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Abstract

This paper pursues Takeuchi’s Hopf algebraic approach [M. Takeuchi, A Hopf algebraic approach
to the Picard—\Vessiot theory, J. Algebra 122 (1989) 481-509] to the Picard—Vessiot (PV) theory for
differential equations, to involve the PV extensions of difference equations. Differential fields and
total difference rings in the standard PV theory are unified here by artinian simple (AS) module
algebras over a cocommutative, pointed smooth Hopf algebra.

0 2004 Elsevier Inc. All rights reserved.

Introduction

The Picard-Vessiot (PV) theory is a Galois theory for extensions of differential fields;
see van der Put and Singer [7] for modern treatmerdifferential field is a field given a
differential operator (or derivation). Le&X be such a field of characteristic zero, in which
the fieldk := Ko of constants is algebraically closed. Suppose that a linear differential
equation,y’ = Zuv, is given, whereZ is ann x n matrix with entries inK. This is equiv-
alent to saying that a differenti& -module of K -dimensionn is given. There is a unique
(up to isomorphism) extensioh/K, called the PV extension, of differential fields with
(Ko =) k = Lo that is aminimal splitting field for v" = Zv in the sense that” includes an
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n-dimensional (large enough#}subspace of solutionsfor v' = Zv, and their entries gen-
erateL overK . The groupG (L/K) of differential automorphisms df /K naturally forms

a linear algebraic group ovér There is a 1-1 correspondence between the intermediate
differential fieldsk ¢ M c L and the closed subgrougsL/M) C G(L/K).

By the beautiful, Hopf-algebraic approach, M. Takeuchi [11] clarified the heart of the
theory in the generalized context 6f-ferential fields, intrinsically defining PV exten-
sions and the minimal splitting fields @f-ferential modules. By replacing linear algebraic
groups with affine group schemes (or equivalently commutative Hopf algebras), he suc-
ceeded in removing from many of the results the assumptions of finite generation, zero
characteristic and algebraic closedness. For a cocommutative coafg@bhtia a specific
grouplike 1, a C-ferential field [11] is a field given a unital, measuring action 6y the
concept includes differential fielda\-fields [2] and fields with higher derivations.

A difference field [6] is a field given an automorphism. A linear difference equation has
coefficients in such a field. To amend a failure which arises when one develops, restricting
oneself to fields, a PV theory for difference equations, van der Put and Singer [6] intro-
duced the notion of the PV ring for such an equation, and established the desired theory.

From the viewpoint of non-commutative differential geometry, André [1] gave a unified
approach to the PV theories for differential and difference equations. Alternatively follow-
ing Takeuchi’s line, this paper will give such an approach in the context of artinian simple
(AS) module algebras over a cocommutative, pointed smooth Hopf algebraus D is
of the form D = D # RG over a fixed field, sayr, whereG is the group of grouplikes
in D, and the irreducible componemt! containing 1 is of Birkhoff-Witt type; see As-
sumption 2.3. A difference ring which includésin its constants is precisely/@-module
algebra, whereD! = R, and G is the free group with one generator. Differential rings
are also within our scope, though only in characteristic zero because of the smoothness
assumption. Algebras with higher derivations of infinite length fit in the assumption, in
arbitrary characteristic.

D-module algebras are all supposed to be commutative, at least in this Introduction.
A D-module algebr& is said to beASif it is artinian as a ring and simple agamodule
algebra. Letk be an ASD-module algebra. IP C K is a maximal ideal, then one will see
thatK1 := K /P is a module field over the Hopf subalgetPaG p) := D # RG p, where
G p denotes the subgroup (necessarily of finite index) of the stabilizeFs dloreover,

K can recover fronkK 1, so as

K=D®pG, Ki1= @ g§®Ki,
8eG/Gp

where the product irK recovers from the component-wise prodygt® a)(g ® b) =

g ® ab in the last direct sum; see Section 2 below. Thénvariantsk”? in K form a
subfield, such thak ? ~ KlD(G”). Following [11], we say that an inclusiok C L of
AS D-module algebras is BV extension, if K” = L? and if there exists a (necessarily
unique) D-module algebr& c A C L such that the total quotient rin@(A) equalsL,
andH := (A®k A)P generates the left (or righf)-moduleA ® ¢ A. ThenH has a natural
structure of a commutative Hopf algebra oveP (= LP), with which A/K is a right H -
Galois extension; see Proposition 3.4. If an inclusioxt L of AS D-module algebras is
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a PV extension, then the induced inclusiriP N K c L/ P of D(G p)-module fields is a
PV extension, where is an arbitrary maximal ideal df. The converse holds true d p
is normal inG png ; see Proposition 3.13 and Theorem 3.15.

As our main theorems we prove:

Galois correspondence (Theorem 3.9): Given a PV extensidiy K of AS D-module
algebras, there is a 1-1 correspondence between the intermediderd@@iule algebras
K ¢ M C L and the Hopf idealg in the associated Hopf algebra; L/M is then a PV
extension with the associated Hopf algeldf@/. This has the obvious interpretation in
terms of the affine group schent¥L/K) = SpecH corresponding td .

Characterization (Theorem 4.6): An inclusiork ¢ L of AS D-module algebras with
KP = LP is afinitely generated PV extension if and onlylif K is a minimal splitting
algebra for som& # D-moduleV of finite K -free rank, say:; this means that ® V ~
L™ asL # D-modules, and. is “minimal” with this property.

Tensor equivalence (Theorem 4.10): If this is the case, the symmetric tensor category
Mf’i{] of finite-dimensional right comodules over the associated Hopf alggl(@ equiv-
alently that category Rep, /, of finite-dimensional linear representations®@fL /K ))

is equivalent to the abelian, rigid tensor full subcateg¥y}} “generated” byV, in the
tensor categoryx#p M, ®k, K) of K # D-modules; cf. [7, Theorem 2.33].

Unique existence (Theorem 4.11):  Suppose th&t’ is an algebraically closed field. For
everyK #D-moduleV of finite K -free rank, there is a unique (up to isomorphism) minimal
splitting algebral /K which is a (finitely generated) PV extension.

One cannot overestimate the influence of the article [11] by Takeuchi on this paper of
ours. Especially the main theorems above except the third are very parallel to results in
[11], including their proofs. AC-ferential field is equivalent to a module field over the
tensor bialgebrd (CT) [11, p. 485]. We remark that even K, L are fields, the first two
theorems above do not imply the corresponding results in [11]. The last one only general-
izes [11, Theorems 4.5, 4.6] in whi@dh(C™) is supposed to be of Birkhoff-Witt type.

1. Tensor equivalences associated to an inclusion of cocommutative Hopf algebras

Throughout we work over a fixed fiel. In particular, the unadorneg meansy.
Modules mean left modules unless otherwise stated.

