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a b s t r a c t

In this paper a new approach combining the features of the homotopy concept with an
efficient computational algorithm which provides a simple and rigorous procedure to
control the convergence of the solution is proposed to find accurate analytical explicit
solutions for some oscillators with discontinuities and a fractional power restoring force
which is proportional to sign(x). A very fast convergence to the exact solution was proved,
since the second-order approximation lead to very accurate results. Comparisons with
numerical results are presented to show the effectiveness of this method. Four numerical
applications prove the accuracy of the method, which works very well for the whole range
of initial amplitudes. The obtained results prove the validity and efficiency of the method,
which can be easily extended to other strongly nonlinear problems.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In various fields of science and engineering, nonlinear evolution equations, as well as their analytic and numerical
solutions, are fundamentally important. Considerable attention has been directed towards the study of strongly nonlinear
oscillations and several methods have been used to find approximate solutions to such problems. Perturbation methods
are well established tools to study various aspects of non-linear problems [1–3]. However, the use of perturbation theory
in many important practical problems is either invalid or simply breaks down for parameters beyond a certain specified
range. Therefore, new analytical techniques should be developed to overcome these shortcomings. Such new techniques
should work over a greater range of parameters. There are some known attempts in this direction. Some extensions of the
Lindstedt–Poincaremethod to strongly nonlinear systems have been proposed [4–6]. In [6], a newparameterwas introduced
which remains small regardless of the magnitude of the original parameter. In this way, a strongly non-linear system with
a large parameter is transformed into a small parameter system.
Another powerful tool in solving nonlinear problems proves to be the harmonic balance method [1–3], which is a

procedure for determining periodic solutions by using a truncated series; but in order to obtain a consistent solution one
needs either to know a great deal about the solution a priori or to carry enough terms in the solution and check to order
of the coefficients of all the neglected harmonics, as Nayfeh mentioned in [1]. An approach which combines the harmonic
balance method and linearization of the non-linear oscillation equation was reported in [7].
There also exists a wide range of literature dealing with the analytical determination of approximate solutions for

nonlinear problems using a mixture of methodologies [8–15].
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The purpose of this paper is to construct accurate approximate periodic solutions and frequencies for non-linear
oscillators with a fractional-power restoring force by applying an optimal homotopy approach, namely the Optimal
Homotopy Asymptotic Method (OHAM). This kind of nonlinear oscillator has been studied up to now using different
methodologies [16–21]. Themost significant feature of the newproposed approach is the optimal control of the convergence
of solutions by means of a particular convergence-control function h(τ , p), which ensures a very fast convergence when its
components are optimally determined. Different from some other methods, the validity of the OHAM is independent of
whether or not there exist small parameters in the considered non-linear equations.
In order to develop the application of the method, we consider a differential equation with a single-term positive-power

nonlinear oscillator with a fractional-power restoring force:

d2u
dt2
+ sign(u) |u|α = 0 (1)

with initial conditions

u(0) = A,
du
dt
(0) = 0. (2)

Our attention here is restricted primarily to rational powers less than unity. Then the function sign(u) is defined as:

sign(u) =
{
1 u > 0
−1 u ≤ 0. (3)

There exists no small parameter in the equation, so traditional perturbation methods cannot be applied directly in this
case.

2. Basic idea of the proposed method [22–28]

The concept is to couple the homotopyperturbationmethod and a computational algorithm intended to optimally control
the convergence of the solution through an auxiliary function h(τ , p) which depends on a number of initially unknown
parameters. The algorithmused to identify these unknownparameters can be based on the least squaresmethod, collocation
method, Galerkin method and so on, but the least squares method is always the first option. A similar treatment was used
in [29], where an optimal variational iteration procedure was suggested combining the features of the He’s variational
iteration method with a computational algorithm which minimizes a residual functional. The main solution procedure
briefly described above is completely different from the homotopy analysis method [11].
A similar optimal approach based on the homotopy technique was recently reported in [30], where the authors present

