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Abstract

This study investigates buckling behaviors of laminated composite structures with a delamination using the enhanced
assumed strain (EAS) solid element. The EAS three-dimensional finite element (FE) formulation described in this paper, in
comparison with the conventional approaches, is more attractive not only because it shows better accuracy but also it con-
verges faster, especially for distorted element shapes. The developed FE model is used for studying cross-ply or angle-ply
laminates containing an embedded delamination as well as through-the-width delamination. The numerical results
obtained are in good agreement with those reported by other investigators. In particular, new results reported in this paper
are focused on the significant effects of the local buckling for various parameters, such as size of delamination, aspect ratio,
width-to-thickness ratio, stacking sequences, and location of delamination and multiple delaminations.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is known that delaminations are the most frequent causes of failure in laminated structures, particularly
under compressive loads. The delaminations in composite materials may occur as a result of various reasons such
as manufacturing imperfections, imperfections of various natures, external impacts, thermal and chemical
shrinkage of components, and high stress concentrations in the area of geometric or material discontinuities.
The presence of delaminations in composite laminates can reduce the overall stiffness and cause the material
unbalance in a symmetric laminate. In addition, delaminations tend to grow rapidly under postbuckling loads,
causing further reductions in the structural strength and leading ultimately to the fatal structural failure.

For the past two decades, analytical and numerical analyses have been carried out by many researchers to
analyze delaminated composite structures, considering their buckling and postbuckling behaviors. Chai et al.
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(1981) presented an one-dimensional analytical model to assess the compressive strength of delaminated com-
posites. Simitses et al. (1985) investigated delamination buckling and growth by using one-dimensional beam-
plate theory. The problem of symmetric local buckling and growth of a delamination in a circular plate was
presented by Bottega and Maewal (1983). Sheinman and Soffer (1990) extended the work of Simitses et al.
(1985) to include the effect of extension-bending coupling on the stability of a delaminated composite by using
a finite-difference method. Kardomateas and Schmueser (1988) studied the effects of the transverse shear on
the buckling and postbuckling of delaminated composites. Chen (1991) investigated transverse shear effects
by using variational energy principles. His study presented that the transverse shear effect depends on the loca-
tion and length of the delamination. The buckling analysis of beam-plate having multiple delaminations has
been analyzed by Suemasu et al. (1998) and Wang et al. (1997). Jane and Yin (1992) developed an analytical
procedure, based on the Rayleigh–Ritz method and von Karman’s nonlinear theory of plates, for computing
the buckling load and the postbuckling solution of cross-ply and angle-ply sub-laminates by the thin-film
approximation. Whitcomb (1989) studied the delamination growth caused by the local buckling in composite
laminates that have a near-surface delamination, by using the geometrically nonlinear finite element. Buckling
analysis using the FEM based on the Mindlin plate theory, which includes contact algorithms, has been per-
formed by Hu (1999). Several investigators proposed models based on higher-order theories for more accurate
prediction of buckling loads. For instance, Gu and Chattopadhyay (1999) developed a new higher-order the-
ory to analyze the delamination buckling problem. Their results showed that the transverse shear effect is sig-
nificant for delamination buckling. This theory, however, employs a lot of primary variables with increasing
number of delamination.

In these works, in the conventional two-dimensional finite element model based on Reissner/Mindlin plate
theory or classical plate theory, at the edge of the delamination the node of the element are rigidly connected
together using offset vectors. However, the numerical implementation of these offset vectors cause additional
complexity in the problem of the laminates with multiple delaminations having an arbitrary shape, location,
and size. In order to overcome additional connected elements nor offset vectors to model delaminations in the
damaged composites, Cheng et al. (1996) proposed a model based on a higher-order zig-zag theory for com-
posite laminates with the weakened interface. But this model could not describe both the slipping and opening
of delaminations. A finite element based on the efficient higher-order zig-zag theory with multiple delamina-
tions was developed by Kim and Cho (2002), but it has a complicate formulation and is limited in cross-ply
laminates. Furthermore, most of the papers on the delamination buckling and postbuckling behavior of com-
posite laminates are restricted to a through-the-width or a near-surface delamination and are also restricted to
cross-ply laminates. However, the embedded delamination is more important issue from the engineering point
of view, which cannot be analyzed by means of one-dimensional model or thin-film approximation. A two-
dimensional model based on higher-order theories is mainly employed to analyze the embedded delamina-
tions, however, its capability to investigate the local buckling mode at the delamination face is limited. On
the other hand, the solid finite element investigated in this study can illustrate the more accurate local buckling
mode at the delamination zone. Moreover, computations using the EAS element are free from shear locking
and can yield accurate results for distorted element shapes (Braes, 1998). This allows the convenient use of
EAS elements. A variety of EAS formulations exist, but they are mostly applicable to the two-dimensional
analysis of plates made of isotropic materials. In this paper, the existing solid EAS elements are further
extended to study structures made of anisotropic materials. This study focuses on the interaction between
the local and global buckling behaviors of laminated composite plates for various parameters, such as the
delamination size, aspect ratio, width-to-thickness ratio, stacking sequences, and location of delamination
and multiple delaminations.
2. Theoretical formulation

