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The natural Lagrangian stretch and wryness tensors of the non-linear Cosserat continuum are expressed
in terms of the general finite rotation vector. These expressions are then specialized for seven particular
definitions of the rotation vectors known in the literature. It is expected that some of the vectorially
parameterized strain measures derived here may be more convenient than others in specific applications.
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1. Introduction

In the recent paper by Pietraszkiewicz and Eremeyev (2009) we
applied three different ways of defining the strain measures of the
non-linear Cosserat continuum. We found in particular that the
most natural definitions for the Lagrangian relative stretch E and
wryness (or change of the microstructure curvature) C tensors are

E ¼ Q TðIþ GraduÞ � I; C ¼ �1
2
� : ðQ T GradQ Þ: ð1Þ

Here u 2 E is the translation vector, Q 2 SOð3Þ the proper orthogo-
nal microrotation tensor, I the identity (metric) tensor in the unde-
formed configuration, � ¼ �I� I the third-order skew Ricci tensor,
� the vector product, and the double dot product : of two third-or-
der tensors A, B represented in the orthonormal base ha, a = 1,2,3, is
defined as A : B ¼ AamnBmnbha � hb.

The orthonormal vectors ha were interpreted by Pietraszkiewicz
and Eremeyev (2009) as the natural base vectors of three-orthogonal
system of curvilinear arc-length coordinates sa such that
ha ¼ ox=osa � x;a, where x 2 E is the position vector of a material par-
ticle in the reference configuration of the body. Then gradients of the
vector vðxÞ 2 E and second-order tensor TðxÞ 2 E� E fields were
defined by Gradv ¼ v;a � ha and GradT ¼ T;a � ha, respectively.

While three components of u in (1) are all independent, nine
components of Q in (1) are subject to six constraints following
ll rights reserved.
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from the orthogonality conditions Q�1 ¼ Q T , detQ = +1, so that
only three rotational parameters of Q are independent.

In the literature, many techniques how to parameterize the
rotation group SO(3) were developed, see for example Rooney
(1977), Guo (1981), Pietraszkiewicz and Badur (1983), Altman
(1986), Atluri and Cazzani (1995), Borri et al. (2000), Geradin and
Cardona (2001) and Chróścielewski et al. (2004). These parameter-
izations can roughly be classified as vectorial and non-vectorial
ones. Various finite rotation vectors as well as the Cayley–Gibbs
and exponential map parameters are examples of the vectorial
parameterization, for they all have three independent scalar
parameters as Cartesian components of a generalized vector in
the 3D vector space E. The non-vectorial parameterizations are
expressed either in terms of three scalar parameters that cannot
be treated as vector components, such as Euler-type angles for
example, or through more scalar parameters subject to additional
constraints, such as unit quaternions, Cayley–Klein parameters,
or direction cosines. Each of these parameterizations has some
advantages and drawbacks widely discussed in the literature.

The aim of this note is to express the strain measures (1) in
terms of seven different vectorial parameters proposed in the liter-
ature. Each of these expressions may appear to be more convenient
than others when solving specific problems of the non-linear Coss-
erat continuum.

2. The vectorial parameterization

The microrotation tensor Q represents the isometric and
orientation-preserving transformation of the 3D vector space E into
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itself. By the Euler theorem such a transformation can be expressed
in terms of the angle of rotation / about the axis of rotation de-
scribed by the eigenvector e corresponding to the real eigenvalue
+1 of Q such that

Qe ¼ þe; cos / ¼ 1
2
ðtrQ � 1Þ; sin /e ¼ 1

2
axðQ � Q TÞ; ð2Þ

where tr A is the trace of the second-order tensor A, and ax W is the
axial vector w of the skew second-order tensor W such that
W ¼ w� I ¼ I�w.

In terms of e and / the microrotation tensor Q can be expressed
by the Gibbs (1901) formula, see for example Beatty (1977), Guo
(1981) and Pietraszkiewicz and Badur (1983),

Q ¼ cos /Iþ ð1� cos /Þe� eþ sin /e� I: ð3Þ

In the vectorial parameterization of Q one introduces a scalar func-
tion pð/Þ generating three components of the finite rotation vector
p defined as, see for example Bauchau and Trainelli (2003),

p ¼ pð/Þe: ð4Þ

The generating function pð/Þ in (4) has to be an odd function of /
with the limit behaviour lim/!0

pð/Þ
/ ¼ j, where j is a positive real

normalization factor (usually 1 or 1
2), and pð0Þ ¼ 0. In terms of (4)

the tensor Q and its transpose can be represented as

Q ¼ cos /Iþ 1� cos /
p2 p� pþ sin /

p
p� I;