a new analytical technique that combines He’s homotopy perturbation method and the least squares method, called OHPM.
There are significant differences between OHAM and OHPM. The main difference is the construction of the homotopy,
which in OHAM involves the auxiliary function h(τ , p) and, in case of oscillatory movements, also involves an arbitrary
auxiliary parameter λ which is determined using the principle of minimal sensitivity; while in OHPM the construction of
the homotopy is the same as in He’s homotopy perturbation method [31–33]. Instead, in the frame of OHPM the nonlinear
operator is expanded in a series with respect to the parameter p and a number of auxiliary functions are introduced within
the coefficients of this truncated power series. These auxiliary functions depend on a number of unknown parameterswhich
are optimally determined to provide a way to control the convergence of the solution.
In order to show the basics of OHAM, we consider a nonlinear ODE of the form

ü(t)+ f (t, u(t)) = 0 (4)

where the dot denotes the derivative with respect to time and f is in general a nonlinear term. Initial conditions are:

u(0) = A, u̇(0) = 0. (5)

The Eq. (4) describes a system oscillating with an unknown period T . If we switch to a scalar time τ = 2π t/T = ωt ,
under the transformation

τ = ωt (6)

we can rewrite Eqs. (4) and (5) in the form:

ω2u′′(τ )+ f (τ , u(τ )) = 0 (7)

u(0) = A, u′(0) = 0 (8)

where the prime denotes derivative with respect to τ .
By the homotopy technique, we construct a homotopy in a more general form:

H(φ(τ , p), h(τ , p)) = (1− p)L(φ(τ , p))− h(τ , p)N[φ(τ , p),Ω(λ, p)] = 0 (9)
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where L is a linear operator:

L(φ(τ , p)) = ω20

[
∂2φ(τ , p)
∂t2

+ φ(τ , p)
]

(10)

while N is a nonlinear operator:

N [φ(τ , p),Ω(λ, p)] = Ω2(λ, p)
∂2φ(τ , p)
∂τ 2

+ λφ(τ , p)+ f (τ , φ(τ , p))− pλφ(τ , p) (11)

where p ∈ [0, 1] is the embedding parameter, h(τ , p) is an auxiliary function so that h(τ , 0) = 0, h(τ , p) 6= 0 for p 6= 0 and
λ is an arbitrary parameter. From Eq. (8) we obtain the initial conditions:

φ(0, p) = A,
∂φ(τ , p)
∂τ

∣∣∣∣
τ=0
= 0. (12)

Obviously when p = 0 and p = 1, it holds that:

φ(τ , 0) = u0(τ ), φ(τ , 1) = u(τ ), Ω(λ, 0) = ω0, Ω(λ, 1) = ω (13)

where u0(τ ) is the initial approximation of u(τ ). Therefore, as the embedding parameter p increases from 0 to 1, φ(τ , p)
varies from the initial approximation u0(τ ) to the solution u(τ ), so does Ω(λ, p) from the initial approximation ω0 to the
exact frequency ω. Expanding φ(τ , p) andΩ(λ, p) in series with respect to the parameter p, one has respectively

φ(τ , p) = u0(τ )+ pu1(τ )+ p2u2(τ )+ · · · (14)

Ω(λ, p) = ω0 + pω1 + p2ω2 + · · · . (15)

If the initial approximation u0(τ ) and the auxiliary function h(τ , p) are properly chosen so that the above series converges
at p = 1, one has:

u(τ ) = u0(τ )+ u1(τ )+ u2(τ )+ · · · (16)
ω = ω0 + ω1 + ω2 + · · · . (17)

We propose the auxiliary function h(τ , p) of the form:

h(τ , p) = pC1 + p2C2 + · · · + pmCm(τ ) (18)

where Ci, i = 1, 2, . . . ,m, can be simple constants or functions depending on τ and on some constants. It is very important
to properly choose this function because the convergence of the solution greatly depends on that. More details are presented
in [22].
The results of themth-order approximations are given by:

ũ(τ ) ≈ u0(τ )+ u1(τ )+ · · · + um(τ ) (19)