Let C be a cocommutative Hopf algebra. The structure maps (for any Hopf algebra as
well) will be denoted by

AC—>CRC, ¢:C = R, §S:C—C,

as usual. Th&-modules form amR-abelian tensor categogyM = (¢ M, ®, R) with the
obvious tensor product ® W and the unit objecR. This is symmetric by the trivial
symmetryV @ W - WV, vQuwi— wQu.
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Let D be a cocommutative Hopf algebra includiigas a Hopf subalgebra. A coalgebra
in the tensor category M is called aD-module coalgebra. Define D = D/D_C+, where
Ct =Ker(e : C - R). D is aD-module coalgebra, anfl is its quotient. Lelg/\/l denote
the R-abelian category ofD, D)-Hopf modules such as defined in [10, pp. 454—455].
Given objectsV, N in gM, let M O 5 N denote the cotensor product; this is by definition
the equalizer of the twd-colinear maps¥ @ N = D ® M ® N given by the structure
maps of M, N. This is aD-submodule of¥ ® N, and is further an object iff M. We
see tha) M = (M, 0, D) is a symmetric tensor category, in which the associativity
constraintM O N) Op L => M 0Op (N Op L), the unit constrainD 05 N = N and
the symmetryM 05 N = N 0Oj M are the obvious ones.

For an objec in ¢ M, define

P(V)=D®cV.

This is naturally an object i@M. We thus have a®-linear functor
®:cM—DM.

Proposition 1.1. @ isan equivalence of symmetric tensor categories.

Proof. By [10, Theorems 2 and 4]¢ is a category equivalence; its quasi-inverse
N +— W (N) is given by

W(N)={neN|rn)=1®ninDQ N},
wherex: N — D ® N is the structure map oN. It is easy to see that

VM)QWN)->Y¥Y(MDOzN), m@n—>mQn,
R—w(D), 11,

are isomorphisms ig M. We see that the isomorphisms, as tensor structures, Whake
equivalence of symmetric tensor categoriesl

Let D! denote the irreducible component I containing 1; this is the largest irre-
ducible Hopf subalgebra. If the characteristicktof R is zero, thenD! = U(g), the
universal envelope of the Lie algebya= P (D) of all primitives in D; see [5, Section 5.6].
Let G = G(D) denote the group of all grouplikes .

In what follows we suppose:

Assumption 1.2. D is pointed, so that
D= D'#RG, 1)

the smash product with respect to the conjugate actias by D*; see [5, Corollary 5.6.4].
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In what follows we also take a8 a Hopf subalgebra of the form
C =D #RGy,
whereG1 C G is a subgroupf finite index. This will be denoted by
C = D(Gy). )

The equivalenc@ will be denoted by

D6, peHyM = HM, (3

if one needs to specifg .

The vector spac®(G/G1) freely spanned by the sét/ G, of left cosets is a quotient
left D-module coalgebra ab along the mag = D! # RG — R(G/G1) which is given
by the counits : D — R and the natural projectio& — G/G1. Since the map induces

an isomorphismD = R(G/G1), an object in) M is such a leftD-module N that is
the direct sun@seG/Gle of those D1-submodulesV; (s € G/G1) which satisfy that

gN;s C Ngs, Whereg € G, s € G/G1. If M =(D,,, Ms is another object |r§/\/l then

MosN= @ M;®N,.
5€G/G1

We haveD = P,/ ¢, 8C-

Notation 1.3. Here and in what followsg € G/G1 means thag lies in a fixed system of
those representatives @ for the left cosetss /G, which include the neutral element 1
inG.

The neutral componem¥; in N is aC-submodule. We have the identification

d(N1)= P g@ N1
geG/Gy

Here D acts on the right-hand side so thatlit D?,
dig®n) =g ® (¢ 'dg)n (neNy),
andifh € G,
h(g®@n) =g ®tn (neNy,

whereg’ is a representative ande G such thakg = g’z. Notice that¥ (N) = N1. Hence,
by Proposition 1.1, we have a natural isomorphigifivy) = EBgeG/Glg ® N1 = N in

BM, given byg ® n — gn.
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An algebraA in g/\/l is precisely such @-module algebra that is the direct product
ﬂseG/Gl A, of DY-module algebrag\; (s € G/G1), satisfyinggAs; C Ags (g €G). Itis
identified with®@(Ay) = @geG/Gl g ® A1, which is endowed with the component-wise
product.

Let A = &(A;1) be as above. AM -module V in ¢ M is precisely a module over
the algebraA; # C of smash product® (V) is naturally anA-module ing/\/l; this is in

particular anA # D-module.
Proposition 1.4. The functor
D1 e M = arp M

gives an equivalence between the R-abelian categories of modules.

Proof. By Proposition 1.1, it suffices to prove that the categg)(g/\/l) of A-modules
in g/\/l is isomorphic to, (p M) = axp M. Given N in gup M, defineN, = (g ® DN
(¢ € G/G1), whereg ® 1 denote the canonical, orthogonal central idempotends(ifiy ).
ThenN =P, .;,g, Ne S0 thatN is in A(BM). This gives the desired isomorphismz

The proposition can be extended to bimodule categories. As is easily seen, the equiva-
lence preserves the tensor structure:

Proposition 1.5. Let A = @ (A1) be as above. The functor
D (4, (cM)ay, ®a1, A1) = (a(pM)a, ®4, A)
gives a tensor equivalence between the categories of bimodules.
For aC-moduleV, let
Ve={veV|cw=e()v (cel))}

denote the vector space 6tinvariants. Similarly, letv? denote the vector space Of-
invariants in aD-moduleN.

Lemma 1.6. A natural isomorphism V¢ = & (V)? isgivenby v = Y, /6,8 ® .

Proof. If 3", ¢ ® v, € @ (V)P, one sees first; € V¢, and thenv, = v; for all g €
G/G1. O

To prepare for discussions in Section 3, ketC A be an inclusion ofD-module alge-
bras. Them ®k A isin 4(p.M) 4. This has the natural coalgebra structure

AEAQKAD (AQk A) ®4 (AQk A) 4
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in the tensor categori (pM)a, ®a4, A), given by
e(a ® b) =ab, A@®b)=@®1D)®(1A®Db).

See [8].

2. Simple module algebras

In what follows algebras (in any symmetric tensor category) are supposed to be com-
mutative and non-zero, unless otherwise stated.

Let D = D' # RG be a cocommutative pointed Hopf algebra, as in (1); this, as an
exception, can be non-commutative.

Definition 2.1. A D-module algebraX is said to besimple if it is simple as aK # D-
module, or in other words if it includes no non-triviBlstable ideal.

Lemma 2.2. Let G1 C G be a subgroup of finite index. A module algebra K1 over D(G1)
(see (2)) issimpleif and only if the D-module algebra @, (K1) issimple.

Proof. This follows from Proposition 1.4. O
In what follows we suppose in addition:
Assumption 2.3. The irreducible Hopf algebr®? is of Birkhoff-Witt type.

