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In recent decades fire size and severity have been increasing in high elevation forests of the American
Southwest. Ecological outcomes of these increases are difficult to gauge without an historical context
for the role of fire in these systems prior to interruption by Euro-American land uses. Across the gradient
of forest types in the Pinaleño Mountains, a Sky Island system in southeast Arizona that experienced two
relatively large high-severity fires in the last two decades, we compared fire characteristics and climate
associations before and after the onset of fire exclusion to determine the degree of similarity between
past and recent fires. We use a gridded fire scar and demography sampling network to reconstruct spa-
tially explicit estimates of fire extent and burn severity, as well as climate associations of fires from indi-
vidual site to landscape scales from 1640 to 2008 C.E. We found that patterns of fire frequency, size, and
severity were relatively stable for at least several centuries prior to 1880. A combination of livestock graz-
ing and active fire suppression after circa 1880 led to (1) a significant reduction in fire spread but not fire
ignition, (2) a conversion of more than 80% of the landscape from a frequent, low to mixed-severity fire
regime to an infrequent mixed to high-severity fire regime, and (3) an increase in fuel continuity within a
mid-elevation zone of dry mixed-conifer forest, resulting in increased opportunities for surface and
crown fire spread into higher elevation mesic forests. The two most recent fires affecting mesic forests
were associated with drought and temperature conditions that were not exceptional in the historical
record but that resulted in a relative proportion of high burn severity up to four times that of previous
large fires. The ecological effects of these recent fires appear to be more severe than any fire in the recon-
structed period, casting uncertainty upon the recovery of historical species composition in high-severity
burn patches. Significant changes to the spatial pattern, frequency, and climate associations of spreading
fires after 1880 suggest that limits to fuel loading and fuel connectivity sustained by frequent fire have
been removed. Coinciding factors of high fuel continuity and fuel loading, projected lengthening of the
fire season, and increased variability in seasonal precipitation suggest that large high-severity fires, espe-
cially in mixed-conifer forests, will become the predominant fire type without aggressive actions to
reduce fuel continuity and restore fire-resilient forest structure and species composition.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The average annual area burned in wildfires in the Western U.S.
increased more than six fold over the past four decades
(Westerling et al., 2006; Littell et al., 2009) with area burned in
large wildfires increasing by an average of 355 km2 annually from
1984 to 2011 (Dennison et al., 2014). The area affected by high-
severity fire is increasing as well (Eidenshink et al., 2007; Miller
et al., 2009; Cansler and McKenzie, 2014), although the propor-
tional increase in high-severity fire, in which most or all overstory
vegetation is killed, is less consistent among western ecoregions
and forest types (Dillon et al., 2011). While the human and natural
resource costs of recent fires are indisputable, the degree of long-
term ecological change resulting from recent fires is not well
understood. In many dry forests of the interior West, fire was a
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keystone ecosystem process (Falk, 2006) that shaped forest struc-
ture and species composition from stand to landscape scales
(Swetnam and Baisan, 1996b; Brown and Shepperd, 2001;
Heyerdahl et al., 2001; Taylor and Skinner, 2003; Fulé et al.,
2009; Falk et al., 2011). In topographically diverse forests of the
southwestern U.S., steep vertical gradients maintained distinct
species assemblages and different fire regimes in close spatial
proximity and often limited the spread of fire across ecological
boundaries (Grissino-Mayer et al., 1995; Stephens, 2001;
Margolis and Balmat, 2009; Swetnam et al., 2009). Heterogeneity
of forest types and fire regimes contributed to the landscape-scale
resilience of forests within these systems by limiting the patch size
of high-severity fire (Agee, 1998a; Taylor and Skinner, 2003).

Euro-American settlement of the western states in the mid to
late 19th century led to intensive livestock grazing, timber harvest-
ing, and mineral extraction that interrupted natural fire cycles
(Bahre, 1998; Swetnam et al., 2004). These actions initiated a series
of changes that ultimately homogenized the structure and species
assemblages of forests adapted to frequent, moderate to
low-severity fires via infilling of canopy gaps by shade tolerant
species (Minnich et al., 1995; Allen et al., 2002; Fulé et al., 2003).
Conditions in many of the western forests that were adapted to
these frequent moderate to low-severity fires now represent forest
structure of assemblages adapted to infrequent, high-severity fire
with multistoried canopies that promote fire crowning behavior
as a result of fuel loading and development of understory ladder
fuels (Agee, 1998b; Allen et al., 2002). Recent fires in some western
forests may represent a return to historical patterns of fire size and
severity following a century of fire interruption (Marlon et al.,
2012; Williams and Baker, 2012; Odion et al., 2014), or they may
represent a new fire dynamic in which legacies of fire exclusion
are interacting with changing climatic conditions to produce fires
uncharacteristic of those prior to Euro-American settlement
(Crimmins, 2011; Garfin et al., 2013; Williams et al., 2013; Fulé
et al., 2013).

Forests of Madrean ‘‘Sky Island’’ systems are a microcosm of
western forest types ranging from desert cactus and shrubland to
subalpine spruce-fir forest. Vegetation is distributed along steep
vertical gradients that mediate temperature and moisture regimes
and maintain distinct species assemblages (Whittaker and Niering,
1975; Van Devender and Spaulding, 1979; McLaughlin, 1993). The
Sky Island region is expected to experience the ecological impacts
of climate warming sooner than many other parts of the west with
similar forest ecosystems (Notaro et al., 2012; Garfin et al., 2013),
providing an opportunity to observe changes to the dynamic inter-
actions of forests, fire, and climate sooner than in other western
forests. Historically, fire regimes in the Sky Islands and elsewhere
in the southwestern North America bioregion were regulated by
steep ecological gradients. For example high frequency, low-severity
fires were associated with pine and dry mixed-conifer forests, and
lower frequency, higher-severity fires were associated with mesic
mixed-conifer and subalpine forest types (Grissino-Mayer et al.,
1995; Swetnam et al., 2001, 2009; Barton et al., 2001; Margolis
and Balmat, 2009; Margolis et al., 2011).

In recent decades the region has been the locus of multiple
large, mixed-severity fires, providing opportunities to compare
current and historical fire regimes. Here we reconstruct the spatial,
temporal, and severity patterns of fire encompassing the entire
montane zone of a mountain range, spanning gradients of eleva-
tion and changing forest composition. The reconstruction covers
more than a three century period of record in an area that experi-
enced two large wildfires during the prolonged drought that began
in the mid-1990s. We use the historical and contemporary fire
record to examine whether there were differences in fire charac-
teristics before and after fire exclusion including (1) frequency of
isolated and spreading fires at landscape scale and within forest
types; (2) associations between fire spread and climate variations;
and (3) fire size, spatial patterns, and proportion of low and high-
severity fire. These comparisons allow us to evaluate whether
recent high-severity fires are within or outside the historical range
of variability in terms of frequency, severity, and spatial extents.
2. Study area