2.1. Enhanced assumed strain field

The variational basis of the finite element method with enhanced assumed strain (EAS) fields is based on
the principle of Hu-Washizu in the following:
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where displacement field u, strains e, and stresses r are the free variables, C stands for the material stiffness
matrix. Prescribed values are marked by an upper bar, namely body force �b, surface traction �t, and the bound-
ary conditions �u for prescribed displacements.

Following the idea of Simo and Rifai (1990), the assumed strains in the finite element calculations can be
now split into a compatible part ec that satisfies the geometric field equations in the strong sense and an
enhanced part ~e
e ¼ ec þ ~e ¼ BuþMa ð2Þ
where B is the compatible strain–displacement relation matrix, M is the interpolation matrix for the enhanced
assumed strain fields, and a is the vector of the internal strain parameters corresponding to the enhanced
strain.

By substituting Eq. (2) into Eq. (1) with three-field functional, we get
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The Euler equations for the stationarity of this functional Eq. (3), in which boundary condition and force term
is removed, are
Z
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duTBT½CðBuþ ~eÞ�dV ¼ 0 ð4Þ
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Fig. 1 shows the assumed displacements of a typical isoparametric eight-node solid element on the global and
natural coordinate system. The enhanced assumed strain, defined in the global coordinate, is interpolated
according to Eq. (2)
~e ¼Ma ð7Þ
M ¼ det J0

det J
T�T

0 Mn ð8Þ
where detJ denotes the determinant of the Jacobian matrix J, detJ0 is the determinant of the Jacobian matrix
J0 = J|n=g=f=0 at center (n = g = f = 0) of the element in the natural coordinate, and Mn is the shape or inter-
polation function for the enhanced assumed strain, respectively.

According to tensor calculus, T�T
0 maps the polynomial shape functions of Mn, defined in the natural coor-

dinate, into the global coordinate (Simo and Rifai, 1990). This transformation is restricted to the origin so that
the components of T�T

0 are constant and the chosen polynomial order is not increased. Then the matrix T�T
0

contains the components J ij0
of J0 and can be written as
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Fig. 1. Assumed displacements of a typical isoparametric eight-node solid element on the global (Cartesian) and natural coordinate
system. (a) Global coordinate system. (b) Natural coordinate system.
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where J ij0
are the components of Jacobian matrix J0 at the center of the element in the natural coordinate. The

Jacobian matrix at the center of the element (n = g = f = 0) does not originate the unexpected strain energy by
the enhanced strain. The revised Jacobian at center of element then guarantees that the patch test is passed.

In Eq. (8), Mn must be assumed by the linear independent interpolation functions that satisfy the orthog-
onality of Eq. (5) (Simo and Rifai, 1990). Therefore, an optimal interpolation of Mn for the enhanced assumed
strain can be found by inspecting the polynomial field of the compatible strain in the natural coordinate sys-
tem. In order to decouple and enhance compatible strains, following complete trilinear 30-parameters inter-
polation function in the natural coordinate was chosen (Andelfinger and Ramm, 1993)
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2.2. Finite element formulation

2.2.1. Element stiffness matrix
Eqs. (7) and (8) are introduced into the energy principle of Eq. (3), and variation with respect to the

unknown parameters di and ai results in the following system of equations:
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ð11Þ
where F is the vector of applied nodal forces used in the displacement method, di is the nodal displacements of
node i in the global coordinate system, and the stiffness matrix KCC, KCN, KNN are described as
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where the matrix B is the compatible strain–displacement relation matrix. Q is the material stiffness matrix as
following:
Q ¼ TCTT ð13Þ

where, C is the material stiffness matrix in the material axis, and T is the transformation matrix that the stres-
ses and strains on the material axis can be transformed to those of the structural axis. The stress–strain for the
structural axis is obtained by
rs ¼ Trm ¼ TCem ¼ TCTTes ð14Þ

Fig. 2 shows the relationship between the structural or problem axis (x–y–z) and the material axis (1–2–3) for a
lamina. Finally the stress–strain relations for an orthotropic material in the structural axis can be also
expressed as
rs ¼
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Fig. 2. A fiber-reinforced lamina with structure (x–y–z) and material (1–2–3) coordinate system (+h: counterclockwise).
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Here, ai must be removed from Eq. (11), because it is an artificial parameter used for an enhanced strain.
Then the static condensation for the strain parameter ai finally yields the element stiffness matrix as following:
Ke ¼ KCC � KCNK�1
NNKT