This means that as a coalgebra! is spanned by (possibly infinitely many) divided
power sequences of infinite length. This is necessarily satisfied #f €HD. If chR =
p > 0, this is equivalent to the Verschiebung map— RY? @ D! being surjective. The
assumption implies that i is an algebra, thd-algebra HomiD!, A) of all R-linear maps
D! — A, whose product is given by the convolution-product, is the projective limit-of
algebrasA[[x1, ..., x,]1, of power series. The assumption is equivalent to sayingthat
is smooth as a cocommutative coalgebra.

A differential ring which includesR in its constants is precisely a module algebra over
the polynomial Hopf algebr®[d], in which d is primitive, and hence acts as a deriva-
tion. The Hopf algebrak[d] (= R[d]}) satisfies Assumption 2.3 if and only if ¢h= 0.

A difference ring which includesk in its constants is precisely a module algebra over
the group algebra&[g, g—1] of the free group with one generatgr which is grouplike,
and hence acts as an automorphism. An algebra @®@y&iith R-linear higher derivations

do =id, d1, da, ... of infinite length is precisely a module algebra over the Hopf algebra
R{d1,d>, ...), which denotes the (non-commutative) free algebra generatéd by, .. .,

and in which 1ds, do, ... form a divided power sequence. This Hopf algebra satisfies As-
sumption 2.3, in arbitrary characteristic; see [11, p. 504].

Let K be aD-module algebra in general. Suppose tkats noetherian as a ring. Let
£2(K) denote the (finite) set of all minimal prime ideals k1 ThenG acts on£2(K).
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Let G (k) denote the normal subgroup consisting of those elemer@svimich stabilize
everyP € 2(K).

Proposition 2.4. Suppose that K issimple.

(i) The action of G on £2(K) is transitive, so that the subgroups G p of stabilizers of
P € £2(K) are conjugate to each other.
(i) Every P € 2(K) is D-stable, so that K/P is a D(G p)-module domain. This is
simpleasa D(G g (k))-module algebra.
(i) Let P € £2(K), and set K1 = K/P. Then we have a natural isomorphism of D-
module algebras,

K ~ &g, (K7).
Proof. (ii) Let
p:K —Hom(D, K), xr[dr> dx] (5)

denote the algebra map associated totemodule algebra structure df. This is D1-

linear, where(dy)(c) = ¢(cd) (c,d € DY, ¢ e Hom(D?1, K)). Since HoniD!, K /P) is a
domain, HoniD?, P) is a prime ideal in HortD1, K), so that its pull-backP’, say, along
p is a D1-stable prime ideal; see the proof of [11, Lemma 4.2]. We seeRhat P, and
so P = P’ by the minimality of P. HenceP is D1-stable.

For the second statement, |t C J C K be a D(Ggk))-stable ideal. Then,
MNeec/Gow, 87 IS D-stable, and hence is zero. Sinfeis prime, there existg such
thatgJ c P, and soP C J C g~1P. By the minimality ofg~P, P = J (= g~ 1P).

(i) Let P € £2(K). We see

(NeP= [) 2=0, (6)

geG 0eR(K)

since the intersections are bathstable. The first equality impligg P | g € G} = 2(K);
this proves (i).

(i) By (i), g — gP gives a bijectionG/Gp = 2(K). If Q and Q' in 2(K) are
distinct, then 0 C) O + Q' = K, by (ii). This together with (6) proves that the natural
map gives an isomorphism,

k= [[ k/e= [] k/gP.

Qef2(K) geG/Gp

Obviously,®¢, (K1) is isomorphic to the last direct producto
Corollary 2.5. For K as above the following are equivalent:

(a) K istotal in the sense that any non-zero divisor in K isinvertible;
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(b) K isartinianasaring;
(c) theKrull dimension Kdim(K) = 0, or in other words £2(K) equals the set of all max-
imal idealsin K .

If these conditions are satisfied, every K # D-moduleis free asa K-module.

Proof. Each condition is equivalent to that for any/soe 2(K), K/P is a field. The
last assertion holds true by part (iii) of the last proposition and by Proposition &14.

Definition 2.6. A D-module algebr& is said to béAS, if it is artinian and simple. By the
corollary above, this is equivalent to th&itis total, noetherian and simple.

A D-module field is obviously AS. The total PV ring [6, Definition 1.22] of a difference
equation is an AR[g, ¢~ 1]-module algebra over the fieldl of constants. Therefore the
standard PV theories for differential equations in characteristic zero, and for difference
equations in arbitrary characteristic is within our scope.

For later use we prove some results.

Lemma 2.7. Let A be a D-module algebra, and let T C A be a G-stable multiplicative
subset. The D-module algebra structure on A can be uniquely extended to the localization
T—1A of A by T. (D' may not be of Birkhoff-Wtt type.)

Proof. The algebra map:A — Hom(D, A) associated toA (see (5)) is uniquely ex-
tended to an algebrama@p 7 1A — Hom(D, T~1A), since eac (1), t € T, is invertible

on RG, and so on the whol®; cf. the proof of [11, Proposition 1.9]. We have thus ob-
tained the measuring action

da/t)=pa/t)d) (deD,acA, teT)

by D on T~1A. It remains to prove that this mak&s 1A a D-module. We have only to
see that

cd(1/t) =c(d(1/1)) (c,deD, teT).

This holds, since the two mag3® D — T-1A given byc®d+ c¢d(1/t) andc ® d —
¢(d(1/t)) coincide, being the convolution-inverseo® d — cdt. O

As the referee kindly informed us, the preceding lemma is proved by Tyc and
Wisniewski [12, Theorem 3.4], in which the pointed Hopf algebra is not supposed to
be cocommutative. Also, the first part of our Proposition 2.4(ii) follows from [12, Theo-
rem 5.9(2)].

Lemma2.8. Let L bean AS D-module algebra, andlet K C L bea D-module subalgebra.
If K istotal, then K iSAS
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Proof. Given anelement #0in L =[]p ) L/P, define the support of by
suppx) = {P e (L) | x ¢ P}. (7)

One sees that is a non-zero divisor if and only if sugp) = £2(L).

Choose an element # 0 in K with minimal support. Then fog € G, the supports
suppx) and suppgx) are either equal or disjoint, accordingt¢gx) being non-zero or
zero. By Proposition 2.4(i), we have those elementgix, ..., g-x in K with disjoint
supports, whose sum is a non-zero divisor. Ldte the inverse of the sum; this is indeed
in K, sinceK is total. We see that:= xy is a (primitive) idempotent itk with suppe) =
suppx). By the minimality of the support, each non-zero elementAhhas suppx) as
its support, and hence has an inversen just asx above. We hav& = [];_; gieK, the
direct product of the fieldg; e K ; this proves the lemma. O

Corollary 2.9. Let A be a D-module subalgebrain an AS D-module algebra L.

(i) Every non-zero divisor x in A hasfull support: supfx) = £2(L) (see (7)).
(i) Let K = Q(A) denotethetotal quotient ring of A; thisisrealizedin L by (i). Then K
isan AS D-module subalgebra of L.

Proof. Let T be the set of all non-zero divisors i1 Then,K =T 1A.