ω̃ ≈ ω0 + ω1 + · · · + ωm. (20)

Substituting Eqs. (14) and (15) into Eq. (11) yields:

N(φ,Ω) = N0(u0, ω0, λ)+ pN1(u0, u1, ω0, ω1, λ)+ p2N2(u0, u1, u2, ω0, ω1, ω2, λ)+ · · · . (21)

If we substitute Eqs. (21) and (18) into Eq. (9) and we equate to zero the coefficients of the same powers of p, we obtain
the following linear equations:

L(u0) = 0, u0(0) = A, u′0(0) = 0 (22)

L(ui)− L(ui−1)−
i∑
j=1

CjNi−j(u0, u1, . . . , ui−j, ω0, ω1, . . . , ωi−j, λ) = 0,

ui(0) = u′i(0) = 0, i = 1, 2, . . . ,m− 1

(23)

L(um)− L(um−1)−
m−1∑
j=1

CjNm−j − Cm(τ )N0 = 0, um(0) = u′m(0) = 0. (24)

We notice that ω0, ω1, . . . , ωn, can be determined avoiding the presence of secular terms in the Eqs. (23) and (24).
The frequency ω depends upon the arbitrary parameter λ and we can apply the so-called ‘‘principle of minimal

sensitivity’’ [34] in order to fix the value of λ. We do this imposing that:

dω
dλ
= 0. (25)
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At this moment, themth-order approximation given by Eq. (19) depends on the parameters C1, C2, . . . , Cm−1 and also on
the function Cm(τ ).
If R(τ , C1, C2, . . . , Cq) is the residual obtained substituting themth-order approximation (19) into Eq. (7):

R(τ , C1, C2, . . . , Cq) = ω̃2ũ′′(τ )+ f (τ , ũ(τ )) (26)

and if the functional J is given by the integral:

J(C1, C2, . . . , Cq) =
∫ b

a
R2(τ , C1, C2, . . . , Cq)dτ (27)

where a and b are values from the domain of Eq. (41), then the parameters C1, C2, . . . , Cq can be optimally determined from
the following equations:

∂ J
∂C1
=

∂ J
∂C2
= · · · =

∂ J
∂Cq
= 0 (28)

where q is the total number of constants.
Wenotice that the parametersC1, C2, . . . , Cq involved in the convergence-control functionh(τ , p) could be also identified

via various methods, such as the collocation method, the least square method, the Galerkin method and so on.
One remarks that OHAM contains the auxiliary function h(τ , p), which provides us with a simple way to adjust and

optimally control the convergence of the solution through determination of optimal values for some parameters Ci. As an
important advantage, one observes that instead of an infinite series, the OHAM searches for only a few terms (mostly two
or three terms).

3. Application of OHAM to oscillators with fractional-power restoring force

For Eq. (1), the nonlinear operator (11) is given by the equation:

N [φ(τ , p),Ω(λ, p)] = Ω2(λ, p)φ′′(τ , p)+ λφ(τ , p)+ sign(φ(τ , p)) |φ(τ , p)|α

− pλφ(τ , p). (29)

Eq. (21) can be written as

ω20(u
′′

0 + u0) = 0, u0(0) = A, u′(0) = 0 (30)

and has the solution

u0(τ ) = A cos τ . (31)

In our example, f (t, u(t)) = sign(u(t)) |u(t)|α , where u is given by Eq. (16). In the following we have taken into account
the identity:

f (u) = f (u0 + pu1 + p2u2 + · · ·) = f (u0)+ pu1f ′(u0)+ p2
[
u2f ′(u0)+

1
2
u21f
′′(u0)

]
+ 0(p3) (32)

where for example

f ′(u0) = αsign(u0) |u0|α−1 . (33)

Taking into account Eq. (32), the first term in Eq. (21) is given by:

N0(u0, ω0, λ) = ω20u
′′

0 + λu0 + sign(u0) |u0|
α . (34)

For i = 1 into Eq. (23), we obtain the equation in u1:

ω20(u
′′

1 + u1)− ω
2
0(u
′′

0 + u0)− C1[ω
2
0u
′′

0 + λu0 + sign(u0) |u0|
α
] = 0,

u1(0) = u′1(0) = 0.
(35)

Using Eq. (31), we obtain the following Fourier series expansions:

sign(u0) |u0|α = Aα(a1α cos τ + a3α cos 3τ + · · ·) (36)

where

a2k+1α =
4
π

∫ π
2

0
(cos τ)α cos(2k+ 1)τdτ , k = 0, 1, 2, . . . . (37)
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Substituting Eqs. (31) and (36) into Eq. (35), we have:

ω20(u
′′

1 + u1)− C1(−Aω
2
0 + λA+ a1αA

α) cos τ − C1Aαa3α cos 3τ − C1Aαa5α cos 5τ − C1Aαa7α cos 7τ − · · · = 0. (38)

No secular terms in u1 requires eliminating contributions proportional to cos τ in Eq. (38):

ω20 = λ+ a1αA
α, λ ≥ 0. (39)

The solution of Eq. (38) can be written

u1(τ ) =
C1a3αAα

8ω20
(cos τ − cos 3τ)+

C1a5αAα

24ω20
(cos τ − cos 5τ)+

C1a7αAα

48ω20
(cos τ − cos 7τ)+ · · · . (40)

Form = 2 into Eq. (24) and if we consider the simplest case C∗m(τ ) = C2 (constant), then the equation in u2 has the form:

ω20(u
′′

2 + u2)− ω
2
0(u
′′

1 + u1)− C1[ω
2
0u
′′

1 + 2ω0ω1u
′′

0 + λ(u1 − u0)+ αsign(u0) |u0|
α−1 u1]

− C2[ω20u
′′

0 + λu0 + sign(u0) |u0|
α
] = 0, u2(0) = u′2(0) = 0. (41)

Having in view Eqs. (41) and (40), we can write the identities:

sign(u0) |u0|α−1 (cos τ − cos 3τ) = 2A−1sign(u0) |u0|α (1− cos 2τ) (42)

sign(u0) |u0|α−1 (cos τ − cos 5τ) = 2A−1sign(u0) |u0|α (cos 2τ − cos 4τ) (43)

sign(u0) |u0|α−1 (cos τ − cos 7τ) = 2A−1sign(u0) |u0|α (1− cos 2τ + cos 4τ − cos 6τ). (44)

Substitution of Eqs. (31), (36), (40), (42), (43) and (44) into Eq. (41) yields:

ω20(u
′′

2 + u2) =
[
2AK1

λ− ω20

ω20
− 2Aω0ω1 − λA+

2AK2
ω20

]
cos τ

+

[
C21A

αa3α
8

(
9−

λ

ω20

)
+
αC21A

2α−1β3

48ω20
+ (C1 + C2) Aαa3α

]
cos 3τ

+

[
C21A

αa5k
24

(
25−

λ

ω20

)
+
αC21A

2α−1β5

48ω20
+ (C1 + C2)Aαa5α

]
cos 5τ

+

[
C21A

αa7α
48

(
49−

λ

ω20

)
+
αC21A

2α−1β7

48ω20
+ (C1 + C2)Aαa7α

]
cos 7τ + · · · (45)

where

K1 =
C1Aα−1(6a3α + 2a5α + a7α)

96

K2 =
C1A2α−2(6a1αa3α − 6a23α + 2a1αa5α − 2a

2
5α + a1αa7α − a

2
7α)

96
β3 = −6a1αa3α + 12a23α − 6a3αa5α + 2a

2
5α + a3α + a7α − 3a5αa7α + a

2
7α

β5 = −6a23α + 12a3αa5α − 2a1αa5α + 2a3αa5α − 7a3αa7α + 3a5αa7α − a
2
7α

β7 = −8a3αa5α + 2a25α − a1αa7α + 13a3αa7α − a5αa7α + 2a
2
7α.