The Pinaleño Mountains in southeast Arizona are the tallest of
the Madrean Sky Island ranges, spanning a vertical gradient of
more than 2100 m in just 8.6 km of horizontal distance, from Chi-
huahuan mixed-desert shrubland at 1150 m to spruce-fir forest up
to 3268 m. Along this steep elevational gradient, the Pinaleño
Mountains contain forest types representative of a latitudinal tran-
sect from Sonora Mexico to British Columbia Canada (Warshall,
1995). Forests are distributed along gradients of elevation and
aspect (Fig. 1). In the study area above 2135 m, lower forests are
comprised of ponderosa pine (Pinus ponderosa var. scopulorum
Engelmann), Gambel oak (Quercus gambelii Nutt.), Arizona white
oak (Quercus arizonica Sarg.), and silverleaf oak (Quercus hypoleuco-
ides A. Camus) that transition to a dry mixed-conifer forest domi-
nated by Douglas-fir (Pseudotsuga menziesii var. glauca (Mirbel)
Franco), southwestern white pine (Pinus strobiformus Engelmann),
and ponderosa pine, with minor components of white fir (Abies
concolor (Gor. & Glend.) Lindl. ex Hildebr.) and aspen (Populus tre-
muloides). Above 2750 m mesic mixed-conifer forests are domi-
nated by Douglas-fir and white fir with minor components of
southwestern white pine, corkbark fir (Abies lasiocarpa var. arizo-
nica (Hook.) Nutt.) and Engelmann spruce (Picea engelmannii Parry
ex. Engelm.) (Martin and Fletcher, 1943). At the highest elevations
and along north-facing slopes, Engelmann spruce and corkbark fir
are dominant species interspersed with occasional Douglas-fir. The
Pinaleño Mountains contain the southernmost extent of spruce-fir
forest in North America, and dense upper elevation forests serve as
critical habitat for one endangered and several threatened wildlife
species (Stromberg and Patten, 1991; U.S. Fish and Wildlife Service,
2004; Koprowski et al., 2005, 2006; Sanderson and Koprowski,
2009). The upper spruce-fir forest also hosts the Mount Graham
International Observatory, an astrophysical complex that includes
the largest optical telescope in the Northern Hemisphere.
2.1. Disturbance history

Two fires in 1996 and 2004 burned a combined 14,160 ha in
pine, mixed-conifer and spruce-fir forest, affecting 45% of the for-
ested area above 2135 m (USDA Forest Service, 2013). Prior to
the 2004 fire, a series of insect outbreaks in the spruce-fir forest
resulted in mortality of 83% of Engelmann spruce and 63% of cork-
bark fir greater than seven cm DBH (Lynch, 2009; O’Connor, 2013).
This mortality, combined with the 2004 fire, resulted in a 66%
reduction in the area occupied by spruce and corkbark fir
(O’Connor et al., 2013). More than half of the area of these fires
burned at mixed- to high-severity based on the relative difference
normalized burn ratio (RdNBR; Miller and Thode, 2007; MTBS,
2013). No information is available on the relative proportion of
mixed and high burn severity for fires in 1956 and 1975, the only
other known 20th century fires in the Pinaleño Mountains exceed-
ing 2000 ha.

Prior to these recent fires, stand-scale studies ranging in size
from 15 to 32 ha in two mixed-conifer and one spruce-fir site
indicated that over the period 1575–1880 low-severity fire was
frequent in parts of the mixed-conifer forest, occurring approxi-
mately every 4.2 years (Grissino-Mayer et al., 1995). No fire scars
were found within the spruce-fir site and tree demographic evi-
dence corroborated with fire scar dates from nearby mixed-conifer



Fig. 1. Pinaleño Mountain forest types and sampling locations. Colored area denotes elevation above 2135 m. Underlying vegetation layer represents pre-1880 forest types
generated from LANDFIRE biophysical setting (LANDFIRE, 2013). High-severity burn patches are calculated from the relative difference normalized burn ratio (MTBS, 2013)
categorized according to Miller and Thode (2007). All raster values are generalized to a minimum patch size of 6.75 ha.
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forest suggested that the sampled spruce-fir forest established
after a stand-replacing fire in 1685 (Grissino-Mayer et al., 1995;
Swetnam et al., 2009; Margolis et al., 2011). Grissino-Mayer et al.
(1995) noted an abrupt decline in fire frequency in the mixed-
conifer sites after 1880 and raised concerns that changes to forest
structure and species could alter future fire behavior. Two other
studies on the dynamics of the spruce-fir forest used tree age struc-
ture (Stromberg and Patten, 1991) and charcoal deposition
(Anderson and Smith, 2009) to conclude that fire in parts of this
forest type was rare, occurring at frequencies of 300 to more than
1000 years. Although these previous stand-level studies provided
valuable insights, such selected and opportunistic-sampling
designs have been argued to be biased and unrepresentative of
broader landscape spatial patterns and temporal trajectories (e.g.,
Williams and Baker, 2012; Odion et al., 2014, but see Farris et al.,
2013). This study expands upon the earlier dendroecology studies
in the Pinaleño Mountains with a spatially unbiased, landscape-
scale sampling of forest demography and fire history throughout
the pine, dry and mesic mixed-conifer, and spruce-fir forests.
3. Methods

To reconstruct the spatial, temporal, and severity components
of historical fire regimes in pine, dry and mesic mixed-conifer,
and spruce-fir forest types, we used a systematic grid of 58
0.05-ha circular plots spaced one kilometer apart (Fig. 1). A second-
ary grid of 15 supplemental plots offset 500 m northwest of fixed
area plots was used to increase sampling resolution in and around
the spruce-fir forest. Gridded sampling designs have been shown
to more efficiently capture spatial variability of simulated fire
return intervals than random or stratified (targeted) sampling
designs (Parsons et al., 2007; Farris et al., 2013). Plot locations were
determined through a GIS overlay in advance of field sampling.
Two plots that included roads or other highly modified areas were
relocated 50 m in a direction perpendicular to the constructed
feature. We collected up to three increment cores from live trees
or a single cross section from snags and stumps with diameter at
breast height (DBH) 19.5 cm or larger. Trees between one and
19.4 cm DBH were sampled on a nested sub-plot equal to one third
the area of the full plot (0.017 ha). Samples were taken within
20 cm of the soil surface whenever possible to minimize the need
for sampling height correction of pith dates for tree age. In supple-
mental plots, cores or cross-sections were collected from the 10
spruce and 10 non-spruce trees nearest plot center with DBH
greater than 15 cm.

Fire-scarred material was collected from live trees, snags, and
stumps within demography plots and while traveling among plots
(Heyerdahl et al., 2014). All fire-scarred samples collected outside
of demography plots were geo-referenced, and site characteristics
were recorded and photographed. When appropriate, several sam-
ples from individual stumps and snags were collected to preserve
as many fire dates as possible (Dieterich and Swetnam, 1984).
The original collections of Grissino-Mayer et al. (1995) were com-
bined with the landscape-scale fire history reconstruction and
were in close proximity to four of the 73 demography sampling
locations.

Increment cores and cross-sections were mounted and sanded
with progressively finer grits until the wood cell structure was
observable under 45� magnification (typically 400 grit). All
samples were crossdated using a combination of visual pattern
matching (Yamaguchi, 1991), skeleton plots (Speer, 2010), and sta-
tistical correlation analyses (Holmes, 1983; Grissino-Mayer,
2001a). On fire-scarred samples we recorded inner ring or pith
date, year and season of fire (when determinable), outer year or
bark date, scars of undetermined origin, and growth suppression
or release dates. Scars of undetermined origin, injury-related
growth suppressions, and outer ring (death) dates corresponding
to fire scars recorded within 500 m of a sample were recorded as
fire dates; otherwise they were excluded from fire history analyses
(Farris et al., 2013; Heyerdahl et al., 2014).

We used fire perimeter records from the Coronado National
Forest fire atlas database for the period 1974–2008 (USDA Forest
Service, 2013) and digitized the perimeter of the 1956 Nuttall fire
from a hand drawn map from Forest historical archives. Fire
perimeters prior to 1956 were reconstructed from the fire scar
record. A map of logging activity from 1880 to 1970 was used to
screen seedling recruitment for effects of logging activities.
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4. Analysis

To differentiate ponderosa pine, dry mixed-conifer, mesic
mixed-conifer and spruce-fir forest types we used the similarity
of species assemblages, derived from Importance Value (IV) rank-
ings (Cottam and Curtis, 1956; Taylor, 2000). IVs were calculated
from the relative frequency and basal area of the six dominant
conifer species in the year 1870 to account for changes to species
composition, frequency, and basal area over the fire-interrupted
period. Similarity of species assemblages, derived from IV rankings,
was used to perform a cluster analysis of plots. Douglas-fir was the
most abundant species throughout all types of mixed-conifer for-
est, so IVs of pine species were double-weighted to enhance the
differentiation between dry and mesic mixed-conifer forest types
(McCune et al., 2002). Hierarchical clustering was based on Ward’s
method of minimizing within-group variance among plots
(Legendre and Legendre, 1998) using the hclust package in the R
statistical computing environment (R Core Team, 2012). Prior to
hierarchical clustering, the plot variable matrix was transformed
to Jaccard distance to minimize the effect of zeros in the dataset
on the clustering results (McCune et al., 2002). Demography plots
without evidence of fire were excluded from the analysis unless
fire history information was collected from plots on three adjacent
sides, in which case they were grouped with nearest neighbors
(Supplemental Fig. 1).