CN ð16Þ
2.2.2. Stress recovery

In order to obtain stresses in the EAS element, the hybrid formulation based on Hellinger–Reissner prin-
ciple, e.g. HR-element, is used (Andelfinger and Ramm, 1993). This procedure is also the same as that of least-
squares variation recovery (Simo and Rifai, 1990), provided that the same stress interpolation matrix is used in
both procedures. The HR-formulation with continuous displacement and discontinuous stress fields can be
summarized as follows:
re ¼ Pb ¼ T0Pnb ð17Þ

H ¼
Z

V
PTQ�1PdV ð18Þ

G ¼
Z

V
PTBdV ð19Þ

re ¼ PH�1Gue ð20Þ
for all elements e = 1,2, . . . ,nelem

where, Pn is the interpolation function matrix for stresses in the natural coordinates, ue is the displacement
vector on element, and re are the stresses at each gauss integration points on the element. The stiffness matrix
of the HR-element based on the Hellinger–Reissner principle is equivalent to the stiffness matrix of the EAS-
element, if polynomials in Mn and Pn are complementary. In addition, the components of Mn and Pn must be
independent each other. In other words, if SM is the n-dimensional space of the polynomial expansion in Mn

and SP that corresponding to Pn, the following two conditions must hold for this equivalence
SM [ SP ¼ Scomplete ð21Þ
SM \ SP ¼ ; ð22Þ
For a trilinear element, for example, the eight-node solid element Scomplete defines the six-dimensional space
with complete trilinear polynomials. The stresses of the EAS- and HR-element are also identical if the stresses
for the EAS-element are calculated according to the HR-formula as
re ¼ PH�1Gue ð23Þ
These stresses always satisfy Eq. (5). By substituting Eq. (23) into Eq. (5) and exception of Pn and Mn, all
other terms are constant so that
Z 1

�1

Z 1

�1

Z 1

�1

PT
n Mn dndgdf ¼ 0 ð24Þ
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In order to satisfy Eqs. (21), (22) and (24), Pn in the natural coordinates must be assumed as
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The stresses obtained by the Eq. (23) are the stresses (r1–8) at gauss integration points of each eight-node
solid element. In order to obtain the stresses at the nodal point, the extrapolation method is used. The stresses
(rA–H) at the nodal point of each eight-node solid element can be calculated by Eq. (26).
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In this study, the finite element obtained by these procedures is named by ‘‘EAS-SOLID8’’.

2.3. Buckling analysis

The buckling behavior of the laminated composite structures is very important for the design of civil engi-
neering structures. In this study, the finite element method is used to investigate the buckling behavior of the
described analysis model. The basic equation of buckling analysis in the form of an eigenproblem is
Ke/ ¼ kKG/ ð27Þ

where Ke and KG are the elastic and geometric stiffness matrices of the structure, respectively, and / is the
generalized global displacement vector. The elastic stiffness matrix K is defined by Eq. (16). This eigenproblem
is solved by the subspace iteration procedure that is an effective method widely used in engineering practice for
the solution of eigenvalues and eigenvectors of finite element equations. This technique is particularly suited
for the calculation of a few eigenvalues and eigenvectors of large finite element system. The subspace iteration
method is developed by Bathe (1996). The smallest eigenvalue k1 among eigenvalues obtained by the subspace
iteration method is the buckling load Ncr, and its corresponding eigenvector /1 represents the buckling mode
for the buckling load, the smallest eigenvalue.

The geometric stiffness matrix KG of the eight-node solid element must be formulated for the eigenproblem.
If the in-plane loads are applied in x- or y-direction for an infinitesimal solid element on the structural element,
the infinitesimal solids element, as shown in Fig. 3, will be buckled to z-direction. In this case, the geometric
stiffness matrix KG for the eight-node solid element that is expressed by the standard shape function of equa-
tion is described as
KG ¼
Z

V
BT

G
�NBG dV ¼

Z 1

�1

Z 1

�1

Z 1

�1

BT
G

�NBGjJjdndgdf ð28Þ
where �N means in-plane force vector as shown in Fig. 3 and BG is the derivative matrix of the shape function in
Eq. (29).
BG ¼
0 0 oNi
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0 0 oNi
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" #
¼ J�1

0 0 oNi
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og

" #
; i ¼ 1–8 ð29Þ
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Fig. 3. Infinitesimal solid element under in-plane load.
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�N ¼
Nx Nxy

N xy N y

� �
ð30Þ
where Ni (i = 1–8) is the shape function of a typical isoparametric eight-node solid element in the natural coor-
dinate system and Eq. (30) must be transformed into Eq. (31) because in this study the unidirectional uniform
in-plane loading in x-direction is only considered.
�N ¼
1:0 0:0

0:0 0:0

� �
ð31Þ
3. Numerical examples

3.1. Numerical verification

The isoparametric eight-node solid element with an enhanced assumed strain used in this study is compared
with the bench mark test proposed by other researchers. In order to evaluate the performance of the proposed
solid elements, the patch test, distortion test, and other various numerical tests are carried out. The examples
carried out in this chapter are given to demonstrate the efficiency and accuracy of the proposed solid element.