(i) Choose anx € T such that supfx) is minimal in {supft) | t € T}. If suppx) #
£2(L), there is ag € G such that supfgx) N suppx) = @, which impliesx(gx) =0, a
contradiction.

(i) Let pr.: L — Hom(D, L) be the algebra map associated to threnodule algebra
structure onL. It restricts top: A — Hom(D, A) associated ta\. If r € T, pr. (1/¢) is the
inverse ofp(r) in Hom(D, L), and hence is contained in HeMm, 7~1A) by the proof of
Lemma 2.7. This implies thak (= T~1A) is a D-module subalgebra df. K is AS by
Lemma2.8. O

3. Picard-Vessiot extensions of AS module algebras

Proposition 3.1. In general an object X in an abelian category 2l issimpleif and only if

(a) theendomorphismring E := (X, X) isadivision ring, and
(b) for every object Y in 2L, the evaluation map

evAX,Y)Qr X —>Y
isinjective.

Proof. This seems well known, though we could not find an explicit citation in the lit-
eratures. The proposition is specialized by [4, Theorem 1.1 and Theorem on p. 232],
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and the proof given there works in the generalized context, as was suggested by T. Brzez-
ihski. O

Corollary 3.2. Let L be a simple D-module algebra. Then L? is a field, and for every
Y € p#p M, the natural map

LR pYP>Y, x®y+ xy
isinjective.

Proof. This follows by applying the proposition foX in 2 to L in p4p M. Notice that
LP ~Endy4p(L), and the natural map above is identified with the evaluation map.

Let K C L be an inclusion of ASD-module algebras. By the corollary we have an
inclusion of fields,k? c LP.

Definition 3.3. We say thatL /K is a Picard-\essiot, or PV, extension if the following
conditions are satisfied:

(@) KP = LP; this will be denoted by.

(b) There exists @-module subalgebrda c L including K, such that the total quotient
ring Q(A) of A equalsL, and thek-subalgebraH := (A ®x A)P generates the left
(or equivalently right)A-moduleA @ A: A-H=AQ®kx A(orH-A=AQg A).

Proposition 3.4. Suppose that L/K is a PV extension. Let A, H be as in condition (b)
above.

(i) Theproductmapu:A®r H > AQk A, u(a®h) =a-hisa D-linear isomorphism.

(i) The k-algebra H has a unique Hopf algebra structure such that the k-algebra map
0:A— A® H, 0(a) =pn 1(1®a) makes A aright H-comodule. A/K is neces-
sarily aright H-Galois extension [5, Section 8.1]n the sense that

A0 ARk A— AR H, 40(a®b)=ad(b)

is an isomorphism.
(iiiy Such an algebra A that satisfies condition (b) above is unique.

Proof. (i) Since by Corollary 3.2, the natural m&®R; (L @ AP — L ®x A is injective,
the mapu is injective; it is surjective by condition (b).

(i) Notice that AP = k by condition (a). The twofoldsA ®; H ®; H = A ®k
A ®g A of u, being aD-linear isomorphism, induces an isomorphigih®; H =>
(A®g A®k A)P. Similarly the threefolds oft inducesH ® H @ H = (A ®x A @k
A®xk A)P. It follows by [11, Proposition 2.2] that the coalgebra structure (4pag A
in 4(pM) 4 induces a Hopf algebra structure éh

k< HZA H®H.
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The antipode is induced from the twist mapR b +—> b R a, A x A —> A Qg A.
The map,6, beingu—1, is an isomorphism. Since this interprétsnto the natural right
A ®k A-comodule structure —~ 1®a, A > AQx A=A ®4 (A Rk A) on A, we see
the described uniqueness of the structuréfon

(i) This follows in the same ways as [11, Lemma 2.5], but by using the factithat
free K-module; see Corollary 2.5.0

Definition 3.5. A (respectivelyH) is calledthe principal D-module algebra (respectively
the Hopf algebra) for L /K. To indicate these we say thdt/K, A, H) is a PV extension.

Example 3.6. Let G1 € G be anormal subgroup of finite index. LeK be aD-module
field. Regarding this as #(G1)-module algebra, define = ¢, (K). We then have the
inclusion

K— L= @ g K, x+—>2g®g_lx
8€G/G1 g

of AS D-module algebras. IK PGV = kP thenk P = LP (=: k) by Lemma 1.6. More-
over,(L/K, L, H) is a PV extension, wherH = k(G/G1)*, the dual of the group algebra
k(G/G1). In fact, we see that the elements

eg = Z h®D®k(hg®1l) (g€G/Gy)
heG/Gy

in L ®k L are D-invariant, and behave as the dual basigHirof the group elementg
(e G/G1) in k(G/Gy). Thus,A(ey) =D, €on-1 @ en, £(eg) =314, S(eg) = e,-1. The
H-comodule structuré : L — L ®; H is given by

Oh@x)=)Y (hg™' ®gx) @ ;.
8
as is seen from following computation N®x L:

1@k (h®x)=) (f&f thx) @k h@l)=) (hg '®gx)®x (h®1)
8

f
= Z(hg_1 ® gx) - eg.
3

Lemma 3.7. Let G1 C G be a subgroup of finite index. Write @ = @¢,. Let K1 C L1 be
aninclusion of AS D(G1)-module algebras. (L1/K1, A1, H) isaPV extension if and only
if (@(L1)/®(K1), ®(A1), H) isaPV extension of AS D-module algebras.

Proof. The natural coalgebra isomorphistA; @k, A1) = (A1) ®ek,) P(A1) (see
Proposition 1.5) together with Lemma 1.6 prove the lemma.
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Remark 3.8. Let K C L be an inclusion of ASD-module algebras. Choogec 2(K),
and letPy, ..., P. be all those elements if2 (L) that lie overp. DefineK1 = K /p, L1 =
[T;_1 L/P;. Then we have an inclusioki; C L1 of AS D(G,)-module algebras such that
the induced inclusio®g, (K1) C ®¢, (L1) is identified withk C L. We can thus reduce
to the case wherg is a field, especially to discuss PV extensions; see Lemma 3.7.

Theorem 3.9. Let (L/K, A, H) bea PV extension of AS D-module algebras.

(i) Thereisa 1-1 correspondence between the Hopf ideals I ¢ H and the intermediate
AS D-module algebras K ¢ M C L, given by

M={xeL|l®x=x®1modI-(L®k L)},
I=HnNKer(L®x L—->L®yL).

(i) If I < M under the correspondence, (L/M,AM, H/I) isa PV extension.
(iif) Suppose I <> M under the correspondence. I is a normal Hopf ideal [9] if and only
if M/K isa PV extension.

The 1-1 correspondence in part (i) is obtained as the composite of the 1-1 correspon-
dences given below.

Proposition 3.10. Let K c L be aninclusion of AS D-module algebras.

(i) Supposethat (L/K, A, H) isa PV extension. Then, I — I - (L ®g L) givesa 1-1
correspondence between the Hopf ideals I ¢ H and the coideals Z of the coalgebra
L®x Lin(.(pM)r,®L,L), see(4).