To observe patterns of fire spread, we used geo-referenced fire
records composited at the plot level. Fire dates recorded within
500 m of a plot center were ascribed to a single plot to allow direct
comparison of discrete 1 km2 fire-recording sites (Dieterich, 1980;
Farris et al., 2010). Composited fire records were filtered to include
only fires recorded on two or more trees to reduce the possibility of
incorporating non-fire related scars in the analysis. A composite
record of fire years from multiple samples over a discrete spatial
unit produces a more complete record of fire occurrence because
individual trees and samples are imperfect recorders of fire, and
scars are sometimes eroded or burned off in subsequent events
(Dieterich, 1980; Dieterich and Swetnam, 1984; Falk et al., 2011;
Farris et al., 2013). Compositing of fire records assumes topo-
graphic and ecological homogeneity within the specified scaling
unit. While homogeneity at the kilometer scale cannot be assumed
for all forest types and across the vertical gradient sampled in the
Pinaleño Mountains, variability among one km2 gridded cells was
assumed to be greater than variability within cells. Compositing
fire records by a standard spatial unit removes sampling bias gen-
erated by the natural aggregation of fire-recording sites and allows
for an unbiased comparison of sites across a landscape (Farris et al.,
2013).

The fire scar record is a conservative estimate of actual fire
frequency at individual tree and composited site scales. Scar for-
mation is a highly variable process dependent upon fire metrics
such as tree-scale fire intensity, flame lengths, and residence time,
individual tree properties such as bark thickness, diameter, and
presence and condition of a prior scar, and site characteristics such
as topographic position and time since last fire (Gutsell and
Johnson, 1996; Swetnam and Baisan, 1996a; Baker and Dugan,
2013). In a study of scar formation following low and mixed-sever-
ity fires in ponderosa pine forests of northern Arizona, the proba-
bility of scar formation, and subsequent recording of a fire event
was significantly different for trees with no previous fire scarring
(�0.38) and trees with one or more previous fire scars (�0.89)
(Baker and Dugan, 2013). This finding supports the definition of a
recorder tree as defined by Swetnam and Baisan (1996a,b) and
was the logic behind preferentially sampling trees with multiple
fire scars where possible when traveling between fire and demog-
raphy plot locations. Preferential sampling of multi-scarred trees
reduces the possibility type two error (false negative) as noted
by Baker and Dugan (2013), and reduces the number of samples
necessary to approach the true fire frequency of a given site
(Baker and Ehle, 2001).

4.1. Fire statistics by forest type

We calculated fire frequency statistics for composited sites over
the pre-fire exclusion period when 20% or more of sites were
recording, and during the post fire-exclusion period after 1880.
Separate analyses were performed for pine, dry mixed-conifer,
mesic mixed-conifer and the full study area. Mean and median fire
intervals, Weibull median probability interval (WMPI), and mini-
mum and maximum fire intervals were generated from the Fire
History Analysis and Exploration System (FHAES) (Grissino-
Mayer, 2001b; Sutherland et al., 2013). The Weibull model fitted
to a frequency distribution of fire intervals has been shown to be
a statistically more robust estimator of fire return interval in
southwestern U.S. forests than mean interval values, because fire
intervals tend to be right-skewed and include occasional extreme
values (Grissino-Mayer, 1999; Falk and Swetnam, 2003). For the
purposes of simplifying language, fire return intervals throughout
this text are the Weibull median probability interval (WMPI)
unless otherwise specified. For fire interval analysis, we used the
convention of cumulative fire size classes with a lower size limit
only. Fire intervals within forest types and at the full study area
scale were calculated for all fires recorded in one or more sites,
10% or more of sites, 33% or more of sites, and 50% or more of sites
(Table 1). For spatial analysis of fire size (Table 2), discrete fire sizes
with lower and upper bounds were used to differentiate between
small (3–10% of sites), spreading (11–49% of sites), and landscape
scale (P50% of sites) fires. The standardized size of recording sites
allows for a minimum spatial estimate of fire size based on the
number of recording sites. We used a two tailed Student’s t-test
to identify significant differences (p < 0.05) in mean fire intervals
between the pre-fire exclusion period (1640–1880) and the post
fire-exclusion period (1881–2008) in each forest type and fire size
class across the study area (FHX2 software package, Grissino-
Mayer, 2001b).

To test for changes in patterns of fire size before and after Euro-
American settlement, we standardized the total number of fires
recorded during the two periods of analysis to 100 and then
rescaled the number of fires recorded in each size class. We used
a one-tailed t-test with unequal variance (Gotelli and Ellison,
2004) to test for significant differences in the total number of fires
in each size class during the pre and post-fire exclusion periods.

4.2. Climate associations with fire size

Temporal relationships between drought conditions, ocean-
atmospheric oscillations, and fires at the mountain range scale
were identified with superposed epoch analysis (SEA) (Lough and
Fritts, 1987; Swetnam, 1993). SEA tests for significant departures
from the range of annual values in a continuous climate variable,
in relation to a series of event years. In fire history analysis, values
of a climate variable prior to and during individual fire years are
compared with the distribution of values for the full time domain
of the climate series. We tested the statistical significance of the
fire year correlations to climate variables with 1000 bootstrapped
random event years compared to actual event years (Holmes and
Swetnam, 1994). Fire size classes used for fire-climate analysis
were the same used for analysis of changes to fire size (small,
spreading, landscape scale). Climate variables included recon-
structed summer (June–August) Palmer Drought Severity Index
(PDSI) for Southeast Arizona (Cook and Krusic, 2004, grid point



Table 1
Fire interval statistics by forest type and the full study area. Fire metrics are based on 241 fire-scarred trees distributed along a grid of 43, 1-km2 composited sites with a minimum
of two trees scarred. Fire intervals are filtered by the minimum percentage of sites recording as a proxy for fire size (Swetnam and Baisan, 1996a). Filtered fire statistics for the full
study area correspond roughly to small (10%), spreading (33%), and landscape (50%) scale fires. WMPI is Weibull median probability interval.

