ρ1 G (λG′. ρ3 G κ ν) (λG′. ρ2 G κ ν) (8)
(Repeat ρ) G κ ν = ρ G κ (λG. (Repeatρ) G ν ν). (9)

The semantic equation (5) for the alternative states the following. We first apply rule ρ1 to Ĝ. If the
rewrite is successful, the continuation ν is applied to the result ρ1 [̂G] of rewriting of Ĝ by ρ1. If the
rewrite is unsuccessful, we apply rule ρ2 to Ĝwith the continuations κ and ν. The semantic equations
(6) and (7) for the sequencing rules show that the applications of the rules ρ1 and ρ2 are performed
sequentially from left to right. In the non-strict sequencing, ρ2 is not applied if the rewrite by ρ1
is unsuccessful, and it immediately completes the rewrite unsuccessfully. In the strict sequencing,
even if the rewrite by ρ1 is unsuccessful, the rewrites continue with Ĝ, and the rewrite of Ĝ by ρ2 is
performed. The rewrite of Ĝ by ρ1 ∗ ρ2 completes successfully either (including both) of rewrites
by ρ1 and ρ2 are successful. Otherwise, the rewrite is unsuccessful. Thus, (r1 ∗ r2) Ĝ κ ν evaluates
to one of the following: ν (r2[r1 [̂G]]), ν(r2 [̂G]), ν(r1 [̂G]) and κ Ĝ, whereas (r1 ; r2) Ĝ κ ν evaluates
to one of the following: ν (r2[r1 [̂G]]) and κ Ĝ. The semantic equation (8) states that if ρ1 rewrites
Ĝ successfully then the resulting graph is ρ2 [̂G], else it is ρ3 [̂G]. The semantic equation (9) states
the following: (Repeat ρ) rewrites Ĝ successfully if there exists an n > 1 such that ρn rewrites Ĝ
successfully and ρn+1 rewrites Ĝ unsuccessfully, where ρn denotes ρ ; . . . ; ρ︸ ︷︷ ︸

n

. (Repeat ρ) rewrites Ĝ

unsuccessfully if ρ rewrites Ĝ unsuccessfully.

7. Fold as graph rewriting

We are now ready to describe the fold explained in Section 4 in graph rewriting framework. We
follow closely Algorithms Crease (Algorithm 2) and Basic fold (Algorithm 3) and describe how the
graph representing an origami is transformed. In the following, Section 7.1 explains step 4, Section 7.2
step 6, and Section 7.3 step 7 of Algorithm Crease. Section 7.4 explains steps 3 and 4 of AlgorithmBasic
fold.

7.1. Face division

We consider face division f �r (f1, f2). An example of the graph obtained by the face division was
given in Fig. 9. We will discuss the face division in general cases. Suppose that face f is surrounded by
faces v1, . . ., vn in this order, and that ray r divides the faces v1, f and vi. We transform the graph as
follows.
(1) Construct nodes f1 and f2.
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Fig. 10. Node changes after face divisions.

(2) Construct the hyperedge e1 that connects f with f1 and e2 that connects f with f2. We label the
hyperedge e1 by L (L for Left) and e2 by R (R for Right).

(3) Construct the hyperedges e3 and e4 starting from f1 and from f2, respectively. We have s(e3) =
〈f1, v1, . . . , vi, f2〉, t(e3) = f1, s(e4) = 〈f2, vi, . . . , vn, v1, f1〉 and t(e4) = f2. We label those
hyperedges A (A for Adjacency).

Let Ĝ be the g-term of a graph before the division of the face f . The g-term Ĝ′ of the graph after the
division is

{L[f , f1], R[f , f2],A[f1, v1, . . . , vi, f2, f1],A[f2, vi, . . . , vn, v1, f1, f2], F[f1], F[f2]} ∪ Ĝ.

The label A in A[x1, . . . , xn] is the realization of the adjacency relation. The intended meaning of
A[x1, . . . , xn] is that x1 v x2, . . . , x1 v xn−1. But at this point, the relations is transient since some of
the faces in {x2, . . . , xn−1} may be divided later during the face division. We will discuss about this
in the next subsection. The label R in R[x1, x2] indicates the relation that x1 is the right (w.r.t. r) part
sub-face of x2. This relation is introduced temporarily during the graph rewriting, and the R-labeled
hyperedgeswill be deleted (garbage collected) after the graph construction of each step of the origami
construction is completed. The label L is used similarly.
We have two special cases thatwe need to consider besides the above. The first case is that either f1

or f2 is empty. In this case, the node corresponding to the empty face is not constructed. For example,
if f1 is empty, we have f2 = f and the hyperedge e2 only with s(e2) = t(e2) = f . The other case is
that the ray passes through the vertex (vertices) of the face f . In both cases, the construction of Ĝ′ is
straightforward.