Q T ¼ cos /Iþ 1� cos /
p2 p� p� sin /

p
p� I:

ð5Þ

The finite rotation vector (4) is the generalized vector. The compo-
sition of two successive rotations Q 3 ¼ Q 2Q 1, when expressed in
terms of the corresponding vectors p1;p2;p3 with angles of rotation
/1;/2;/3, reads

cos
/3

2
¼ cos

/1

2
cos

/2

2
�

sin /1
2 sin /2

2

p1p2
p1 � p2;

sin /3
2

p3
p3 ¼

sin /1
2 sin /2

2

p1p2

p2

cos /2
2

p1 þ
p1

cos /1
2

p2 � p1 � p2

 !
:

ð6Þ

Eq. (6)1 is used to compute /3, which also gives
sin /3

2 and p3 ¼ pð/3Þ. Then (6)2 allows one to establish the vector
p3.

Since Q T Q ;a ¼ �ðQ T Q ;aÞT is skew it can be expressed through
the axial vector ca,

Q T Q ;a ¼ ca � I; ca ¼ �
1
2
� : ðQ T Q ;aÞ

¼ /;aeþ ½sin /I� ð1� cos /Þe� I�e;a: ð7Þ

The vector ca describes the change of the reference microstructure
curvature of the Cosserat continuum along the arc-length coordi-
nate line sa. It is analogous to the vector kj of change of curvature
of the curvilinear coordinate line hj in classical continuum mechan-
ics defined as RT R;j ¼ kj � I by Pietraszkiewicz and Badur (1983),
where R was the rotation tensor following from the polar decompo-
sition F ¼ RU ¼ VR. But in the Cosserat continuum Q is the inde-
pendent field not related to u and therefore Q–R, in general.

Differentiating the vector p in (4) along the coordinate line sa

we obtain the transformation relations

/;a ¼
1
p0

p;a; e;a ¼ �
1
p2 p;apþ 1

p
p;a; p0 ¼ dp

d/
; ð8Þ

which introduced into (7) lead to

ca ¼
1
p

1
p0
� sin /

p

� �
p;apþ sin /

p
p;a �

1� cos /
p2 p� p;a: ð9Þ
Taking into account that p � p;a ¼ pp;a, we have the identities

p ¼ 1
pp;a
ðp� pÞp;a; p;a ¼ Ip;a; p� p;a ¼ ðp� IÞp;a; ð10Þ

and the relation (9) can be given in the equivalent form

ca ¼ Ap;a; A ¼ sin /
p

Iþ 1
p2

1
p0
� sin /

p

� �
p� p� 1� cos /

p2 p� I:

ð11Þ
Substituting (5)2 and (11) into (1), the natural Lagrangian stretch E
and wryness C tensors can now be represented in terms of the finite
rotation vector p by the general relations

E ¼ cos /Iþ 1� cos /
p2 p� p� sin /

p
p� I

� �
ðIþ GraduÞ � I; ð12Þ

C ¼ sin /
p

Iþ 1
p2

1
p0
� sin /

p

� �
p� p� 1� cos /

p2 p� I
� �

Gradp: ð13Þ
3. Particular finite rotation vectors

Among definitions of p used most often in the literature let us
mention the finite rotation vectors defined as

h ¼ 2 tan
/
2

e; / ¼ /e; - ¼ sin /e; q ¼ tan
/
2

e; ð14Þ

where the generating functions are h ¼ 2 tan /
2, /;- ¼ sin /, and

q ¼ tan /
2, respectively. Within the non-linear Cosserat continuum

the Cayley–Gibbs vector h was used for example by Shkutin (1980),
Badur and Pietraszkiewicz (1986), Zubov (1997) and Nikitin and
Zubov (1998), while the linear vector / (called also the exponential
map) by Kafadar and Eringen (1971), Nistor (2002) and Ramezani
and Naghdabadi (2007). The vector h was used in the non-linear the-
ory of plates, see for example Hodges et al. (1993), and in the non-lin-
ear theory of composite beams by Hodges (2006), where the
extensive review of the literature was given. In the non-linear theory
of Cosserat-type shells and the classical continuum mechanics the
vector - was found to be convenient in papers by Pietraszkiewicz
(1979) and Pietraszkiewicz and Badur (1983), while the Rodrigues
rotation vector q was willingly used in analytical mechanics of
rigid-body motion, see for example Pars (1965).