Panel A: Fire Statistics 1640 to 1880
Pine-dominated (11 sites) Dry mixed-conifer (20 sites)

Sites recording N Mean FI Median FI WMPI Min/Max FI N Mean FI Median FI WMPI Min/Max FI
All scars 97 2.4* 2 2.1 1/11 98 2.4 2 2.0 1/11
10% 48 4.8 4 4.1 1/18 69 3.4* 3 2.9 1/12
33% 23 9.6 9 9.1 3/21 24 9.3 10 9.0 3/18
50% 12 18.0 17 17.2 4/34 19 10.7 11 10.4 3/20

Mesic mixed-conifer (12 sites) Study area (43 sites)

Sites recording N Mean FI Median FI WMPI Min/Max FI N Mean FI Median FI WMPI Min/Max FI
All scars 56 4.1* 3 3.4 1/18 141 1.7* 1 1.5 1/11
10% 48 4.8 4 4.1 1/18 64 3.6* 3 3.2 1/12
33% 18 11.9 11 10.4 2/32 20 10.8 11 10.5 4/20
50% 9 23.9 24 21.6 4/44 11 19.6 16 18.6 8/44

Panel B: Fire Statistics 1881 to 2008
Pine-dominated Dry mixed-conifer

Sites recording N Mean FI Median FI WMPI Min/Max FI N Mean FI Median FI WMPI Min/Max FI
All scars 25 4.6* 4 3.9 1/15 28 4.3 2 3.0 1/27
10% 7 10.3 4 6.2 1/35 10 12.3* 6 8.3 1/40
33% 1 – – – – 1 – – – –
50% 1 – – – – 0 – – – –

Mesic mixed-conifer Study area

Sites recording N Mean FI Median FI WMPI Min/Max FI N Mean FI Median FI WMPI Min/Max FI
All scars 20 5.9* 5 5.1 2/17 54 2.3* 1 2.0 1/8
10% 1 – – – – 6 21.8* 25 18.2 2/40
33% 0 – – – – 0 – – – –
50% 0 – – – – 0 – – – –

– Indicates not enough fires to calculate statistics or compare periods.
* Indicates significant change in fire interval between analysis periods (a < 0.05).

Table 2
Change in the relative proportion of small, spreading, and landscape-scale fires before and after fire exclusion. Fire size classes used here are distinct subsets of total fires from
1640 to 1880 (n = 141) and 1881–2008 ( n = 54).

Classification Sites recording Proportion of sites (%) Size (ha) Count of fires Fires per year % fire years

Panel A: Fire size statistics 1640–1880
Single site 1 62 <100 6 0.03* 4
Small 2–5 3–10 100–500 104 0.43* 74
Spreading 6–21 11–49 600–2100 20 0.08* 14
Landscape P22 P50 >2,200 11 0.05 8

Panel B: Fire size statistics 1881–2008
Single site 1 62 <100 24 0.19* 44
Small 2–5 3–10 100–500 27 0.21* 50
Spreading 6–21 11–49 600–2100 3 0.02* 6
Landscape P22 P50 >2200 – – 0

–Indicates not enough fires for comparison.
* Indicates significant difference between periods.
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105) and Niño3 index from Mexico and Texas (Cook et al., 2009) at
annual lags of one to six years prior to a fire year. In the Southwest,
drought in the spring and prior winter are correlated strongly with
tree-ring reconstructed summer PDSI (St. George et al., 2010)
which has been shown to influence fire probability during the
pre-monsoon period (Baisan and Swetnam, 1990; Swetnam and
Baisan, 1996a; Westerling et al., 2003). The Niño3 index is a
tree-ring reconstructed proxy for the El Niño Southern Oscillation
(ENSO) winter sea surface temperature in the Pacific Ocean (5�N–
5�S, 90�–150�W). A positive Niño3 index indicates warm sea sur-
face temperatures associated with moist El Niño winter conditions
in the Southwest U.S. and subsequent high snow accumulation and
reduced likelihood of spreading fire in the spring. Conversely, a
negative Niño3 index correlates with dry La Niña winter conditions
in the Southwest U.S. and conditions favorable for spreading fire
(Swetnam and Betancourt, 1990a,b; Diaz and Markgraf, 2000;
Margolis and Swetnam, 2013).

To meet the statistical assumption of inter-annual indepen-
dence for SEA analysis, we used an autoregressive model to remove
year-to-year autocorrelation in PDSI and Niño3 index values
(Heyerdahl et al., 2011; Margolis and Swetnam, 2013). The autore-
gressive model residuals are a ‘‘prewhitened’’ version of the origi-
nal index series that meets the statistical requirements for SEA
analysis. There were no statistically significant differences in
fire–climate relationships between raw and ‘‘prewhitened’’ climate
indices. We compared fire–climate relationships in the pre-fire
exclusion period (1640–1880) to the post fire-exclusion period
(1881–2008) to determine changes attributable to fire exclusion
and recent warming trends.

4.3. Spatial reconstruction of fire size and severity

Fire severity terminology used in this study is based on the
degree of overstory tree mortality, in which low-severity fire is
limited primarily to surface mortality of seedlings, saplings, and
shrubs, mixed-severity fire includes patches of canopy tree
mortality but effects are primarily on surface vegetation, and
high-severity fire describes complete or near complete mortality
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of canopy trees (Turner et al., 1999). To reconstruct the size and
severity of past fires we used a combination of composited fire-
scar site locations (Iniguez et al., 2009; Farris et al., 2010) and
demography plots (Heyerdahl, 1997; Heyerdahl et al., 2001;
Brown and Wu, 2005; Margolis et al., 2007) (Supplemental
Fig. 2). The spatial extent of fire reconstructions was determined
by applying a 750 m buffer to the grid of demography plots to gen-
erate a continuous fire reconstruction surface between spatially
discrete composited fire records (Hessl et al., 2007; Swetnam
et al., 2011). Interpolated surfaces of individual fire sizes and
severities were based on inverse distance weighting of four
nearest point locations with a power function of 2 and a raster cell
size of 30 m (ESRI Inc., 2012).

Patterns of fire spread were examined by reconstructing the
spatial pattern of mean fire return intervals for all fires recorded
in two or more sites during the pre-settlement and post-settle-
ment periods. A fire interval surface was interpolated over the
sampled area through inverse distance weighting of mean fire
interval values assigned to each point on the gridded surface.
We used the interpolated fire interval surface to identify pat-
terns of fire return intervals in relation to forest types, landscape
features, and period of analysis. Prior to 1955, fire perimeters
were estimated by interpolating the area covered by the gridded
sampling network. Fires after 1955 were mapped from fire atlas
data.

To reconstruct severity of historical fires we used a combination
of fire scars, tree establishment cohorts, and tree death dates to
ascribe a fire severity class to each gridded fire composite site for
each fire year. The formation of a tree cohort, defined as four or
more trees recruiting in a 20-year period after a fire (adapted for
0.05 ha plots from Heyerdahl et al., 2011), was one of several crite-
ria used to differentiate between fire severity classes. Severity was
classified as low (value ‘‘1’’) if fire scars were recorded but there
was no evidence of cohort formation, mixed (value ‘‘2’’) if a combi-
nation of fire scars and death dates and one or more cohorts were
present, and high (value ‘‘3’’) if there was a single post-fire cohort,
no record of recruitment prior to the cohort, and no evidence of fire
scar formation with or without tree death dates. Sites were coded
as ‘‘No Data’’ until they began recording fire and ‘‘0’’ if they did not
record fire during a specific fire year. For a discussion of the
assumptions of multiproxy reconstruction of historical fire severity
see Heyerdahl et al. (2011, 2014). To calculate patch size, the con-
tinuous interpolated severity surface was binned such that values
greater than 2.6 were high-severity, 1.5–2.6 were mixed-severity,
0.3–1.5 were low-severity, and <0.3 were no fire. Thresholds for
fire-severity bins were calibrated to satellite-derived vegetation
burn severity thresholds of RdNBR (MTBS, 2013) from Miller and
Thode (2007) for plots located within the burn perimeters of the
1996 and 2004 fires. Satellite-derived fire severity classes for
recent fires were verified by seedling recruitment and tree
survivorship within demography plots.