3.1.1. Eigenvalue test

In order to test the behavior of solid elements in the nearly incompressible range, an eigenvalue analysis is
performed for one square element with a side length 1.0 and E = 1.0. The material is assumed to be incom-
pressible, i.e. in the numerical calculation m = 0.4999 was used, rendering eigenvalues of 103–105 instead of
1. Table 1 shows the eigenvalues for 18 modes; the six zero-eigenvalues for the six rigid body modes are
not shown. The proposed element and HR-element, which has equivalence with the proposed element, give
the correct eigenvalues. The HR-18 element proposed by Pian (1982) is an eight-node hybrid element used
by 18 parameters for the stress assumption.

In Table 1, for a volumetric-locking free behavior, it is important that elements contain only one incom-
pressible mode; i.e. its eigenvalue is infinite. For the displacement model DISP, standard eight-node solid ele-
ment, six deviatoric modes are always mixed up by parasitic volumetric strains when for m = 0.5 leads to six
unrealistic infinite eigenvalues.



Table 1
Eigenvalues for eight-node solid elements with an incompressible material (the six zero eigenvalues are not shown)

DISP HR-18 (Pian, 1982) EAS-SOLID8

1 0.0555 0.0555 0.0555
2 0.0555 0.0555 0.0555
3 0.1666 0.0555 0.0555
4 0.1666 0.0555 0.0555
5 0.1666 0.0555 0.0555
6 0.2222 0.1111 0.1111
7 0.3333 0.1111 0.1111
8 0.3333 0.1111 0.1111
9 0.3333 0.2222 0.2222

10 0.3333 0.3333 0.3333
11 0.3333 0.3333 0.3333
12 1 0.3333 0.3333
13 1 0.3333 0.3333
14 1 0.3333 0.3333
15 1 0.3333 0.3333
16 1 0.3333 0.3333
17 1 0.3333 0.3333
18 1 1 1
DISP, standard isoparametric eight-node solid element; HR-18, eight-node hybrid element used by 18 parameters for stress assumption.
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3.1.2. Comparison of EAS and other elements

The cantilever beam presented in Figs. 4 and 5 is used to evaluate the performance of the two-dimen-
sional hybrid element proposed by Pian and Sumihara (1984), three-dimensional hybrid element proposed
by Cheung and Chen (1988), and three-dimensional incompatible element proposed by Wilson and Ibra-
himbegovic (1990). In this study, the same example is used to demonstrate that the same accuracy can be
obtained with the hybrid stress recovery method proposed in this study. The end moment and end shear
are considered as applied loads. The same distorted mesh is used as the one presented in Pian and Sumi-
hara (1984) and Cheung and Chen (1988). Both the displacement at point ‘‘B’’ and the normal stress (rx)
at point ‘‘A’’ under the two load cases are compared with hybrid, incompatible, and compatible elements,
and presented in Tables 2 and 3. In addition, results obtained by the solid element with incompatible
modes given in Wu et al. (1987) and Wilson and Ibrahimbegovic (1990) are presented for comparison.
Generally, it is known that the performance of the incompatible element is similar to that of the EAS
element. In the case of the distorted mesh, Table 2, it is interesting to notice that the present formulation
gives nearly the same results as the ones obtained by the incompatible element proposed by Wilson and
Ibrahimbegovic (1990) and by the hybrid element proposed by Pian and Sumihara (1984). However, in the
case of the trapezoidal mesh, Table 3, the present results for vertical displacement of this example are
superior to the results of solid element with incompatible modes proposed by Wilson and Ibrahimbegovic
(1990) and with compatible modes. Therefore, the performance of the EAS element is largely improved
than that of the incompatible element.

3.1.3. Accuracy of stress recovery

The same cantilever beam shown in Fig. 5 is used to evaluate the performance of the element when the mesh
of trapezoidal elements is selected. It was shown in Macneal (1987) that such a choice will bring about the
locking phenomenon for any element which passes the patch test. Both the displacement at point ‘‘B’’ and
the normal stress (rx) at point ‘‘A’’ under the two load cases is compared with other elements, and presented
in Tables 2 and 3. Tip displacements for both load cases are approximately 20% smaller than the exact solu-
tion. However, although elements have the trapezoidal shape, the difference between computed and exact dis-
placements is less than 2%. It can be also observed that the stress computed using the EAS-Solids8 is more
accurate than those of the solid element with the incompatible modes proposed by Wilson and Ibrahimbegovic
(1990).
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3.1.4. Laminates without delaminations