7.2. Computation of adjacency relation

In order to complete the computation of the adjacency relation, the subgraph constructed at the
face division step has to be traversed again to update the nodes on the hyperedges. Some of the other
faces have been divided later during the face division. The constructed hyperedges still connect to
those nodes of the previous non-divided faces. We need to update those hyperedges by the traversal
of the graph using the following rewrite rules:

ρ1 := {n} / : {L[f , f1], n : A[f1, x], L[g, g1]/; (g 6= g1 ∧ g ∈ {x})} 7→ A[f1, x]{g 7→ g1} (10)
ρ2 := {n} / : {R[f , f1], n : A[f1, x], R[g, g1]/; (g 6= g1 ∧ g ∈ {x})} 7→ A[f1, x]{g 7→ g1} (11)
ρ := (Repeat ρ1) ∗ (Repeat ρ2).

The term A[f1, x]{g 7→ g1} is the application of the substitution {g 7→ g1} to a term A[f1, x]. Note that
we omit the g-terms for the nodes in all the subgraphs involved.

Example 8 (Update of Hyperedges After Face Division). Suppose, we have a face b surrounded by the
faces a1, a2, a3 as shown in Fig. 10(left). The face division b�r (b1, b2) is shown in Fig. 10(right).
At the time of the face division, we have A[b1, a3, a1, b2, b1] and A[b2, a1, a2, a3, b1, b2] that

represent the hyperedges e1 and e2 satisfying s(e1) = 〈b1, a3, a1, b2〉 , t(e1) = b1, and s(e2) =
〈b2, a1, a2, a3, b1〉 , t(e2) = b2. Later, we have a1 � (a11, a12) and a3 � (a31, a32). The update of
the hyperedges is achieved by rewriting the g-terms A[b1, a3, a1, b2, b1] and A[b2, a1, a2, a3, b1, b2],
to A[b1, a31, a11, b2, b1] and A[b2, a12, a2, a32, b1, b2], respectively.



410 T. Ida, H. Takahashi / Journal of Symbolic Computation 45 (2010) 393–413

The instantiated rule from rule (10), i.e. the rule after applying the substitution formed during the
pattern matching of the rewrite rule with the graph,

{n} / : {L[b, b1], n : A[b1, a3, a1, b2, b1], L[a3, a31]} → {A[b1, a31, a1, b2, b1]}

is used to update the g-term A[b1, a3, a1, b2, b1] to A[b1, a31, a11, b2, b1]. Similarly, A[b2, a1, a2, a3, b1,
b2] is rewritten to A[b2, a12, a2, a32, b1, b2] by the rewrite rule (11).

7.3. Computation of superposition relation

The superposition relation is computed twice during the fold operation: one induced by the face
division and the other by the face rotation. Although both computations may appear different, they
are based on the same algorithmic pattern. Namely, in both computations the basic operations are the
insertion of a new face to the peaks (to be defined shortly) of the graph and the transitive reduction
of the graph.
In order to describe fully these operations, we use the following definitions and notations. Let V

be a set and R be a binary relation on V . A pair (V , R) is identified as a directed graph.5 Let us further
stipulate that G = (V , R) is a directed acyclic graph. A graph GT = (V , R+) is called a transitive
closure of the graph G. Let G− be a directed acyclic graph with a minimum number of edges satisfying
GT = (G−)T . The graph G− is called a transitive reduction of the graph G. In the following, we consider
G = (Π,m). It is easy to see that GT = (Π,m>) and G− = (Π,�) and is unique. We call a node f in
Π of G a peak iff there exists no node g inΠ such that g m f . The set of peaks of a graph G is denoted
byKG.
From a given Oi = (Πi,vi,�i) of an AO construction I #∗ Oi, we can define a graph (Πi,mi). As

m is defined inductively on the construction of AOs, we can construct mi+1 from mi. Then, we take
the transitive reduction of (Πi+1,mi+1) and finally we extract�i+1 from the transitive reduction. The
known algorithm for the transitive reduction of a directed acyclic graph G = (V , R) can be as low
as O(n3), where n is the cardinality of V (Gries et al., 1989). Actually, it suffices to construct a graph
(Πi+1, R) with a relation R such that �i+1⊂ R ⊂ mi+1. The crucial observation here is that if f m g ,
then for any h such that g m+ h, we have ¬(f � h). Therefore, once the edge representing f m g is
established, we do not have to consider the possible edges representing f m h because those edges
would be unnecessary to construct the transitive reduction.
We define the above algorithm with the set of graph rewrite rules in the following way. Suppose

we have a unique g-term NewNode[f ] in Ĝ. We define the graph rewrite rule:

AddS(h) := {}/ : {NewNode[f ]/; f � h} → {S[f , h]}.

The rewrite rule states that we can create an S-labeled edge from f to h when f � h. Note,
however, that some of the S-labeled edges thus constructed may be deleted during the subsequent
transitive reduction. The remaining ones after the transitive reduction are the edges representing the
superposition relation. The node f is to be added to the peaks of G. To find the node to which we
construct an edge from f is a simple graph traversal. For this purpose, we incorporated the graph
traversal strategy Trav in our language G. The semantics of Trav can be described by the following
semantic equation.