(i) M Ker(L®g L — L®y L) givesa l-1correspondence between the intermediate
AS D-module algebras K € M C L and the coideals Z as above.

Proof. (i) This follows in the same way as [11, Proposition 2.6], but by using Corollary 3.2.
In fact, the correspondence is extended to a 1-1 correspondence between theqéals
and theD-stable ideal¥ c L ®k L.

(i) Suppose thak ¢ M C L is given. Sincel, being anM # D-module, isM -free, M
can recover from¥ :=Ker(L ®x L — L ®y L) so as

M={xeL|l®x=x®1 modZinL ®k L}. (8)

Suppose thaf C L ®k L is a coideal, and defing/ by (8); this is obviously an in-
termediateD-module algebra. By Corollary 2.9(i), every non-zero divisan M has full
support, and we easily see’t € M. ThenM is AS by Lemma 2.8.

LetC =L ®k L/Z. One sees that the canonida® ¢ L — C factors through a coalge-
bra surjection,

oa:L®y L —C.
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To prove the injectivity we may suppose by Proposition 1.5 tifats a field; replace
M c L with My C L1 so as in Remark 3.8. To apply Proposition 3.1, regarderely as
an L-coring, or a coalgebra ity My, ®, L), and supposél is the category of righ€-
comodules; an objedt in 2 is thus aright L-module with a rightL-linear structure map
Y — Y ® C. Notice that the category is abelian sintés left L-free. TakeL as theX in
the proposition; it has the natur&écomodule structure

AML—>L®.C=C, MMx)=1Qkx modZ.

SinceE =A(L, L) ~ M, A(L,C) >~ L, we identifya with the evaluation map for =C.
Therefore it suffices to see thatis simple in2(. L includes a simple subobject of the
form eL, wheree is an idempotent. Since is D-linear, we see that fog € G, g(elL) is
also a simple subobject, which coincides or trivially intersects with It follows from
Proposition 2.4(i) thal is semisimple; this implies thdt is simple since the endomor-
phism ringE is a field. O

Part (ii) of Theorem 3.9 follows in the same way as [11, Proposition 2.8]. Part (iii)
follows as [11, Theorem 2.9], but by using Lemma 2.7. SupgdoseM is as in part (iii).
The Hopf algebrai’ and the principal module algebrd associated td//K is given by

H'={heH|A(h)=h®1modH ® I},
A=A H),

wheref : A — A ®; H denotes the naturdf -comodule structure. For a right comodie
over ak-Hopf algebraH in general, let

VCOH:{UEV|pv(v):v®1}

denote the-subspace of{-coinvariants, wherey : V — V ®; H is the structure orv.
We remark that

H =H® A=A (F=H/I.

Remark 3.11. Let (L/K, A, H) be a PV extension of AS-module algebras. The
affine k-group schem&s(L/K) = Speg H corresponding td? is calledthe PV group
scheme for L/K. As in [11, Appendix], one sees that this is isomorphic to the auto-
morphism group schemAutp g.aig(A) of A; this associates to eadhalgebral the
group Aulp kg, T-alg(A ®; T) of D-linear K ®; T-algebra automorphisms of ®; T.

In fact, the linear representatid@in(L/K) — GL(A) arising from theH -comodule struc-
turef: A — A ®; H gives an isomorphisntr(L/K) ~ Autp k-aig(A). SinceL = Q(A),

the groupG(L/K)(k) with values ink is isomorphic to the group Atx.aig(L) of auto-
morphisms ofL. Theorem 3.9 allows the obvious interpretation in term&6f./K); see
[11, Theorem 2.10].

Corollary 3.12. Let (L/K, A, H) be a PV extension of AS D-module algebras.
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(i) Aissimpleasa D-modulealgebra.
(i) A containsall primitive idempotentsin L.

Proof. (i) The following proof is essentially the same as that of [11, Theorem 2.11]; we
contain this for the importance of the result.

Let 0# a C A be aD-stable ideal. Thell ®x (A/a) is a quotientD-module algebra
of LRk A (=~ L ®; H). We see from Corollary 3.2 thdt ®; (H/I) ~ L ®k (A/a), and
SOL ®; I ~ L ®k a, wherel C H is an ideal. Sincd.a = L by the simplicity ofL, it
follows that! - (L ®k L) =L ®k L. This implies thatl = H, and soa = A, by the fact
stated in the proof of Proposition 3.10(i).

(ii) Since L is a localization ofA, we have2(L) C 2(A) via P — P N A. We see
A C[lpeguyA/PNA.Itremains to prove thatiP # Q in £2(L), then the suny := PN
A+ QnNAequalsA. If J C A onthe contrary, one sees as in the proof of Proposition 2.4(ii)
that/ =PNA=QNAbypart(i),andseP = Q. 0O

Proposition 3.13. Let (L/K, A, H) be a PV extension of AS D-modul e algebras. Choose
arbitrarily P € 2(L), and write @ = ¢¢,.Letp = P N K (€ £2(K)). Define

Ki1=K/p, A1=A/PNA, Li=L/P.
Then,

(i) Wehave A >~ @ (Ay).
(i) @ (K1) isidentified with the K -subalgebra K of L whichis spanned over K by the
primitive idempotentsin L.
(iiiy (L1/K1, A1, H=H/I)isaPV extension of D(G p)-module fields, where I = H N
Ker(L ®x L - L ®g L); cf. [6, Corollary 1.16]
(iv) Thesubalgebra of H

B={heH|A(=h®1lmodH 1} (=H"")
is a finite-dimensional separable k-algebra. e have a right H-colinear B-algebra
isomorphism H >~ B ®; H.
(v) If Gp isnormal in Gy, then B C H is a Hopf subalgebra which is isomorphic to
k(Gp/G p)*, and we have an extension
k(Gy/Gp)*— H — H
of Hopf algebras; cf. [6, Corollary 1.17]

Proof. (i) This follows from Corollary 3.12(ii).

(i) This is easy to see. R

(i) By Theorem 3.9(ii), we have a PV extensiqil/K, A, H) = (®(L1)/P (K1),
@ (A1), H). Part (iii) now follows by Lemma 3.7. O

For the remaining (iv), (v) we prove:
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Lemma3.14. Let G, C G beasubgroup of finiteindex. Write @ = &¢,. Let K C A bean
inclusion of D-module algebras.

(i) We have an isomorphism of D-module algebras over @ (K),
A®k @(K) = ®(A),

givenby a ®x (g ® x) = g ® (g 1a)x (g € G/G).
(i) We have an isomorphism of K P-algebras,

AP©@Y =, (A gk o(K))”,

givenbya >3 ..;/6,80 ®k (§®1).