5. Results

Spatial and temporal reconstructions of historical fires were
based on 1201 crossdated fire scars collected from 241 trees at
130 fire recording locations, and 1222 tree establishment dates
from 2178 crossdated samples. We identified 231 unique fire years
over the period 1403–2008, but limited the spatial reconstruction
of fires to the period 1640–2008 when 20% or more of sites were
recording (Fig. 2a). The 10 mesic spruce-fir sites comprising 19%
of the study plots had no fire-scars recorded over the study period.
Fires affecting two or more sites were common over the period
1640 to 1880, but became less frequent in the 20th century when
the average interval between small fires doubled and landscape-
scale fires ceased (Fig. 2b and c).
5.1. Fire size and fire interval at forest type and landscape-scales

Return intervals for fires recorded in 10% or fewer of sites
(<500 ha in size) varied little across pine and mixed-conifer forests
prior to 1880 (Table 1A). Fires on the order of 100–200 ha typically
occurred every 2–4 years in pine, dry mixed-conifer and mesic
mixed-conifer forest types. Larger fires affecting up to 33% of sites
typically occurred at 9–11 year intervals and were recorded on up
to 600 ha within individual forest types and 1400 ha at the scale of
the entire study area. Fires recorded in more than half of sites were
more variable, occurring most frequently in dry mixed-conifer
forest (WMPI 10.4 years), somewhat less frequently in pine-
dominated forest (WMPI 17.2 years), and least frequently in mesic
mixed-conifer forest (WMPI 21.6 years). Over the entire study area,
the majority of fires (74%) were approximately 100–500 ha, and 8%
of fires were greater than 2200 ha and were recorded in at least
two forest types (Table 2A).

Within individual forest types with fire recording trees, the fre-
quency of small and spreading fires varied considerably. Approxi-
mately half of fires in pine forests (51%) were small, recorded in
fewer than 10% of sites and with a return interval of approximately
four years (n = 49, WMPI 2.1–4.1 years) (Table 1A). Fires recorded
in 33% or more of pine sites occurred at intervals of 10–17 years.
In dry and mesic mixed-conifer forests where spatial connectivity
among sites was greater, the majority of fires were recorded in
10% or more of sites (70% of dry mixed-conifer fires and 86% of
mesic mixed-conifer fires). In dry mixed-conifer forest, fire return
intervals were smaller and fire sizes were larger than in any other
forest type (WMPI 2–10.4 years, for fires recorded in 1–50% or
more of sites respectively). In mesic mixed-conifer forest, fire
return intervals were generally longer than those of other forest
types (WMPI 3.4–21.6 years for fires recorded in 1–50% or more
of sites respectively) and the proportion of fires recorded in more
than half of sites (16%) was intermediary between pine (12%)
and dry mixed-conifer (20%) forest types. Variability of fire return
intervals at individual sites in mesic mixed-conifer forest appears
to have been influenced by proximity to dry mixed-conifer or
spruce-fir forest. Sites abutting dry forests typically recorded fires
at 1–18 year intervals, whereas sites abutting the cool, moist
spruce-fir forest recorded fires at 17–44 year intervals. Within
the upper elevation spruce-fir forest, 10 sites had no evidence of
fire scars but had tree demographic evidence of high-severity stand
replacing fire in 1685 and 2004.

After 1880 the proportion of fires recorded in 10% or more of
sites across the study area dropped from 45% to 11%, and no fires
were recorded in 33% or more of sites (Table 1B). Within individual
forest types and at the landscape scale, variability in WMPI
increased significantly (t-test for difference in variance of the inter-
val distributions, p < 0.01) and return intervals for fires recorded in
more than 10% of sites increased six fold (Table 1 parts A and B).
There were not enough fires recorded in 33% or more of any forest
type to calculate fire statistics. Fires recorded in fewer than 10% of
sites accounted for 72%, 67%, and 95% of fires recorded in pine, dry
mixed-conifer, and mesic mixed-conifer forests respectively.

5.2. Change in the proportion of fire sizes

The proportions of small, spreading, and landscape-scale fires
were significantly different in the pre and post fire-exclusion peri-
ods (Table 2). The proportion of fires confined to a single site
(<100 ha) increased 11-fold from 4% of fires prior to 1880, to 44%
of fires after 1880. Fires recorded in 10% or less of the study area
(fires <600 ha) comprised 78% of all fires prior to Euro-American set-
tlement and 94% of fires after settlement. The proportion of spread-
ing fires affecting more than 10% of sites (fires >600 ha) decreased
by more than threefold after 1880 from 22% to 6%. Landscape-scale



Fig. 2. Landscape-scale fire history of the Pinaleño Mountains above 2135 m elevation. Chart is based on 43 composited 1-km2 fire recording sites and 10 additional spruce-fir
sites that recorded only the most recent fire in 2004. (a) Sample depth and percent of sites scarred. (b) Chronology of fires recorded at each composited site location;
horizontal lines are time spans and vertical tick marks are fires recorded by two or more trees within each site. (c) The composite record depicts all fires events recorded in
two or more sites. Periods of analysis from 1640 to 1880 and 1881 to 2008 are shaded in blue and gray, respectively. Stand replacing fires in 1685 and 2004 are identified by a
dashed orange line. Sites are arranged along a spatial continuum from northwest (top) to southeast (bottom). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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fires recorded on more than 2200 ha (50% of the study area) com-
prised 8% of total fires prior to 1880 and no fires after 1880.
5.3. Fire severity

Evidence of high-severity fire at the plot-scale was recorded
during three events in the reconstructed period in 1685, 1996,
and 2004. High-severity fire in 1685 is recorded as establishment
of fire-recording trees (pith dates and inner ring dates) shortly
after 1685 with no evidence of tree survival at the plot scale prior
to 1685 (Fig. 2b). High-severity fire in 1996 and 2004 is recorded as
tree death dates (outer bark) in their respective fire years with no
evidence of tree survival beyond the year of fire at the plot scale
(Fig. 2b). The number of sites recording high-severity fire, a proxy
for high severity patch size, was greatest in 1685 (12 sites total, 10
sites adjacent to one another), followed by 2004 (12 sites total, 9
sites adjacent to one another) and 1996 (5 sites total, 3 sites adja-
cent to one another). The lack of fire scar and demography records
prior to 1685 in four sites that subsequently recorded fire for sev-
eral hundred years (Fig. 2B) suggests that severity of the 1685 fire
in mesic and dry mixed-conifer forest was anomalous in the period
of reconstruction. Demographic and fire scar evidence of mixed-
severity fire was recorded in 1685 (2 sites), 1733 (1 site), 1773 (2
sites), 1785 (1 site), 1819 (1 site), and 1974 (1 site).
5.4. Fire and climate relationships at landscape and local scales

Over the period 1640–1880, spreading and landscape-scale fires
were both significantly associated with regional drought and the
onset of cool phase La Niña conditions (Fig. 3a–d). Smaller fires
(not shown) were associated with moderate drought years but
were not significantly correlated with PDSI or ENSO over this per-
iod. Spreading fires were more strongly associated with prior wet
conditions, which probably indicates the importance of fuel accu-
mulation prior to fire in dry forests (Swetnam and Baisan, 1996a)
(Fig. 3a). Landscape scale fires were associated with extreme win-
ter and spring drought the year of fire, as indicated by strong asso-
ciations to PDSI (St. George et al., 2010), and a weaker pattern of
antecedent wet conditions up to five years prior to the fire
(Fig. 3b). Spreading fires were associated consistently with the first
year of strong sea surface cooling (La Niña conditions) following a
prolonged 3–5 year period of warm-phase El Niño conditions
(Fig. 3c and d).

During the period of fire exclusion after 1880, spreading fires
were correlated significantly with drought the year of fire and per-
sistent drought 1–2 years prior to fire (Fig. 3e), but were no longer
associated with prior wet or cool phase La Niña conditions (Fig. 3f).
Climate associations of small fires were unchanged following fire
interruption, maintaining associations with moderate drought
but no significant correlation with PDSI or the Niño3 index (data
not shown).
5.5. Climate associations of high-severity fires

The fire that burned into and across the spruce-fir forest in 1685
occurred during very different drought and ENSO conditions than
recent fires with similar high-severity effects on the spruce-fir
system in 2004, and to a lesser extent in 1996 (Fig. 4). Conditions



Fig. 3. Fire-climate associations for spreading fires 1640–1880 and 1881–2008. Fires are reconstructed from 43 1-km2 composited fire-recording sites. Climate relationships
are lagged up to six years; vertical dashed lines indicate year of fire. Colored bars indicate significant relationship surpassing the 95% confidence interval. Palmer Drought
Severity Index (PDSI) and Niño3 index were prewhitened to remove inter-annual autocorrelation. Spreading fires are recorded in 11–49% of sites and two forest types (20 fires
pre-1880, 4 fires post 1880). Landscape fires are recorded in 50% or more of sites and three or more forest types (11 fires). No landscape scale fires are recorded after 1863.