The simply supported [0/90/90/0] cross-ply square laminated plates under uniform in-plane forces is
considered for illustrating accuracy of buckling behavior by the EAS-SOLID8 elements. Individual layers
are considered as the orthotropic material properties; E11/E22 = open, E22 = E33, G12 = G13 = 0.6E22,
G23 = 0.5E2, m12 = m13 = m23 = 0.25. The nondimensionalized critical buckling loads with respect to various
values of E11/E22 are shown in Table 4 and are compared with the three-dimensional elasticity solution given
by Noor (1975). The present results show some larger values than all other theories and have accurate values
within 4% with respect to 3D elasticity solution. The nondimensionalized critical buckling loads with respect
to various values of a/h are also shown in Table 5. In Table 5, the present results also show accurate values
with respect to all other theories. The present results show the smallest buckling loads, specially for a/h = 4.
The difference between all the theories is a minimum for very thin laminates whereas EAS-SOLID8 shows the
smallest buckling loads with respect to other theories for thick laminates. It should be pointed out from the
tables that the EAS-SOLID8 demonstrates excellent performance in a buckling problem of laminates with not
only thick but also thin thickness for various material properties.
3.1.5. Laminates with delaminations

Four-layer square laminate [0//0/0/0] with an embedded circular delamination on the buckling behavior of
composite laminate as shown in Fig. 6 is considered to compare the present study with CLT, FSDT,
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EHOPTWD, and Kim (1997). The double slash ‘//’ represents the position of a delamination within the lam-
inates. The laminate has length L = 150 mm and thickness H = 4 · 0.125 mm. Material properties of the plate
were given by
Table 2
Vertical displacement and stress of short cantilever beam – distorted mesh

Element Load case Vertical displacement (point B) Normal stress (point A)

Pian and Sumihara (1984) Moment 96.18 (�3.82) �3014 (0.47)
Cheung and Chen (1988) Moment 92.2 (�7.80) �3006.6 (0.22)
Wu et al. (1987) Moment 93.7 (�6.30) �2484 (�17.2)
Wilson and Ibrahimbegovic (1990) Moment 95.8 (�4.20) �3015 (0.50)
EAS-SOLID8 Moment 95.98 (�4.02) �3015 (0.50)
Exact solution 100.0 �3000

Pian and Sumihara (1984) Shear 98.19 (�4.30) �4137 (2.15)
Cheung and Chen (1988) Shear 94.05 (�8.33) �4125.3 (1.85)
Wilson and Ibrahimbegovic (1990) Shear 97.9 (�4.58) �4138.5 (2.19)
EAS-SOLID8 Shear 98.36 (�4.13) �4146.3 (2.38)
Exact solution 102.6 �4050

Numbers in the parentheses are the percentage error with respect to exact solution.



Table 3
Vertical displacement and stress of short cantilever beam – trapezoidal mesh

Element Load case Vertical displacement (point B) Normal stress (point A)

Compatible# Moment 53.439 (�46.6) �2720.5 (�9.3)
Compatible* Moment 53.439 (�46.6) �1473 (�50.9)
Wilson and Ibrahimbegovic (1990) Moment 76.252 (�23.7) �2883.5 (�3.9)
EAS-SOLID8 Moment 80.630 (�19.4) �2977 (�0.8)
Exact solution 100.0 �3000

Compatible Shear 57.728 (�43.7) �3784 (�6.6)
Compatible* Shear 57.728 (�43.7) �2051 (�49.4)
Wilson and Ibrahimbegovic (1990) Shear 80.115 (�21.9) �3860 (�4.7)
EAS-SOLID8 Shear 85.636 (�16.5) �4105 (1.4)
Exact solution 102.6 �4050 (0.00%)

Numbers in the parentheses are the percentage error with respect to Exact solution. #Stresses evaluated from stress recovery for standard
solid element. *Stresses evaluated from the displacements of standard solid element.
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E11 ¼ 135:4 GPa; E22 ¼ 9:6 GPa; E33 ¼ E22;

G12 ¼ G13 ¼ 4:8 GPa; G23 ¼ 3:2 GPa; m12 ¼ m13 ¼ m23 ¼ 0:31 ð32Þ
Fig. 7 shows the effect of the delamination size and boundary conditions on the buckling loads. In this study, for
a clamped support, the induced buckling loads show higher values for small delamination sizes (D/L = 0.2)
when compared with those proposed by Kim (1997). On the other hand, the induced buckling loads show com-
paratively lower values as the delamination size increases. For a simple support, the induced buckling loads for
D/L < 0.4 are in good agreement with those proposed by Kim (1997). However, it can be observed that the in-
duced buckling loads show comparatively lower values than others as the delamination size increases. This is
probably due to the fact that a complete three-dimensional model reveals local buckling at the smaller delam-
ination area than other models that use two-dimensional plate elements. Moreover, the boundary condition
modeled using the plate elements is inconsistent with that modeled using the solid elements employed in this
study. Therefore, the three-dimensional model using solid elements employed in our analysis achieves better
accuracy, particularly for laminated composite plates with small delamination area.
3.2. Parameter studies