(i) Suppose ®(K) C A, so that A = & (A1), where A1 is a D(G1)-module algebra.
Let N C G denote the largest normal subgroup (necessarily of finite index) that is
included in G1. Define F = AY™); thisis G1-stable. Choose a system of representa-
tives g1, ..., g (€ G) for the double cosets G1\G/G1. Then,

t

AP = Z( > g) ® F& S,

i=1 “ge0;

where O; denotes the orbit containing the coset g; G1 in the left G1-set G/G1, and
S; C G1 denotes the subgroup of stabilizers of g;G 1.

Proof. (i) This is easily seen.
(i) This follows from (i) and Lemma 1.6.
(iif) We see

G
AD<Gl>=(AD<N>)Glz( P g®F> )
8€G/Gy

An elementzgec/qlg ® ag (ag € F) is Gi-invariant if and only ify_, ., & ® a is so
for each 1< i < ¢. Fix a cosefg; G1, and suppose that

8i>528i,--.,518 (55 €Gy)

represent the& 1-orbit O;. Then,le:l 5jgi ®aj (s1=1,a; € F) is Gy-invariant if and
onlyif s(g; ®a1) =s;g ®a; for everys € G, wheresg;G1 =s,8G1, Orsj_ls € §;. This
is further equivalent to that; = --- =a; € F&'Sigi | since we compute

s(gi®ai1) =s;8i ® (gflsflsgi)al. 0

Proof of Proposition 3.13(iv), (v). By Remark 3.8, we may suppose ttafs a field, and
sop=0,G, =G.
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(iv) The obvious equalizer diagram
0— A®g 1?—>A®KA:%A®KA®,?A
of D-module algebras is naturally identified with
0>A®B—>AQ H=AQ H®; H.
In particular, we see that
A@B~A@k K=A48k ®(K)
and so
B=(A®k ®(K))". 9)

By applying Lemma 3.14 to the present situation especially whe#s: G p, it follows that

t

(Agk ®(K))" ~ Z( > g> ® F& Sisi, (10)
i=1 “ge0;

whereF = Af(N) with N = G(1.); see Proposition 2.4. Sincef(N))G/N =k with G/N

finite, L2™)/ k is a finite Galois extension of fields. Therefafeand hence”s Si¢ now
are finite separable field extensions okeBy (9), (10),B is a finite-dimensional separable
k-algebra.

Recall thatA has the natural, right’ -comodulek-algebra structure 19-4 Qp A
A ®y H;infact, A is also a leftd -comodulek-algebra. We see that the map

o D(A1®k A)=A®g A—> AQk A (11)

given byg ® (a ®k b) — (g ® a) ®k (g ® b) (¢ € G/Gp) is a D-linear, two-sidedH -
colineark-algebra splitting ofA ®x A — A ®¢ A. The induceds?: H — H is a two-
sided H -colineark-algebra splitting off — H. It follows by [5, Theorem 7.2.2] (due to
Doi and Takeuchi) that

Be«H—H, bQxr boP(x) (12)

gives a rightd -colinearB-algebra isomorphism.

(V) If Gp is normal inG, thenGp = N, and henceF =k in (10). We then se® =
(®(K) ®k ©(K))P. By Example 3.6 8 C H is a Hopf subalgebra which is isomorphic
to k(G/Gp)*. The isomorphism given in (12) induces the described extension of Hopf
algebras. O

Theorem 3.15. Let K C L be an inclusion of AS D-module algebras. Choose arbitrarily
PeR(L),andletp=PNK (€ 2(K)). Then L/K isaPV extension if
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(a) Gpisnormal in Gy, and
(b) theinclusion Ky := K/p Cc L1:=L/P of D(Gp)-modulefieldsisa PV extension.

The converse holds true if the field K P (= LP) of D-invariantsis separably closed.

Proof. This follows by slightly modifying the last proof, as follows. We may suppose that
K is afield.

Suppose thatL1/K1, A1, H) is a PV extension. Defind = @ (A1) with @ = DG,
Recall from Proposition 3.13 that if /K is PV, the principal module algebra must Ae
As was seen in the last prool, ® ¢ A is a right H-comodulek-algebra and the map
given in (11) induces ai-colineark-algebra map” : H — (A ®x A)P. Again by [5,
Theorem 7.2.2], we have A-linear andH -colinear isomorphism

ARk ®(K)®r H~A®k A

of algebras over @ @ (K); see (12). It follows thaL /K is a PV extension if and only
if the natural injection

A (A®k @ (K))” - Aok &(K) (13)
is surjective. IfGp is normal inG, then this is surjective since by Example 36R
(®(K)Qk ®(K)P - Ak ®(K) is already surjective.

To prove the converse, we may suppose (b), and that the map given in (13) is an isomor-
phism. It follows that

dimi (A ®x ®(K))” =[G : Gpl. (14)

If k is separably closed, then= k in (10). Equation (14) impliesthat €) |Gp\G/Gp| =
[G:Gpl,orGpisnormalinG. O

The first half of the theorem above seems new even in the standard PV theory for dif-
ference equations. As will be seen from the following, the second half does not necessarily
hold true unlesg is separably closed.

Example 3.16. Let N ¢ G1 C G be as in Lemma 3.14. Suppose tlatis a D-module
field such thatk P(¢V = kP (=: k). Let L = &¢,(K). One sees from the argument for
(14) thatL/K is a PV extension if and only if

dimy(L @k L)P =[G : G1].
The left-hand side equals

t
> dimy FéSis (15)
i=1
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with the notation in Lemma 3.14, including = K ™),

Suppose thatV is trivial, and K /k is a Galois extension witl;; = Gal(K/k). If
G1 C G has a splittingr : G — G1 through whichG acts onk, thenL/K is a PV exten-
sion since one sees that the quantity (15) eqdals,[G1: Si1=Y!_;10;| =[G : G1].
We have a non-trivial example of such PV extension, for whitk= D,, is the dihedral
group of order 2 > 6 andG1 is a cyclic subgroup of order 2.

4. Splitting algebras

Let K C L be an inclusion of ASD-module algebras. Lef be aK # D-module. The
rank rkx (V) of the freeK-moduleV will be called theK -rank; see Corollary 2.5.

Definition 4.1. We say thatV splitsin L/K, or L/K is asplitting algebra for V, if there
is anL # D-linear injectionL. ® V < L! into some power.! of L.

Any K # D-submoduléW C V splitsinL/K, if V does.
Lemma4.2. If V hasafinite K-rank, say, n = rkg (V), then the following are equivalent:
(a) V splitsin L/K;
(b) thereisan L # D-linear isomorphisn L @ x V = L";
(c) thecanonical L-linear map
L ®;p Homgyp(V, L) - Homg (V, L)
is an isomor phism.
Proof. See [11, Proposition 3.1] also for other equivalent conditions. We only remark that

by Corollary 3.2, the map in (c) is necessarily injective, sifice= Homg (V, L) is an
L # D-module withY © = Homg#p (V, L), under theD-conjugation:

de)(v) = di(p(Sd2)v)) (deD,peY veV). (16)
Here,A(d) =) d1®dy. O
Let K(V) denote the smallest AB-module subalgebra if that includesk and all
f(V), wheref € Homgup(V, L). This equals the quotient ring of thé-subalgebra irl.
generated by alf (V). Obviously,V splitsinK (V)/K ifitdoesinL/K.
Definition 4.3. A splitting algebral. /K for V is said to beminimal if L = K(V).
Lemma4.4.Let Gy C G, K1 C L1 beasin Lemma 3.7. Write @ = &¢,. Then, L1/K1 is

a (minimal) splitting algebra for a K1 # D(G1)-module Vy, ifand only if @ (L1)/® (K1) is
a (minimal) splitting algebra for the @ (K1) # D-module @ (V7).
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Proof. This easily follows from Proposition 1.4 if one notices thatKi(V1)) =
@ (K1){D(V1)), in particular. O

For finitely many elements;, ..., u,, in L, let K{us, ..., u,) denote the smallest AS
D-module subalgebra if including K andus, ..., u,.