Fig. 4. Drought and ENSO conditions before and during the three high-severity fires affecting the spruce-fir forest (1685, 1996, and 2004). Vertical dashed line indicates year
of fire. Palmer Drought Severity Index (PDSI) and Nino3 index are raw series from Cook and Krusic (2004) and Cook et al. (2009) respectively. Reference lines indicate two and
three standard deviations in the climate series over the period 1684–2006.
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prior to and during the 1685 fire were extreme examples of condi-
tions associated with 10 other widespread landscape fires prior to
1880, characterized by fire occurrence the first year of severe
drought following a pluvial period and coinciding with a switch
from El Niño to La Niña conditions. The cold season drought in
1685 was the most severe in the more than 400-year period from
1586 to 2008 (PDSI-4.2) and followed a four-year pluvial period
(Cook and Krusic, 2004). The Niño3 index indicates that 1685
was the eighth strongest La Niña year (Niño3 index-1.6) over the
same period. The fire in 1996 coincided with drought and Niño3
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index patterns comparable to but less severe than 20 spreading
fires that were recorded in less than half of the study area prior
to 1880, and was the only such fire to enter into the spruce-fir for-
est type. In contrast, the 2004 fire occurred four years into a persis-
tent drought and did not follow a pluvial period. PDSI in 2004
indicated moderate winter drought conditions (PDSI-3.3, 13th
most severe drought during past 400 years) during the fifth most
severe persistent drought in 400 years (3-year mean of PDSI-3.1).
The 2004 fire was the only fire during persistent drought that
was recorded in the spruce-fir forest. Additionally, the 2004 fire
was the only fire recorded in more than 10% of sites that occurred
during an El Niño event (in this case, a relatively weak event, Niño3
index 0.6).

5.6. Spatial reconstruction of fire

We reconstructed fire occurrence from fire-scar evidence in 43
plots and from demographic evidence in an additional 10 plots.
Composite fire scar records averaged 5.2 fire-recording trees per
plot (range 2–35 trees). Comparisons of relative fire sizes before
and after the availability of 20th century fire maps is limited to
the 6470 ha area sampled for fire scar and demography plot evi-
dence of fire.

Fire frequency and spatial distributions changed considerably
after 1880 (Fig. 5). Prior to 1880, the predominately southwest-fac-
ing pine and dry mixed-conifer sites recorded the most fire, form-
ing a nearly contiguous corridor of fire spreading at 5–10 year
intervals along the central plateau of the range (Fig. 5a and c).
Mesic drainages and mixed-conifer stands abutting the spruce-fir
forest served as barriers to fire spread in the majority of fire years.
Of 31 fires >600 ha over the 240 year period, only the 1685 fire
breached the mesic mixed-conifer forests and burned into the
Fig. 5. Changes to mean fire interval from 1640 to 1880 and 1881 to 2008. Tabular su
distribution of mean fire intervals superimposed on historical forest types from 1881 to
distance weighting of 53 composited fire-recording sites using four nearest neighbors w
more sites from 1640 to 1880 (n = 104) and 1881 to 2008 (n = 27). Underlying vegetation
(LANDFIRE, 2013) with raster values generalized to a minimum patch size of 6.75 ha.
spruce-fir zone. After 1880, fire intervals over more than 90% of
the study area more closely resembled those of the mesic mixed-
conifer and spruce-fir forest that comprised less than 16% of the
study area prior to 1880 (Fig. 5a and b). Fire spread was no longer
contiguous along the central plateau of the range, although fires
continued to burn at lower frequency in predominately northwest-
ern dry mixed-conifer and pine sites. Sites that sustained fire at
2–10 year intervals along the central and southeastern parts of
the range prior to 1880 were affected by a maximum of two fires
in the past 130 years, and nearly half of the pine and dry mixed-
conifer forest experienced no fire after 1900.

From 1640 to 2008, 11 landscape fires each burned more than
50% of the study area, affecting most of the pine and dry mixed-
conifer sites and occasionally burning into mesic mixed-conifer
and the edge of the spruce-fir zone (Supplemental Fig. 3). These
large fires appear to have spread from the southeast to northwest,
following the prevailing wind direction for spring and early sum-
mer in this region (Crimmins, 2011; WRCC, 2012), and burning
across dry forests along south-facing aspects. A somewhat isolated
pine forest on the northwest end of the range rarely burned in
large, widespread fires but burned frequently in smaller local fires,
and these events were generally asynchronous with fires in the
pine and mixed-conifer forest on the main portion of the mountain
range (Supplemental Fig. 3).

The spatial footprint of the 1685 fire was similar to that of other
landscape-scale fires with the exception of an approximately
1940 ha high-severity patch in the spruce-fir and surround high-
elevation mesic mixed-conifer forest (Fig. 6a). The 1685 fire is
recorded in fire scars as a low to mixed-severity event in pine
and dry mixed-conifer forest types, and as a distinct pulse of seed-
ling establishment in spruce-fir and adjoining mesic mixed-conifer
forest, indicating stand-replacing severity in these sites (O’Connor,
mmary of percent of landscape comprising each fire interval class (a) and spatial
2008 (b) and 1640 to 1880 (c). Mean fire interval (MFI) surface is based on inverse
ith a power factor of two. Fire intervals are calculated from fires recorded in two or
layer represents pre-1880 forest types generated from LANDFIRE biophysical setting



Fig. 6. Spatial extent and severity of historic and contemporary fires. Severity of fires prior to 1974 is reconstructed from 41 composited fire-scar locations, and 12
demography plots indicating post-fire cohort recruitment (parts a and b). Polygons are interpolated from inverse-distance weighting of four nearest neighbors with a power
function of two. Modern fire severities (c) are reclassified from relative difference normalized burn ratio for fires after 1984 (Miller and Thode, 2007; MTBS, 2013), and fire
scar and demographic evidence associated with fire perimeters (Coronado NF GIS 2013) from 1975–1983. Percent fire area classified by burn severity is specific to a single fire
in 1685 and is the mean value of fires recorded in two or more sites from 1640–1880 and 1974–2004 (part d). The underlying vegetation layer represents pre-1880 forest
types generated from LANDFIRE biophysical setting (LANDFIRE, 2013) with raster values generalized to a minimum patch size of 6.75 ha.
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2013). Several small clusters of Douglas-fir trees dispersed
throughout the spruce-fir forest survived the 1685 fire, but no
sampled spruce or corkbark-fir predated the event.

The proportion of total fire area that was classified as high-
severity in 1685 (47%) is more than double the landscape propor-
tional area of high burn severity over the period 1640–1880 (17%)
that includes the 1685 fire effects; but is below the proportion of
high burn severity from 1974 to 2004 (54%) (Fig. 6d). In addition,
the spatial distribution of high burn severity was not consistent
between historical and contemporary fires. High-severity burn
patches of up to 1046 ha within the study area and 2386 ha within
the perimeter of the 2004 fire extend into dry and mesic mixed-
conifer forest (Fig. 6c) farther than any fire in the pre-fire exclusion
period (Fig. 6a and b).