Trav ρ {} G κ ν = ν G
Trav ρ ({e} ∪ es) G κ ν = ρ e G (λG. Trav ρ (Succ e G) G ν ′ ν ′) ν ′ where ν ′ = λG. Trav
ρ es G ν ν and (Succ e G) computes the set of nodes x of G such that e � x.

Note that (Succ e G) finds the set of successor nodes using� rather thanm, since any node connected
by m from e can be reached by multiple edges of � from e by Proposition 24. Let Tr(G) be a function

5 In this subsection, in order to explain the essential idea of the computation of the superposition, we employ an ordinary
graph. Actual implementation is done in the labeled hypergraphs that have been discussed so far.
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Fig. 11. Superposition relation after face division.

Fig. 12. Insertion of a superposition hyperedge.

to compute the transitive reduction of a graph G. Then the following program, receiving a graph G,
returns the desired graph.

Trav AddS KG G κ Tr

Example 9 (Superposition After Making a Crease). We consider O = (Π,v,�)  
→ O′ = (Π ′,v′,�′)

as shown in Fig. 11. We see that Π = {f , g}, v= {f , g} and �= {f , g}. By the face division, we have
f � (f1, f2) and g � (g1, g2). Whether or not f1 m′ g1 holds in O′ depends on whether faces f1 and g1
overlap. In the case of the fold along r1, we have fi m′ gi for i = 1, 2, but in the case of the fold along r2,
neither f1 m′ g1 or g1 � m′f1 holds. Let us consider the latter case further. Fig. 12 depicts a subgraph
of the graph representing O′. In O′ = (Π ′,v′,�′),Π ′ = {f1, f2, g1, g2}, v= {(f1, f2), (g1, g2), (f2, g2)}
and �= {(f2, g2)}. The hyperedge e1 is labeled L since the f1 is to the left of f , and the e2 labeled R.
Similarly, e3 and e4 are labeled L and R, respectively. The hyperedge e5 is labeled S since f � g . The
hyperedge e6 is added. This hyperedge is labeled S, since they realize the superposition relation after
the face division. In the figure, the other incoming edges of the A-labeled hyperedges are omitted.

7.4. Computation of superposition relation induced by the rotation

The final stage of the fold is the rotation of faces. It consists of steps 3 and 4 of Algorithm Basic
fold (Algorithm 3). Prior to the face rotation, we check the foldability. Namely, we check whether the
fold line passes through the interior of a face. If true, we cannot make a fold. The rotation at step 3
induces the changes in the coordinates of the vertices of the moved faces. This invokes numerical
computation of the coordinates, on one hand, and symbolic computation of the reflection relation
between the vertices before and after the rotation, on the other. These computations do not change
the structure of the graph. We construct S-labeled hyperedges using the rewrite rule Trav explained
in Section 7.3 for finding the the pair of faces that should be connected by S-labeled hyperedges. The
algorithm is similar to the one for step 7 of Algorithm Crease. Finally, we take the transitive reduction
of the constructing graph.
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Fig. 13. Origami after crease.

Fig. 14. Origami after basic fold.

Fig. 15. Graph of origami of Fig. 13.

Example 10 (Superposition by Rotation). Fig. 13 shows the origami after making creases. The ray r
corresponding to the fold line runs from lower right to upper left. The faces on the base layer of the
origami have been divided by the ray r into faces f and a. At this step, the origami consists of faces
a, b, c, d, f and g . We see that the faces a, b, c and d are to the right of r , and the faces f and g to the left
of r . Fig. 14 shows the result of the rotation along r . Face g superposes face f . Faces b and c superpose
a. Face d superposes b.
Fig. 15 shows the graph of the origami of Fig. 13. The rotation induces the graph transformation

from the graph of Fig. 15 to that of Fig. 16. The newly added S-labeled hyperedges are e5, e6, e7, e8 and
e9. For simplicity, we omit the hyperedges of the other labels.

8. Conclusions

Wehave presented an abstractmodel for origami. Central to themodeling is the abstraction of fold.
The abstraction of fold led to graph-theoretic modeling of an origami and transformation of the graph
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Fig. 16. Graph of origami of Fig. 14.

representing the origami. By this formalism,we are able to rigorously construct an origami and reason
about the process of construction of the origami as well as the geometrical properties of constructed
origami. Furthermore, it has been shown that the graph-theoretic formalism has the advantage of
separating domains of discourse into pure combinatorial domain and geometrical domainR ×R.
We have also presented a language of graph rewriting. The language enables us to describe the

process of graph transformation algebraically. Our formalism follows closely that of algebraic and
categorical graph theories.
The graph contains necessary information to explore other possible methods of origami

constructions. We are thus in a position to tackle challenging problems such as of discovering a
new construction given an origami shape, and of discovering a new origami method that has certain
geometrical properties employing various AI techniques.
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