Definition 4.5. L/ K is said to bdinitely generated if L is of the formK (u1, ..., u,). This
is equivalent to that.1 /K1 is finitely generated, wher€1 = K/PN K, L1 = L/P foran
arbitrarily chosenP € 2(L).

Theorem 4.6. Let K C L be as above. Suppose K P = L. Then the following are equiv-
alent:

(@) L/K isafinitely generated PV extension;

(b) L/K isaminimal splitting algebra for a cyclic K # D-module of finite K -rank;

(c) L/K isaminimal splitting algebra for a K # D-module of finite K -rank;

(d) L = K{(x;;), where X = (x;;);; is a GL,-primitive in Kolchin's sense [2]: X €
GL,(L), and for everyd € D, (dX)X 1 e M,(K) withdX = (dx;;); ;.

Proof. We writek = K? (= LP).

(@) = (b). By Lemmas 3.7 and 4.4, we may suppose tiat a field. Suppose that
(L/K, A, H) is a finitely generated PV extension. By Proposition 3.13(iii), we have a
finitely generated PV extensiail;/K, A1, H) of module fields ovelC := D(G p) with
P e 2(L),suchthatl = ®(L1), A=®(A1).

There exist those finitely many elements ..., u,, in A which span and-subcomo-
dule overk, and satisfyL = K {(u1, ..., u;); see [11, p. 501] (but, we do not suppose here
thek-linear independence of these elements). Set an elemerii, ..., u,,) in A™, and
let V = (K # D)u, the cyclick # D-submodule generated lwy SinceL ® x A~ L ®; H,
we see thal /K is a minimal splitting algebra faA™, and hence fo#/.

It remains to prove that th& -dimension ding (V) is finite. It suffices to prove that the
natural imageV (P), say, ofV under the projectiomd™ — A7’ has a finitek -dimension,
sinceV is naturally embedded intE[PEQ(L) V(P). Letg, ..., gs be a system of repre-
sentatives of the right cosetsp\G. Then we have

N
V= Z(K #C)giu.
i=1

Fix 1<i <s,andletw = (wy, ..., wy,) € AT denote the natural image ofu. It suffices
to prove thatW := (K # C)w has a finiteK-dimension. By re-numbering we haveka
basis,ws, ..., w, (r < m), of thek-subspace i1 spanned bywi, ..., w,. There is a
rankr matrix T with entries ink, such thatw = w’T with w’ = (wq, ..., w,). It suffices
to prove thatW’ := (K # C)w’ has a finiteK -dimension, sincé¥’ ~ W under the right
multiplication byT.



K. Amano, A. Masuoka / Journal of Algebra 285 (2005) 743-767 763

Notice that for anyg € G, gus, ..., gu,, span and-subcomodule im. It then follows
thatwy, ..., w, form ak-basis of anH-subcomodule iM;. We see from proof of [11,
Theorem 3.3, (a)> (b)] that dimk (W) is finite, as desired.

(b) = (c). This is trivial.

(c) = (d). This follows in the same way as [11, Theorem 3.3¢c)d)]. For later use
we follow the outline.

Suppose that./K is a minimal splitting algebra foV with finite K-free basis
v1,...,U,. By Lemma 4.2, we havelabasisfi, ..., f, in Homggp (V, L). Define

X=(fiw)), v="(v1....,vn). 17)
Then, X is GL,-primitive, such that
dX)X v=dv (deD). (18)

(d) = (a). LetX = (x;;) be GL,-primitive, and suppos& ~1 = (y;;). Asin [11, Exam-
ple 2.5c], one sees that tli&-subalgebra

A=Klxij,yij]CL
and thek-subalgebra
H =klzij,wij1CL®k L

generated by the entries in

Z=@)=X"ter Aok X)., Zl=w)=>AexX HXexl (19
make(L/K, A, H) a PV extension. We only need to be careful to seeghdd — M, (K),
¢4 = (dX)X 1 (d € D) is convolution-invertible since eaah, (g € G) is; cf. [11, p. 494,
line —11]. O

Remark 4.7. Keep the notation just as above.

(i) As is noted in [11, p. 495], one sees from (19) that the natural rigktomodule
structuref : A — A ®; H is given by

6X)=Xx Z (=X DA% 2)). (20)
It follows that the structure off is given by
AZ)=Z @ Z, e(2)=1, S(Z):Z’l.
We have a Hopf algebra surjection,

O(GL,) =k[T;;. deXT;)) '] > H,  Tij > zj.
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which gives a closed embeddigL/K) — GL,, of affinek-group schemes; see [11,
Example A.3].

(i) Suppose thaD = R[g, g~1] with g grouplike, andX is a field; K is then a difference
field [6, Definition 1.1], given an automorphism, say,K — K. A difference system
¢y = By with B € GL,,(K) arises uniquely from & # D-module ofK -dimensiorn,
together with itsK -basis. We see from (18) that thein (17) is a fundamental matrix
[6, Definition 1.4] for the difference system arising from tieand thev above, and so
that A is the PV ring [6, Definition 1.5] for the system. It will follow from Theorems
4.6, 4.11 that ifc (= K P) is algebraically closed, a PV ring for any difference system
as above uniquely exists, and is given by suchiaas above.

Corollary 4.8. Let (L/K, A, H) bea PV extension of AS D-module algebras. The follow-
ing are equivalent:

(a) L/K isfinitely generated (Definition 4.5);

(b) L isthetotal quotient ring of a finitely generated K -subalgebrain L;
(c) A isfinitely generated asa K -algebra;

(d) H isfinitely generated as a k-algebra.

Proof. WhenK C L are D-module fields, the result is proved in [11, Corollary 3.4 and
the following paragraph]. The proof works in our generalized situation. Alternatively, the
result easily reduces to the special case above; use Proposition 3.13(iv) for the reduction
of (d). O

Corollary 4.9. Let K c L beaninclusion of AS D-module algebras such that K = L.
Then L/K is a PV extension if and only if it is a minimal splitting algebra for such a
K # D-module V that is a directed union, V =, Vi, of K # D-submodules V), of finite
K-rank.