In this study, the buckling analysis of the laminated composite plates with the through-the-width or embed-
ded delaminations is accomplished by the full three-dimensional model using eight node solid elements with
EAS fields. In order to investigate the buckling behavior of laminated composite plates with delamination, it is
4
mensionalized critical buckling coefficients �Nx ¼ Nxb2=ðE22h3Þ as a variation of E11/E22 for simply supported [0/90/90/0] cross-ply
laminated plates

Mesh E1/E2

3 10 20 30 40

OLID8 4 · 4 · 4 5.5225 (4.11) 10.2166 (4.66) 15.7576 (4.92) 20.2858 (5.09) 24.0764 (5.23)
8 · 8 · 4 5.4422 (2.60) 10.0626 (3.08) 15.5336 (3.43) 20.0175 (3.70) 23.7793 (3.93)
10 · 10 · 4 5.4326 (2.42) 10.0444 (2.89) 15.5071 (3.25) 19.9857 (3.53) 23.7440 (3.77)

sticity (Noor, 1975) 5.3044 9.7621 15.0191 19.3040 22.8807

nd Manjunatha (1988) HSDT 5.3745 (1.32) 9.8066 (0.46) 14.8522 (�1.11) 18.8313 (�2.45) 22.0671 (�3.56)

a and Kant (1988) HSDT 5.3896 (1.61) 9.8319 (0.72) 14.8882 (�0.87) 18.8750 (�2.22) 22.1163 (�3.34)

(1984) HSDT 5.3899 (1.61) 9.8325 (0.72) 14.8896 (�0.86) 18.8776 (�2.21) 22.1207 (�3.32)
lnathan et al. (1987) HSDT 5.4142 (2.07) 10.2133 (4.62) 16.2309 (8.07) 21.4288 (11.01) 25.9651 (13.48)

ey and Pagano (1970) FSDT 5.3961 (1.73) 9.8711 (1.12) 14.9846 (�0.23) 19.0265 (�1.44) 22.3151 (�2.47)

umbers in the parentheses are the percentage errors with respect to 3D elasticity values.



Table 5
Nondimensionalized critical buckling coefficients �Nx ¼ Nxb

2=ðE22h3Þ as a variation of a/h for simply supported [0/90/90/0] cross-ply square
laminated plates

Source Mesh a/h

4 10 20 50 100

EAS-SOLID8 4 · 4 · 4 8.6632 24.0764 32.5460 36.2628 36.8715
8 · 8 · 4 8.6139 23.7793 32.0111 35.5996 36.1858
10 · 10 · 4 8.6135 23.7440 31.9479 35.5214 36.1050

Kant and Manjunatha (1988) HSDT 8.8148 23.2527 31.6278 35.3409 35.9511

Pandya and Kant (1988d) HSDT 8.8901 23.3026 31.6481 35.3448 35.9521

Reddy (1984) HSDT 8.9822 23.3400 31.6596 35.3467 35.9526

Senthilnathan et al. (1987) HSDT 10.6504 25.9651 32.9173 35.5981 36.0176

Whitney and Pagano (1970) FSDT 9.1138 23.4529 31.7071 35.3560 35.9550

/ 2L

/ 2L

Delamination

/ 2D

Fig. 6. A quarter mesh configuration of the laminated plates with embedded circular delaminations.
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assumed that (1) the plates may be composed of layers of a single material or different materials, (2) the layers
may be ordered in any sequence through the thickness, that is, the plate can be laminated symmetrically or
unsymmetrically, and (3) the thickness of each layer is constant. Here, friction and contact conditions at del-
aminated interfaces are not considered and it is assumed that a delamination exists before loading and delam-
ination growth is not considered. In this study, the parameter studies are all layers of equal thickness, and it is
assumed that the delamination is located near the surface of the ply. The local or global buckling behaviors of
laminated composite plates containing through-the-width or embedded delaminations are studied with various
parameters, such as aspect ratio, width-to-thickness ratio, stacking sequences, and location of delamination
and multiple delaminations.
3.2.1. Single through-the-width delamination