6. Discussion

Prior to fire exclusion, small and widespread fires followed reg-
ular patterns of frequency, spatial pattern, severity, and climate
associations. Under all but the most extreme drought conditions,
fire frequently burned across pine and mixed-conifer forests at
low to mixed-severity but was excluded from the higher elevation
mesic spruce-fir forest. The consistency of fire return intervals
across vegetation types and strong pattern of fire-climate associa-
tions suggest that forest conditions and fire regimes were rela-
tively stable for at least several centuries prior to 1880.
Following Euro-American settlement, fire frequency and spread
were altered substantially. Throughout the first half of the 20th
century, small fires continued to burn at individual sites but
spreading fires ceased. Fire-adapted pine and dry mixed-conifer
forests of the Pinaleño Mountains would have been the most
immediately affected by interruption of ground fires beginning in
the late 1870s by livestock grazing, road construction, and logging
activities (Bahre, 1998). Spreading fires were completely absent
from 1884 to 1955, and the few fires recorded in pine, dry, and
mesic mixed-conifer forests since 1955 were smaller, less frequent,
and higher severity than fires in the pre-fire exclusion period. Pat-
terns of fire size and frequency that were distinct between pine,
dry, and mesic mixed-conifer forests prior to 1880 were no longer
discernable after 1880. The fuel-limited corridor of pine and dry
mixed-conifer forest that experienced frequent fire along the
south-facing plateau of the range, began to accumulate fuels (both
living and dead trees) over more than 70 years without fire
(O’Connor, 2013). Accumulated fuels and increased canopy con-
nectivity during the 20th century removed what was essentially
a ‘‘fuel-break’’ at the middle elevations. Frequent surface fires in
these forests rarely accumulated sufficient ladder fuels to allow
spread into the tree canopy, thereby limiting fire spread into the
more mesic, higher elevation forests prior to Euro-American settle-
ment (Swetnam et al., 2009). Estimates of historical fire frequency
(in terms of MFI, fire rotation, etc.) in the extensive, unbiased sam-
pling design reported here are consistent with the fire frequency
estimates in dry pine and mixed-conifer forests estimated in other
gridded, random, and systematic studies at stand to landscape
scales in the Southwest in these forest types (i.e., Falk and
Swetnam, 2003; Van Horne and Fulé, 2006; Farris et al., 2010,
2013). Fire frequencies were not consistent with the much higher
‘‘corrected fire interval’’ estimates suggested by Baker and Ehle
(2001) as a means of compensating for a lack of information on
fine-scale spatial patterns of historical fires. The filtered composite
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fire scar records collected over a gridded sampling network in this
study provided the fine-scale spatial sampling necessary to
reconstruct spatial variability of mean fire return intervals without
relying on the series of statistical assumptions implicit in the
multiplicative ‘‘fire interval correction’’ method of Baker and Ehle
(2001). Moreover, fire frequency estimates from this study were
consistent with targeted/opportunistically sampled stand-level
studies of Grissino-Mayer et al. (1995) in this mountain range. This
finding demonstrates that, at least in this landscape, the sugges-
tions of Williams and Baker (2012) and Odion et al. (2014) that
existing fire history studies are unrepresentative (biased) is not
supported.

6.1. Fire-climatology

Along the steep ecological gradients of the Pinaleño Mountains,
fire-climate associations prior to 1880 were representative of those
across southwestern forest types. Swetnam and Baisan (1996a)
identified a pattern of wetter than average conditions prior to
years with widespread fire that is thought to have increased fine
fuels and connectivity in fuel-limited systems. Several studies in
other pine and dry mixed-conifer forests throughout the south-
west, including in this study prior to fire exclusion, have identified
similar patterns (Touchan et al., 1996; Brown and Shepperd, 2001;
Brown and Wu, 2005; Margolis and Balmat, 2009). In the Santa Fe
Watershed in New Mexico, Margolis and Balmat (2009) found that
spreading fires in pine-dominated stands adjoining mixed-conifer
forest occurred consistently during moderate drought only after
two or more years of wet conditions but that fire spread into mesic
mixed-conifer forest required more intense drought conditions
during the year of fire. A similar conclusion can be drawn from
the present study in which spreading fires in pine and dry
mixed-conifer forest were associated with prior wet conditions
and larger fires affecting mesic forests were more strongly associ-
ated with extreme drought conditions the year of fire. A similar
pattern of severe drought-driven spreading fires was noted in
upper-elevation forests of Arizona and New Mexico (Margolis
and Swetnam, 2013).

The 28% reduction in frequency of all fires and cessation of
spreading fires shortly after 1880 occurred before a multidecadal
switch from relatively dry to moist conditions throughout the
region after 1905 that lasted approximately 40 years (Biondi
et al., 2011; Griffin et al., 2013). A similar reduction in fire fre-
quency and spread did not occur during other prolonged moist
periods from 1743–1771 and 1826–1871 (Cook and Krusic,
2004), which include two of the most widespread fire years
throughout the Southwest in 1748 and 1863. This suggests that
human activities and not climatic conditions were responsible for
the change in fire dynamics. Cessation of spreading fires was fur-
ther aided by active fire suppression after �1910, although the
effectiveness of fire suppression is difficult to separate from the
effects of livestock grazing and other land-uses in the Sky Islands
during early decades of the 20th century. After more than 70 years
without spreading fires, a shift back to drier climate conditions in
the 1950s, coupled with increased stand densities and accumu-
lated fuels, resulted in the few spreading fires that have occurred
after 1950. Spreading fires of the last six decades were associated
with persistent drought mediated by warmer than average winter
and spring conditions (PRISM, 2013), with no significant associa-
tions to antecedent moist conditions, as was the case historically.

The shift toward fires associated only with persistent drought
suggests that the legacy of fire suppression (i.e., high fuel accumu-
lations in dry forests) removed the fuel-limited distinction
between dry and mesic forest types (Margolis and Balmat, 2009;
Margolis and Swetnam, 2013). Changes to the structure and
species composition of dry mixed-conifer forest during the long
fire-free interval (O’Connor, 2013) provide further support for the
idea that former dry mixed-conifer forests now share structural
and species characteristics with more mesic forest types that his-
torically experienced mixed to high-severity fire regimes.

Climate conditions associated with recent spreading fires sug-
gests that the extreme drought conditions that enabled fire spread
into mesic forest types historically are no longer necessary as a
result of an extended period of fuel accumulation in surrounding
dry forests. Moderate drought conditions during the 1996 and
2004 fires were more similar to conditions during 10 larger land-
scape scale fires that burned around the perimeter of mesic forests
than the severe drought during the1685 fire that burned into mesic
forests. Multi-year drought conditions more severe than those in
2004 occurred four times in the reconstructed period prior to
1995, but did not result in fire spread into the spruce-fir forest.

The 2004 fire was unique in the fire record as the only spreading
fire to occur during El Niño conditions. Warmer than average win-
ter and spring temperatures that accelerated snow melt
(Koprowski et al., 2013), and abnormally high wind speeds in
May and June (Desert Research Institute, 2013) contributed to
more extreme fire weather conditions than would typically occur
during El Niño years with above-average snow accumulation.
Swetnam and Betancourt (1990a,b) noted a weakening of the rela-
tionship between the Southern Oscillation and area burned after
the mid-1960s, and additional weakening through the mid-
1980s, potentially indicating a reduction in ENSO strength that is
altering ENSO-fire relationships in the southwest in a way that
may be amplified by warmer winter conditions. Fire-climate asso-
ciations are known to fluctuate depending on decadal and longer
scale patterns of temperature and moisture (Grissino-Mayer and
Swetnam, 2000). The later part of the 20th century may represent
such a change. Warming winter temperatures coupled with a shift
from positive to negative Pacific Decadal Oscillation (PDO) in the
late 1990s led to enhanced La Niña and dampened El Niño condi-
tions, contributing to persistent drought across the American
southwest (Hoerling and Kumar, 2003; Crimmins, 2011). Evidence
of a weakening fire-ENSO association is further supported by a
recent switch from La Niña-to El Niño-associated fires in northern
Mexico (Yocom et al., 2010). These fires were also associated with
anomalously warm temperatures during the shift in PDO. It would
be worth exploring the relationship between ocean–atmosphere
teleconnections and other large southwestern fires over the past
several decades of warming temperatures to determine if fires
during El Niño conditions are becoming more common as mean
winter temperatures continue to increase.