Proof. This follows in the same way as [11, Corollary 3.5], but by using Theorems 3.9(iii)
and 4.6, together with Corollary 4.8.0

Let K be an ASD-module algebra. We have tfi&P -abelian symmetric tensor category
(xk#pM, ®k, K). Let V be an object inxxp M of finite K-rank. Then thek -linear dual
V*:=Homg (V, K) is a dual object under th®-conjugation; see (16). Thus the tensor
full subcategoryk#p Miin consisting of the finitek -rank objects is rigid. Lef{ V' }} denote
the abelian, rigid tensor full subcategory @fp M generated by, that is, the smallest
full subcategory containind’ that is closed under subquotients, finite direct sums, tensor
products and duals. Thus an objectfin}} is precisely a subquotient of some finite direct
sumWi @ --- @ W,, where each; is the tensor product of some copieslafV*; see [7,
Theorem 2.33] also for comparing with the following.

Theorem 4.10. Let (L/K, A, H) be a finitely generated PV extension of AS D-module
algebras. By Theorem 4.6, we have such a K # D-module V of finite K-rank for which
L/K isaminimal splitting algebra.
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(i) Let W e {{V}}. Regardthe A @ ¢ W asaright H-comodule with the structure induced
by A. Then (A ®x W)P? isan H -subcomodule with k-dimension rkx (W).
(i) Wi (A®x W)P givesa k-linear equivalence

vy~ mi

of symmetric tensor categories, where M = (M  ®, k) denotes the rigid sym-
metric tensor category of finite-dimensional right H-comodules; notice that thisisiso-
morphic to the category Refg ., ) of the same kind, consisting of finite-dimensional
linear representations of the PV group scheme G(L/K) = Speg H.

Proof. Regard naturallyd as an algebra in the symmetric tensor catedemt”, @y, k)
of those D-modulesN which has aD-linear, right H-comodule structurey : N —
N ®i H; D acts onN in N ®; H. We then have the symmetric tensor categoty M)
of A-modules inp M, which we denote by,sp M, ®4, A); this isk-abelian. Define
k-linear functors

(e (2]
,/\/lH - A#DMH - K#DM
1 2

&3]
)

by

©1(U) = A ®; U; H coacts codiagonally,
Z1(N)=NP,

O2(N) =N (={ne N |py(n)=ng;1}),
E2(W)=A®g W; H coacts om.

We see that); andZ» are symmetric tensor functors with the obvious tensor structures.
Moreover by [5, Theorem 8.5.6] (due to Schneidér),and £ are quasi-inverses of each
other, sinced /K is H-Galois by Proposition 3.4 (ii). Sincé? = k, 51 0 ®1 is isomorphic
to the identity functor. Suppos® e 4xp M. SinceA is simple by Corollary 3.12(i), we
see from Corollary 3.2 that the natural morphismyim M7

Uy @10 E1(N) =A@ NP - N

is an injection. Let\" denote the full subcategory af:p M? consisting of thosev for
which uy is an isomorphism. Since eaé¢h (U) is in N/, @1 gives an equivalence

M~ N.

Necessarily\ is closed under tensor products, and this is an equivalence of symmetric
tensor categories.

SinceA @k V = A" (n=rkg (V) in azgpM, E2(V) = A ®k V e N. We see tha®1
is exact, andV is closed under subquotients. Therefore for (ii), it suffices to prove that

V.= E10E2(V)=(AQ®g V)D
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generates(\/lfﬁ]. Letvy,..., v, be aK free basis ofV, and defineX, v as in (17). We see
from (18) that the entries i := 1ok v (e (A®k V)") are D-invariant, and hence
form ak-basis inV. By (20), theH comodule structurey; V — V @ H onV is given
by

(D) =" 27,

where’ denotes the transpose of matrices. This means that the coeffiesgace ofV
is the subcoalgebra iH spanned by the entries;; in 'Z~ 1 . Sincew;; together with the
entriesS(w;;) in Z generate thé-algebraH (see the proof of Theorem 4.6(e} (a)),
\% generates\/lfm, see [13, Theorem 3.5]. This proves part (ii).

If We{{V}},thenZ2(W) e N, and so

dim (A @k W)P =rka(A @k W) =rkg (W).
This proves part (i). O

Theorem 4.11. Let K be an AS D-module algebra such that the field K of D-invariants
isalgebraically closed. Let V bea K # D-module of finite K -rank. Then there existsan AS
D-module algebra L including K suchthat K? = L?, and L/K isa (necessarily finitely
generated) minimal splitting algebra for V. Such an algebra is unique up to D-linear
isomorphism of K -algebras.

To prove this, we need the following:

Lemma 4.12. Let K be an AS D-module algebra. Let A be a simple D-module algebra,
andlet L = Q(A) bethetotal quotient ring of A; by Lemma 2.7, L isuniquely a D-module
algebra. If A isfinitely generated asa K -algebra, then L /K P is an algebraic extension
of fields.

Proof. We follow Levelt [3, Appendix] for this proof. Ifx € L”, then (A : x) =
{a € A|ax € A} is a D-stable ideal. Since this contains a non-zero divisor, we have that
(A:x)=A, and soAP =LP

If A is finitely generated, then it is noetherian. By Proposition 2.4, we may suppose that
K is afield (andA is a domain). IfP C A is a maximal ideal, then the field” is included
in the field A/ P, which is algebraic ovek . Therefore ifx € AP, it is algebraic ovek .
Let o(T) =T" + c1T" 1 + ... 4+ ¢, denote the minimal polynomial of over K. Since
foranyd € D, e(d)T" + (dc))T" 1 + --- + dc, hasx as a root, each; € K by the
minimality of ¢(7T). Thusx is algebraic ovek?. O

Proof of Theorem 4.11. Existence: this is proved by modifying the proof of [11, Theo-
rem 4.5], as follows. Letq, ..., v, be aK-basis forV. Ford € D, write

.
dvi = cis(d)vs
s=1
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with ¢;5(d) € K. Define aD-module algebra structure ok[X;;], the polynomialk -
algebra in-2 indeterminates, by

d(Xij)=Y cis(d)X;; (deD).
s=1

Since defc;;(g)) is invertible in K for eachg € G, the D-module algebra structure of
K[X;;]is uniquely extended t¢&" = K[X;;, deI(XU)—l] by Lemma 2.7. Lef be a max-
imal D-stable ideal ofF, and putA = F/I. SincekK is simple,/ N K = 0. HenceA is a
noetherian simpl®-module algebra including . Let L be the total quotient ring oA ; this
is an ASD-module algebra by Proposition 2.4 and Lemma 2.7. By Lemma 4.12, we have
LP = KP. Letx;; denote the image of;; in A, and definek -linear mapsf; : V — L
(j=1,...,r)by f;j(v;) = x;;. Thenthese maps are in Hewp (V, L), and are linearly in-
dependent ovek?, since(x;;);,; € GL,(L). ThereforeL/K is a minimal splitting algebra
for V by Lemma 4.2(c).

Uniqueness: this follows by modifying the proof of [11, Theorem 4.6]0
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