(46)

The secular term in the solution of u2 can be eliminated from Eq. (45) if

ω1 =
K1(λ− ω20)

ω30
−

λ

2ω0
+
K2
ω30
. (47)

From Eqs. (20) and (47) we obtain the frequency in the form:

ω̃ = ω0 +
K1(λ− ω20)

ω30
−

λ

2ω0
+
K2
ω30

(48)

where ω0 is given by Eq. (39).
The parameter λ can be determined applying the ‘‘principle of minimal sensitivity’’. From Eq. (25) we obtain:

λ = −
1
2
a1αAα +

√
1
4
a21αA2α + 6K2 − 6K1a1αAα. (49)
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From Eqs. (49) and (39) it follows that

ω20 =
1
2
a1αAα +

√
1
4
a21αA2α + 6K2 − 6K1a1αAα (50)

where K1 and K2 are given by Eq. (46).
Now, we can write the solution of Eq. (45):

u2(τ ) =
[
C21A

αa3α
64ω20

(
9−

λ

ω20

)
+
αC21A

2α−1β3

384ω40
+
(C1 + C2)Aαa3α

8ω20

]
(cos τ − cos 3τ)

+

[
C21A

αa5α
576ω20

(
25−

λ

ω20

)
+
αC21A

2α−1β5

1152ω40
+
(C1 + C2)Aαa5α

24ω20

]
(cos τ − cos 5τ)

+

[
C21A

αa7α
2304ω20

(
49−

λ

ω20

)
+
αC21A

2α−1β7

2304ω40
+
(C1 + C2)Aαa7α

48ω20

]
(cos τ − cos 7τ). (51)

In order to determine the second-order approximate solution it is necessary to substitute Eqs. (31), (40) and (51) into the
equation:

ũ(τ ) = u0(τ )+ u1(τ )+ u2(τ ). (52)

By means of the transformation (6), the second-order approximate solution of Eq. (1) is:

ũ(t) = A cos ω̃t +
[
C21A

αa3α
64ω20

(
9−

λ

ω20

)
+
αC21A

2α−1β3

384ω40
+
(2C1 + C2)Aαa3α

8ω20

]
(cos ω̃t − cos 3ω̃t)

+

[
C21A

αa5α
576ω20

(
25−

λ

ω20

)
+
αC21A

2α−1β5

1152ω40
+
(2C1 + C2)Aαa5α

24ω20

]
(cos ω̃t − cos 5ω̃t)

+

[
C21A

αa7α
2304ω20

(
49−

λ

ω20

)
+
αC21A

2α−1β7

2304ω40
+
(2C1 + C2)Aαa7α

48ω20

]
(cos ω̃t − cos 7ω̃t) (53)

where β3, β5, β7 are given by Eq. (46) and ω̃, λ, ω0 depends on the constants C1 and C2, which will be optimally determined
following the procedure described in the previous section.

4. Numerical applications

We illustrate the accuracy of the OHAM by comparing previously obtained approximate solutions with the numerical
integration results obtained by means of a fourth-order Runge–Kutta method.

4.1

In the first case we consider α = 3
5 and from Eq. (37) we obtain:

a1 35 = 1.0872931957; a3 35 = −
1
9
a1 35 ; a5 35 =

1
21
a1 35 ; a7 35 = −

11
399
a1 35 .

(a) For A = 1, applying the conditions (28) we obtain

C1 = −0.7682142317; C2 = −3.5628152871; ω̃ = 1.040588306;
λ

ω20
= −0.012538032.

The exact frequency in the case A = 1 is ωex = 1.04075 [20] and therefore the relative error between the approximate
and the exact frequency is 0.016%.
The second-order approximate solution (53) becomes:

ũ(t) = 1.00699391 cos ω̃t − 0.013465301 cos 3ω̃t + 0.009104865 cos 5ω̃t − 0.002633483 cos 7ω̃t. (54)

(b) For A = 5, we obtain the following expressions:

C1 = −0.768214231; C2 = −4.214764755; ω̃ = 0.754197242;
λ

ω20
= −0.012538032.