Fig. 8 shows the analysis model for laminated composite plates with through-the-width delamination. In
Fig. 8, a and b are length of the plate in the x-direction and y-direction, respectively, h is the total thickness
of the plate in the z-direction, and D is the size of the delamination in the x-direction. As shown in the figure, it
is assumed that boundary conditions at two unloaded ends are free and at the two other ends are considered to
be either clamped or simply supported, and the uniform in-plane load only in the x-direction of the plates is
applied. As shown in Figs. 8(b) and (d), the quarter model is employed to investigate buckling behavior for
cross-ply laminated composite plates with through-the-width delamination because the geometry of the plates
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is symmetric. However, the whole model for angle-ply laminated composite plates is employed because the
symmetric characteristics for the geometry of the plates are disappeared as shown in Figs. 8(a) and (c). The
material properties applied for the all examples in this section are given as follows:
E11 ¼ 25E22; E33 ¼ E22; G12 ¼ G13 ¼ 0:5E22; G23 ¼ 0:2E22; m12 ¼ m23 ¼ m13 ¼ 0:25 ð33Þ
The obtained critical buckling stresses rcr are converted to critical buckling loads �N cr, and then are nondimen-
sionalized as Eq. (34)
�N cr ¼ ðrcr=E22Þ � ðb=hÞ2 ð34Þ
3.2.1.1. Effect of aspect ratio. Fig. 9 shows the nondimensionalized buckling loads versus various aspect ratios
(a/b) of the clamped supported [0//90/90/0] laminated plate with increased through-the-width delamination
sizes (D/a). The buckling loads for D/a = 0.8 approach a constant value as the aspect ratio increases. On
the other hand, the buckling load for small delamination sizes tends to decrease sharply within the same range.
Fig. 10 shows the normalized buckling loads in the case without delamination shown in Fig. 9. From the fig-
ure, it can be observed that the induced buckling loads decreased drastically, particularly for D/a > 0.2. This
phenomenon illustrates the fact that global buckling modes are changed into local buckling modes for small
delamination sizes. Further, it can be observed that the local buckling mode starts more rapidly for larger
aspect ratios.

3.2.1.2. Effect of width-to-thickness ratio. Fig. 11 shows the nondimensionalized buckling loads for different
through-the-width delamination sizes of clamped [0//90/90/0] laminated square plate with various width-to-
thickness ratios. From the figure, it can be seen that the buckling loads decrease sharply for D/a P 0.2 when
a/h is 100, 40, and 20 (thin plate), while the buckling loads do not change significantly for D/a P 0.3 when a/h
is 10 (thick plate). This can be attributed to the fact that the local buckling mode starts more rapidly for larger
width-to-thickness ratios. For extremely large delamination sizes (D/a = 0.8), the buckling loads approach a
constant value, regardless of the width-to-thickness ratios. This phenomenon is evident in Fig. 12. It is easy to
understand that the extremely large delamination size results in a decrease in the plate resistance against the
buckling behavior. Figs. 11 and 12 suggest that the influence of the delamination size may play certain roles in
determining the buckling behavior of thin laminated composite plates. In particular, the thin plate with
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D/a P 0.2 is very sensitive to the buckling loads. Therefore, it is desirable to use the range of D/a < 0.2 for a
reasonably stable design, as far as buckling is concerned.
3.2.1.3. Effect of stacking sequences. Fig. 13 shows the buckling loads for symmetric and antisymmetric cross-
ply laminated square plates with different through-the-width delamination sizes (clamped boundaries). In
Fig. 13, the symmetric [0//90/90/0] laminate exhibits the largest buckling loads. The buckling loads of the
[90//0/90/0] and [90//0/0/90] laminates decrease sharply from D/a P 0.1, because the fiber orientation at
the layer with the delamination is perpendicular to the in-plane loads. The ply angles result in worse rigidity
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against the buckling behavior. The local buckling modes occur suddenly for the [90//0/90/0] laminate because
of the combined effects of the ply angle and delamination size.

Fig. 14 shows the buckling loads of the symmetric and antisymmetric angle-ply laminated square plates
with different through-the-width delamination sizes (clamped boundaries). The fiber angles at each layer of
the four-layered symmetric and antisymmetric composite plates are selected as 30�, 45�, and 60�. The induced
buckling loads are significantly different for different fiber angles, because different fiber angles largely govern
the changes in bending and shear stiffnesses. The buckling load of the [30//-30/30/-30] laminate exhibits the
highest value. On the other hand, the differences in the buckling loads due to the layup sequence (symmetric
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or antisymmetric) are negligible for D/a P 0.2; consequently, the buckling load does not change significantly.
Figs. 15 and 16 show the global and local buckling mode shapes of a symmetric angle-ply laminated square
plate with through-the-width single delamination. Small ply angles result in better rigidity and antisymmetric
local buckling modes. As shown in these figures, some peculiar and complex mode shapes are induced due to
the combined effect of both delamination size and fiber angle. In a two-dimensional buckling analysis using the
existing plate element, the transition from the global to local buckling mode at the specific delamination area
can not be accurately described as like Figs. 15 and 16. On the other hand, the three-dimensional dynamic
analysis using a solid element can determine the buckling mode for an individual laminate face.
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3.2.2. Multiple embedded delaminations