6.2. Changes to fire severity

Prior to 1880, high-severity fire was rare, accounting for less
than 10% of burned area under all but the most extreme climate
conditions. Fires in 1996 and 2004 were associated with drought
and temperature conditions that were not exceptional in the his-
torical record, but the proportion of area burned at high-severity
was two to four times that of previous landscape-scale fires, even
with extensive efforts to contain and suppress fire spread. The only
fire in the reconstructed period with severity similar to the 2004
fire took place in 1685 during the most extreme drought condi-
tions in 400 years.

The ecological effects of recent fires appear to be more severe
than those of any fire in the reconstructed period. Although sam-
pling resolution limited our ability to reconstruct patchiness
within the high-severity fire extent of the 1685 fire, substantial
growth suppression of spruce and corkbark fir seedlings establish-
ing after 1765 indicate closed canopy conditions within 65 years of
the fire. Although no Engelmann spruce or corkbark fir predating
1685 were found to confirm mixed fire severity, rapid post-fire
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seedling establishment suggests that seed sources were available.
Mature spruce and corkbark fir that survived the 1685 fire would
most likely have died over the more than 300 years of subsequent
spruce beetle (Dendroctonus rufipennis Kirby) and western balsam
bark beetle (Dryocoetes confusus Swaine) outbreaks recorded in this
forest (O’Connor, 2013). Within the perimeter of the 2004 fire,
surviving trees in high-severity burn patches are isolated to the
outer margins, small groups of Douglas-fir along ridges, and
Engelmann spruce and corkbark fir in and around perennial
springs. Much of the high-severity burned area of the 2004 fire
remains barren with extremely limited seedling establishment
eight years after the event (Fig. 7). In addition, where recent fires
spread into dry and mesic forests, severity was higher than in
any recorded fires during the period of reconstruction. Fire scar
evidence of the 1685 fire was well recorded along the high-severity
burn perimeter, whereas fire scars recorded within or near the
perimeter of the 2004 fire were rare. High tree mortality in the
2004 fire eliminated the potential to form fire scars over much of
the burned area, although for surviving trees, the extended fire-
free interval would have increased tree size and bark thickness,
potentially reducing the probability of scar formation on those
trees (Gill, 1974; but see Baker and Dugan, 2013).

High tree mortality in recent fires is likely related to a combina-
tion of several factors. Increased stem densities and a shift toward
fire-intolerant species promoted crown-fire in mixed-conifer forest
surrounding the spruce-fir zone. Extended drought and warm
winter and summer temperatures increased tree drought stress
and cured accumulated standing and downed fuels (van Mantgem
et al., 2013). The use of chemical accelerants during aggressive
back-burning of fire lines consumed living trees and snags that
had withstood centuries of past fires (Frye, 1996; USDA Forest
Service, 2004). In the case of the 2004 fire, a preceding decade of
compounded insect disturbances resulted in an abundance of
standing snags with retained fine fuels (O’Connor et al., 2013).

6.3. Management implications

Differences in fire severity and spread before and after 1880 are
attributable to changes to forest structure and fuels as a result of
management activities, active fire suppression efforts, decadal to
Fig. 7. A high-severity burn patch eight years after the 2004 Nuttall Complex Fire.
Photo: C.D. O’Connor. June 12, 2012.
multi-decadal climate variability, and a series of recent high-sever-
ity insect outbreaks. Recent fires have had mixed effects on the risk
of future high-severity fires. In parts of the mesic mixed-conifer
and spruce-fir forests, fire risk has been reduced by the consump-
tion of a significant proportion of available fuels. However, over the
majority of the area, fire suppression efforts preserved heavy sur-
face fuels and dense canopy structure. Continuing efforts to sup-
press fires maintains these heavy fuel loads and heightens the
risk of future high-severity fires already occurring in mesic and
dry mixed-conifer forests in many areas of the western United
States (Stephens et al., 2013).

In current spruce-fir and mesic mixed-conifer forests, recovery
of the historical species composition in high-severity fire patches
remains uncertain. Distance to seed sources and degradation of soil
substrates hinder the establishment of seedlings, and warming,
drying conditions may make parts of the former spruce-fir forest
no longer suitable for the species assemblage (Notaro et al.,
2012; Falk, 2013). Efforts to re-establish spruce-fir seedlings
through planting may be warranted to discourage encroachment
by shrubs and other lower elevation species (Stephens et al.,
2013). Although there is little precedent for fire-induced conver-
sion of spruce-fir to mixed-conifer forest, intense wildfire follow-
ing fire-suppression in nearby pine-oak communities has been
shown to alter the long-term trajectory of post-fire species compo-
sition and structure for at least the next several decades to centu-
ries (Barton, 2002).

In dry forests historically adapted to frequent fire, initial thin-
ning of the understory and selective removal of encroaching non-
fire-adapted species, followed by reintroduction of fire provides
the best opportunity for restoring fire resilience to a system
expected to experience more frequent fire under warming, drying
conditions in the American Southwest (USDA Forest Service, 2010;
Hurteau et al., 2014). Breaking fuel continuity of dry forests and
allowing frequent low and mixed-severity fires to burn would
restore the buffer that once limited fire spread from dry to wetter
forests above them. Returning heterogeneity of forest structure
and fire frequency would limit the threat of fire to the astrophysi-
cal infrastructure located in the spruce-fir forest and preserve hab-
itat for the majority of threatened and endangered species that are
dependent on dense cover in mesic forests for protection from pre-
dation and abundant food sources (Sanderson and Koprowski,
2009).
7. Conclusions

Large high-severity fire patches in the Pinaleño Mountains were
rare historically and limited to only the most mesic, productive
sites prior to fire exclusion. Interruption of spreading fires in the
late 1800s led to changes in forest structure and species composi-
tion (O’Connor, 2013) that altered fire behavior and fire-climate
associations. Recent shifts in decadal to multidecadal climate
modes coupled with warming temperatures may have accelerated
changes to fire–climate relationships by lengthening the fire sea-
son and diminishing the effects of winter precipitation on reduced
fire spread. Conditions during recent fires suggest that the drought
thresholds necessary for fire to spread across multiple forest types
have been reduced as a result of fuel accumulation and positive
feedbacks from warming temperatures. Similar relationships have
been identified in other western forests where the trend of increas-
ing winter and spring temperatures is contributing to earlier snow
melt and longer spring fire-weather conditions (Pederson et al.,
2011). Over the past four years, record-setting fires in New Mexico,
Arizona, and California are in line with the predictions of more fre-
quent and larger fires in a warming, drying southwest (Attiwill and
Binkley, 2013). The return of landscape-scale fires coincident with
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substantial fuel accumulations due to a reduction of fire frequency
and tree stress is increasing the severity in at least some areas that
were historically characterized by low-to-moderate fire (Miller
et al., 2012; Mallek et al., 2013; van Mantgem et al., 2013).

Without restoration of forest structure and fire, inland forests of
the western States are likely to continue to burn with increasing
fire size and severity, with increased risk to human interests and
sensitive species adapted to specific site conditions. Efforts to
restore historical forest structure and fire regimes have largely
been successful where attempted (Mast et al., 1999; Fulé et al.,
2001, 2004; Hurteau and North, 2008). Identifying and prioritizing
landscapes suitable for restoration like the Pinaleño Mountains,
where they are likely to produce the greatest benefit to natural
and human interests, will be vital to successful landscape manage-
ment in the future.
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