The exact frequency in this case is ωex = 0.754314435 [20] and therefore the relative error between the approximate
and the exact frequency is 0.015%.
The second-order approximate solution (53) becomes in this case:

ũ(t) = 5.076158387 cos ω̃t − 0.113168423 cos 3ω̃t + 0.052073171 cos 5ω̃t − 0.015063135 cos 7ω̃t. (55)
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Fig. 1. Comparison between the approximate solution (54) and numerical results in the case α = 3/5, A = 1. — Numerical simulation, - - - Approximate
solution.

4.2

In the second case we consider α = 1
3 . From Eq. (37) we obtain:

a1 13 = 1.1595952669; a3 13 = −
1
5
a1 13 ; a5 13 =

1
10
a1 13 ; a7 13 = −

7
110
a1 13 .

(b) For A = 1, we find

C1 = −0.812457981; C2 = 0.040087495; ω̃ = 1.070005112;
λ

ω20
= −0.040045851.

The exact frequency for A = 1 is ωex = 1.07045 [20] and therefore the relative error between the approximate and the
exact frequency is 0.044%.
The second-order approximate solution (53) becomes:

ũ(t) = 1.033439236 cos ω̃t − 0.02397233 cos 3ω̃t − 0.008055218 cos 5ω̃t − 0.001411688 cos 7ω̃t. (56)
(b) For A = 5, we obtain the values:

C1 = −0.812457981; C2 = −0.689430076; ω̃ = 0.625742785;
λ

ω20
= −0.040045851.

The exact frequency is ωex = 0.626002957 [20] and therefore the relative error between the approximate and the exact
frequency is 0.042%.
The second-order approximate solution (53) becomes in this case:

ũ(t) = 5.014642562 cos ω̃t − 0.008561393 cos 3ω̃t − 0.005486728 cos 5ω̃t − 0.000594441 cos 7ω̃t. (57)

5. Results and discussions

Figs. 1–4 show a comparison between the present analytical solutions and the numerical integration results obtained
using a fourth-order Runge–Kutta method. One can observe that the second-order approximate analytical results obtained
through OHAM are almost identical to the numerical simulation results in all considered cases for various values of the
parameters α and A. Moreover, the relative error between the approximate and the exact frequency presented in [20] varies
between 0.015% and 0.044%, which proves the accuracy of the method.

6. Conclusions

In the present work we proposed an optimal homotopy approach to obtain approximate analytical solutions for some
oscillators with fractional-power restoring force, which is proportional to sign(x). The validity of the proposed procedure,
called the Optimal Homotopy Asymptotic Method (OHAM) was demonstrated on some representative examples, and very
good agreement was found between the approximate analytic results and numerical simulation results. The proposed
procedure is valid even if the nonlinear equation does not contain any small or large parameter.
The OHAM provides us with a simple and rigorous way to optimally control and adjust the convergence of a solution

and can give very good approximations in a few terms. The arbitrary parameter λ involved in this procedure is determined
by means of the ‘‘principle of minimal sensitivity’’. The convergence of the approximate solution given by OHAM is greatly
determined by the convergence-control function h(τ , p), which involves the presence of some parameters or functions
Ci, which are optimally determined. A rigorous computational algorithm is applied to obtain the optimal values of the
parameters Ci. Theoretically, the more parameters Ci we choose, the more accurate the solution will be, but since in this
case only two parameters C1 and C2 led to very accurate results it was not necessary to increase their number. This version
of the method proves to have a very fast convergence to the exact solution; so it very rapid, effective and accurate.
This method, which proves to work very well in practice, can be easily applied to other strongly nonlinear problems.
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Fig. 2. Comparison between the approximate solution (55) and numerical results in the case α = 3/5, A = 5. — Numerical simulation, - - - Approximate
solution.

Fig. 3. Comparison between the approximate solution (56) and numerical results in the case α = 1/3, A = 1. — Numerical simulation, - - - Approximate
solution.

Fig. 4. Comparison between the approximate solution (57) and numerical results in the case α = 1/3, A = 5. — Numerical simulation, - - - Approximate
solution.
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