Figs. 17 and 18 show the nondimensionalized buckling loads for different delamination sizes of the clamped
laminated square plates (a/h = 10) with various locations and number of delaminated layers for a symmetric
cross-ply [0/90/90/0] laminate and an antisymmetric cross-ply [0/90/0/90] laminate, respectively. For symmet-
ric case, as it is expected, we can observe (Fig. 17) that the buckling load decreases for an increased number of
delaminations. However, the buckling load for different locations of delaminations is influenced by the fiber
angles because of the same reason described earlier. Further, it can be observed that the change in the buckling
loads for D/a 6 1.0 is negligible, regardless of the size and location of delamination. For the antisymmetric
case (shown in Fig. 18), the buckling load of the [0/90//0/90] laminate exhibits the highest value. In this case,
we noted that the differences in the buckling loads due to the location and number of the delaminations show
different trends when compared with the symmetric case. This is probably due to the effect of the coupling
stiffness Bij, which became nonzero for antisymmetric laminates, inducing complicated influences on the buck-
ling behavior of the structural system.

4. Summary and conclusion

In this study, the solid finite element ‘‘EAS-SOLID8’’ with an enhanced assumed strain field is developed to
study the global and local buckling behaviors of laminated composite plates with through-the-width or
embedded delamination. An efficient three-dimensional finite element model for the delamination has also
been presented. The effects of delamination on the buckling loads and modes of the laminated composite
plates have been studied using various parameters, such as delamination size, aspect ratio, width-to-thickness
ratio, stacking sequences, and location of delamination and multiple delaminations. We find the following key
observations in designing composite structures containing delaminations.

1. The buckling characteristics of laminated composite plates analyzed using two- and three-dimensional
models are significantly different from each other under different boundary conditions. This is particularly
true for large delamination sizes. The performance of the EAS element is largely improved than that of the
incompatible element. Therefore, it is desirable to use EAS solid elements for better accuracy.

2. The buckling loads of the clamped [0//90/90/0] laminated plate for D/a = 0.8 approach a constant value as
the aspect ratio increases. On the other hand, the buckling load for small delamination sizes tends to
decrease sharply in the same range. For the simply supported boundaries, the buckling loads for
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Fig. 14. Nondimensionalized buckling loads versus various through-the-width delamination sizes of clamped symmetric and
antisymmetric angle-ply laminated square plates; a/b = 1.0, a/h = 10.

Fig. 15. Buckling modes for whole model of clamped symmetric angle-ply [30//-30/-30/30] laminated square plate with through-the-width
single delamination; a/b = 1.0, a/h = 10. (a) D/a = 0.0 (global buckling mode). (b) D/a = 0.2 (mixed buckling mode). (c) D/a = 0.8 (local
buckling mode).
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Fig. 16. Buckling modes for whole model of clamped symmetric angle-ply [60//-60/-60/60] laminated square plate with through-the-width
single delamination; a/b = 1.0, a/h = 10. (a) D/a = 0.0 (global buckling mode). (b) D/a = 0.2 (mixed buckling mode). (c) D/a = 0.8 (local
buckling mode).
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Fig. 17. Nondimensionalized buckling loads versus various delamination sizes of clamped [0/90/90/0] laminated plates with square
embedded single delamination or multiple delaminations.
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Fig. 18. Nondimensionalized buckling loads versus various delamination sizes of clamped [0/90/0/90] laminated plates with square
embedded single delamination or multiple delaminations.
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D/a = 0.0 and 0.4 are close to each other. On the other hand, the induced buckling load for the delamina-
tion size of D/a = 0.8 is much lower than those for the other sizes, because the flexural rigidity of the plate
should decrease as the delamination size increases. It should be noted that the difference becomes more evi-
dent in the case of the clamped plate.

3. For extremely large delamination sizes, the buckling loads approach a constant value regardless of the
width-to-thickness ratios; this is because the extremely large delamination size decreases the plate resistance
against the local buckling behavior. It is desirable to use the range of D/a < 0.2 for a reasonably stable
design, particularly for thin composite plates.

4. The induced buckling loads of angle-ply laminates are significantly different for different fiber angles,
because different fiber angles largely govern the changes in the bending and shear stiffnesses. The buckling
load of the [30//-30/30/-30] laminate exhibits the highest value of the lay-ups considered. The change in the
stiffnesses due to the layup sequence is negligible; therefore, the buckling load does not change significantly.

5. The differences in the buckling loads due to the location and number of delaminations show differ-
ent trends when compared with the symmetric case. This is due to the effect of Bij, which became
nonzero for antisymmetric laminates, inducing complicated influences on the buckling behavior of
the structural system.

From this study, it may be concluded that the local buckling effects at the laminate face for different geo-
metrical properties should not be neglected and thus three-dimensional models using EAS solid elements
should be used to analyze laminated composite structures containing small delaminations for obtaining better
accuracy.
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