Less popular in the literature till now is the Euler–Rodrigues vector
r, the Wiener–Milenkovic vector l, and the Bauchau–Trainelli vector
b defined by

r ¼ 2 sin
/
2

e; l ¼ 4 tan
/
4

e; b ¼ 4 sin
/
4

e; ð15Þ

whose generating functions are r ¼ 2 sin /
2, l ¼ 4 tan /

4, and
b ¼ 4 sin /

4, respectively.
Introducing (14) and (15) into (12) and (13) and using appropri-

ate trigonometric identities, after complex but elementary trans-
formations we obtain the formulae for E and C expressed in
terms of the corresponding finite rotation vectors. These formulae
are given in Tables 1 and 2.

With all the vectorial parameterizations the singularities occur
for some values of / following from singularities of the generating
functions pð/Þ, when p!1, from singularities of the inverse rela-
tions p ¼ pðQ Þ, as well as from singularities of A and A�1, see
Bauchau and Trainelli (2003). Hence, we also indicate in Tables 1
and 2 the ranges of validity of / for the analysis to be singular-free
while using these strain measures in problems of the non-linear
Cosserat continuum. When in applications there appear arbitrary
values of the rotation angle /, one needs at least five independent
scalar parameters to parameterize the rotation group SO(3) in the
globally one-to-one and singular-free manner, see for example
Hopf (1940), Stuelpnagel (1964) and Perelyaev (2006). For the
finite rotation vectors l and b, Bauchau and Trainelli (2003)



Table 1
The natural Lagrangian stretch tensor for different finite rotation vectors.

p / 2 E

h � 2 tan /
2 e ð�p;pÞ 1

1þ h2

4

1� h2

4

 !
Iþ 1

2
h� h� h� I

" #
ðIþ Grad uÞ � I

/ � /e ð�2p;2pÞ cos /Iþ 1� cos /

/2 /� /� sin /
/

/� I
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Table 2
The natural Lagrangian wryness tensor for different finite rotation vectors.

p / 2 C

h � 2 tan /
2 e ð�p;pÞ 1

1þ h2

4

I� 1
2

h� I
� �

Gradh

/ � /e ð�2p;2pÞ sin /
/
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Grad/
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-2

1
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Grad-
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r � 2 sin /
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/
2
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4 cos /

2
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2
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 !
Gradr
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16 Þ
2
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2
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Gradl
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s
ð1� b2

8
ÞIþ
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8

� �
1� b2
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� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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16

q b� b� 1
2
ð1� b2

16
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75Gradb
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described procedures how to handle arbitrary rotations by combin-
ing appropriate update and rescaling operations.

With the vectors h,q,l, or b the formulae for E, C in Tables 1 and 2
do not contain any trigonometric expressions of /. This might sug-
gest some convenience in further purely algebraic transformations.
With the vectors /,l, or b the formulae for E,Chave broader range of
singular-free behaviour. When j/j < p the values of lð/Þ and bð/Þ
are not much different from /, that is lð/Þ � / � bð/Þ. In the limit
the sin-type generating functions -;r; b converge to / from below,
while the tan-type ones h, q, l, from above.

When the values of u and / as well as their spatial gradients are
infinitesimal

kuk 	 1; kGraduk 	 1; j/j 	 1; kGrad/k 	 1;

we also have sin / � /, cos / � 1, and pð/Þ � j/. Then from (3),
(15) and (14) it follows that

p � j#; Q � Iþ #� I;
where # ¼ /e is now the infinitesimal rotation vector. Then from
(12) and (13) we obtain

E � e � Gradu� #� I; C � c � Grad#: ð16Þ

The infinitesimal strain measures e, c or their transpose were used
in many papers and books on the linear theory of the Cosserat con-
tinuum. Let us mention here the books by Kröner (1968), Nowacki
(1986), Eringen (1999) and Dyszlewicz (2004), where many refer-
ences to other papers can be found.

4. Conclusions

Within the non-linear Cosserat continuum, introduction of the
finite rotation vector gives the possibility to formulate the bound-
ary-value problem in terms of displacement and finite rotation
vectors as the primary unknown variables. In this note the natural
Lagrangian stretch and wryness tensors derived by Pietraszkiewicz
and Eremeyev (2009) have been expressed in terms of the general
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finite rotation vector. These expressions have then been special-
ized for seven different definitions of the rotation vectors known
in the literature. Each of the particular forms of the strain measures
has some advantages and drawbacks, and each of them may be
more convenient than others in specific applications.
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